【人教版】中职数学基础模块下册:7.4《向量的内积及其运算》课件(1)
- 格式:pdf
- 大小:1.89 MB
- 文档页数:17
课时教学设计首页(试用)授课时间:年月日课题7.4.2 向量内积的坐标运算与距离公式课型新授第几1课时1.掌握向量内积的坐标表示,并应用向量内积的知识解决课时有关长度、角度和垂直的问题.教学 2.能够根据平面向量的坐标,判断向量是否垂直.目标 3.通过学习向量的坐标表示,使学生进一步了解数形结合(三维)思想,认识事物之间的相互联系,培养学生辩证思维能力.教学重点:教学向量内积的坐标表达式,向量垂直的充要条件,向量长度的计算公式的应用.重点与难点教学难点:向量内积的坐标表达式的推导,即 a·b=| a | | b | cos?a,b?与 a·b=a1b1+a2b2两个式子的内在联系教学方法与手段使用教材的构想本节课采用启发式教学和讲练结合的教学方法.向量内积的坐标表达式,是向量运算内容与形式的统一.无论是向量的线性运算还是向量的内积运算,最终归结为直角坐标运算.教学中教师要引导学生抓住这条线索,不断使学生的平面向量知识系统化、条理化,从而有利于学生知识体系的形成教师行为1.已知非零向量 a 与 b ,则 a 与b的内积表达式是怎样的?由内积表达式怎样求 cos?a,b??2. a b;3. | a | 与a·a有何关系?已知 e1, e2是直角坐标平面上的基向量, a=(a1,a2),b=(b1,b2),你能推导出 a· b 的坐标公式吗?探究过程a· b=(a1e1+a2e2)·(b1e1+b2e2)=a1b1e1·e1+ a1b2e1·e2+ a2b1e1·e2+ a2b2e2·e2,又因为e1· e1=1, e2· e2=1,e1·e2=0,所以a· b=a1b1+a2b2.☆补充设计☆师生行为设计意图教师提出问题.为知识迁移做准学生回忆解答.师生共同备.回忆旧知识.师:对平面向量的内积的研究不能仅仅停留在几何角度,还要寻求其坐标表示.引出探究问题.学生讨论并回答,教师再问题为复习向量提出的下列问题:的线性运算和向量的( 1)(a1e1+ a2e2)·(b1e1+内积而设计.通过学b2e2) 是怎样进行运算的?生的探究给出结论,( 2)e1·e1,e2·e2,e1·e2比直接给出更符合学的内积是怎样计算的?生的特点,容易被学教师针对学生的回答进行生接受.通过结论的点评.师生共同写出详细的探探究,让学生初步感究过程.受到无论是向量的线性运算还是向量的内积运算,最终都归结为直角坐标运算.定理在平面直角坐标系中,已知e1, e2是直角坐标平面上的基向量,两个非零向量a=(a1,a2), b=(b1,b2),则a· b=a1b1+a2b2.这就是说,两个向量的内积等于它们对应坐标的乘积的和.我们还可以得到以下结论:(1)向量垂直的充要条件为a⊥ b a1b1+a2b2=0;(2)两向量夹角余弦的计算公式为cos?a,b?=a1b1+ a2b22222.a1+ a2 b1+ b2教师给出向量内积的直角坐标运算公式.并引导学生用文字叙述.在教师的引导下学生讨论得出.问题:(1)若已知 a = (a 1,a 2) ,你能用上面的定理求出 | a | 吗?解 因为2| a | = a · a = (a 1, a 2)· (a 1, a 2)= a 12+ a 22 ,所以 | a |= a 12+ a 22.这就是根据向量的坐标求向量长度的计算公式.(2)若已知 A(x 1, y 1),B(x 2, y 2),你→能求出 | AB| 吗?解因为 A(x 1,y 1),B(x 2,y 2),所以→AB = (x 2 -x 1,y 2 -y 1 ).因为 | a |= a 12 + a 22,所以→ 2 2 ,| AB|= (x 2 -x 1 ) + (y 2- y 1 )教师提出问题, 稍加点拨. 通过对问题的详学生讨论解答.细探究得到性质,比 教师总结得出这就是根据直接给出结论更容易 向量的坐标求向量长度的计算 被学生接受.同时加 公式.深对 a ·b = a 1b 1+ a 2b 2 的理解.从而提高学生的思维能力.教师提出问题.使刚刚学过的知学生讨论解答.识及时得到应用.教师总结得出这就是根据两点的坐标求两点之间的距离公式.这就是根据两点的坐标求两点之间的距离公式.例 1 设 a = (3,- 1), b = (1,- 2),学生尝试解答.教师针对求:学生的回答进行点评.(1) a · b ;(2) | a |; (3) | b |;(4)?a , b ?.解 (1) a ·b = 3× 1+ (- 1)× (- 2)= 3+ 2= 5;(2) | a |= 32+ (-1) 2= 10; (3) | b |= 12+ (—2) 2= 5;(4) 因为cos?a , b ?