第五章原核生物的基因工程
- 格式:ppt
- 大小:963.51 KB
- 文档页数:83
高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。
8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。
10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。
以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。
cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。
专题1 基因工程基因工程,也称作DNA重组技术或DNA拼接技术或转基因技术。
是在体外对不同生物的DNA分子进行拼接,获得重组DNA,从而定向改变生物性状的技术。
基因工程的原理:基因重组一、基因工程的基本工具基因工程的基本工具包括限制性核酸内切酶、DNA连接酶和载体1.限制性核酸内切酶(也叫作限制酶)(1)来源:主要是从原核生物中分离、提纯得到。
(2)特点:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此限制酶具有专一性。
例如:EcolR I识别的序列是GAATTC,切割位点在GA碱基之间。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
其中在中轴线两侧进行切割形成的是黏性末端,沿中轴线切割形成的是平末端。
2. DNA连接酶,包括E·coliDNA连接酶(从大肠杆菌内提取得到)和T4-DNA连接酶(从T4-噬菌体中提取得到)两种DNA连接酶作用:能将DNA片段连接起来,并形成磷酸二酯键。
(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:缝合的都是磷酸二酯键。
②区别:E·coliDNA连接酶只能连接黏性末端,而T4DNA连接酶不仅能连接黏性末端也能连接平末端。
(2)DNA连接酶与DNA聚合酶作用的异同:DNA聚合酶能将单个核苷酸连接到已有的DNA片段的末端DNA连接酶是将两个DNA片段连接。
3.载体载体的功能是将目的基因运到受体细胞内。
(1)作为载体具备的条件:①能自我复制②具有一个至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的选择和鉴定(筛选出含有目的基因的受体细胞)。
④对受体细胞无害;(2)最常用的载体是质粒,存在于细菌拟核之外,具有自我复制能力的裸露的小型环状DN A分子。
(3)其它载体:噬菌体的衍生物、动植物病毒二、基因工程的基本操作程序第一步:目的基因的获取;第二步:基因表达载体的构建第三步:将目的基因导入受体细胞;第四步:目的基因的检测与鉴定第一步:目的基因的获取1.目的基因是指:人们所需要的,能控制蛋白质的基因。
原核生物基因的转录的过程原核生物是指不带有真核生物特征的生物,包括细菌和古菌。
原核生物的基因转录过程与真核生物有很大差别。
在原核生物中,基因的转录和翻译可以同时进行,而在真核生物中则是分开进行的。
原核生物的基因转录包括三个主要步骤:启动、延伸和终止。
启动是基因转录的第一步,它通过结合转录因子和启动子位点来确定转录的起点。
转录因子是特殊的蛋白质,它们结合到启动子位点,促使RNA聚合酶结合并开始进行转录。
在许多原核生物中,主要的转录因子是sigma因子。
sigma因子结合到RNA聚合酶,形成RNA聚合酶-核酸复合物,使RNA聚合酶可以识别和结合到启动子区域。
延伸是基因转录的第二个步骤,它涉及RNA聚合酶在DNA模板上滑动并合成RNA链。
RNA聚合酶通过解开DNA的双螺旋结构,将氧核苷酸与DNA模板上互补的碱基配对,并将它们连接成RNA链。
这个过程称为转录。
RNA链的合成是以5'-3'方向进行的。
终止是基因转录的最后一个步骤,它涉及到RNA聚合酶在达到终止位点时停止合成RNA链,并释放DNA模板。
在原核生物中,有两种不同的终止方式:依赖Rho因子和独立于Rho因子。
依赖Rho因子的终止过程中,Rho因子结合到正在合成的RNA链上,并向RNA聚合酶迁移,导致RNA聚合酶停止合成,从而释放RNA链。
独立于Rho因子的终止过程中,转录终止信号,也称为终止序列,存在于RNA链中。
当RNA聚合酶到达终止序列时,终止序列会形成一个结构,使得RNA链与DNA模板解离,并释放RNA链。
虽然原核生物的基因转录过程相对简单,但仍然具有调控机制。
一些特殊的序列元件,如增强子和抑制子,可以位于启动子附近的DNA序列上,与转录因子或其他调控蛋白相互作用,影响转录水平。
此外,DNA的超螺旋结构、RNA聚合酶的结构和其他蛋白质和小分子的相互作用也可以调控转录的过程。
总之,原核生物的基因转录过程是一个复杂而精确的过程,涉及多个蛋白质和DNA序列之间的相互作用。
原核生物基因重组的四种方式
原核生物基因重组的四种方式包括转化、转导、接合和原生质体融合。
转化是指受体菌直接吸收来自供体菌的DNA片段,通过交换整合到自己的基因组中,经复制使自己变成一个转化子。
转导是以完全缺陷或部分缺陷的噬菌体为媒介,把供体细胞的DNA片段携带到受体细胞中,通过交换与整合使后者获得前者部分遗传性状的现象。
接合是指两个细菌通过直接接触形成基因转移的桥梁,通过交换与整合使受体菌获得供体菌部分遗传性状的现象。
原生质体融合是指将两种细菌的原生质体融合在一起,通过交换与整合使融合后的细胞获得两种细菌的遗传性状的现象。
基因工程笔记总结一、基因工程的概念。
基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
又称为DNA重组技术。
(一)基因工程的理论基础