= a b =5= 2,| a || b |10× 52π 所以 ?a , b ?= .4通过例 1 可让学生加深对向量内积的直角坐标运算公式及向量的长度公式的理解和记忆.例2 已知 A(2,- 4), B(- 2,3) ,求→教师点拨,学生解答.巩固公式,形成| AB |.教师针对学生的回答进行技能.解因为 A(2,- 4),B(- 2,3),所点评.以→- (2,- 4) AB =( - 2, 3)=(- 4, 7),→72+( -4)2所以 | AB|== 65.例3 已知 A(1,2), B(3,4), C(5,0),求证:△ ABC 是等腰三角形.教师点拨,学生讨论解答.在板书证明的过证明因为小组讨论时教师巡视,并程中,突出解题思路→针对学生的回答给予补充、完与步骤.AB = (3- 1, 4- 2)= (2, 2),→善.最后师生共同完成此题.教AC = (5- 1, 0- 2)= (4,- 2),师给出具体的解题步骤.→BC = (5- 3, 0- 4)= (2,- 4),→2+ (- 2)2=20,|AC|=4→2+ (- 4)2=20,|BC|=2→→所以 |AC|=|BC |.因此△ ABC 是等腰三角形.例4 已知 A(1,2) ,B(2,3),C(- 2,→→教师点拨,学生解答.通过学生讨论,5),求证: AB AC.教师针对学生的回答进行老师点拨,可以突出证明因为点评.解题思路,深化解题→步骤,分解难点.顺AB = (2- 1, 3- 2)= (1, 1),→利帮助学生完成.AC = (- 2- 1,5- 2)= (- 3,3),可得→→AB · AC = (1, 1) ·(- 3, 3)= 0.→所以 AB →AC .练习1.已知 A(1, 2),B(2, 3),C(- 2,π5),求证:BAC= .师生合作共同完成.学习新知后紧跟22.已知点 P 的横坐标是 7,点 P 到练习,有利于帮助学点 N(-1,5)的距离等于 10,求点 P 的坐生更好的梳理和总结标.本节所学内容.有利于教师检验学生的掌握情况.本节课我们主要学习了平面向量内学生阅读课本 , 畅谈本节梳理总结也可针积的坐标运算与距离公式,常见的题型课的收获,老师引导梳理,总对学生薄弱或易错处主要有:结本节课的知识点.进行强调和总结.(1)直接用两向量的坐标计算内积;(2)根据向量的坐标求模;(3)根据两点坐标求两点间的距离;(4)判定两向量是否垂直.课时教学设计尾页(试用)☆补充设计☆板书设计平面向量基本定理在平面直角坐标系中,已知e1, e2练习:是直角坐标平面上的基向量,两个非零向量a=(a1,a2), b=( b1,b2),则a· b=a1b1+a2b2.例 1 设a= (3,- 1),b= (1,- 2),求:(1) a·b;(2) |a |;(3) | b |;(4)?a,b?.作业设计教材P56 练习 A 组第 1 题;教材P57 练习 B 组第 1 题 (选做 ).教学后记。
人教版中职数学基础模块下册《数乘向量》教案 (一)人教版中职数学基础模块下册《数乘向量》教案一、教学目标1.掌握向量与数的乘积的概念;2.理解数乘向量的几何意义和规律;3.熟练掌握数乘向量的运算方法;4.通过练习,加深对数乘向量概念的理解和运用。
二、教学重点1.数乘向量的概念;2.数乘向量的几何意义;3.数乘向量的运算方法。
三、教学难点1.数乘向量的几何意义;2.数乘向量的运算方法。
四、教学过程1.导入新知识(5分钟)通过图示向学生说明如果只知道向量长度和方向,如何求出它的坐标。
2.引入概念(10分钟)通过实际生活例子,让学生理解数乘向量的概念。
并通过图示、例题等方法让学生理解何为向量的乘法。
3.讲解规律(10分钟)分析数乘向量的几何意义,讲解数乘向量的基本规律和性质。
并通过例题让学生理解数乘向量的运算方法。
4.练习题(20分钟)教师出示大量的练习题,让学生通过练习题,掌握数乘向量的概念、求解方法及其应用。
同时,教师可适时发挥学生的创造力,出一些手工练习,如用标尺、量角器、圆规等工具手工作图。
5.板书设计(5分钟)数乘向量的定义:kA=(kA1,kA2);数乘向量的几何意义;数乘向量的运算法则。
6.课堂总结(5分钟)教师简单回顾这堂课所学过的知识点,强调数乘向量的重要性,并引导学生思考数乘向量在实际生活中的应用。
五、教学反思通过本堂课的教学过程,学生通过实际生活和几何图形理解了数乘向量的概念,掌握了数乘向量的运算方法和规律,并通过练习加深了对所学知识的理解和应用,达到教学目标。
同时,作为教师需在教学时注重情境的模拟和练习的操作,促进学生主动思考,让学生变得自主。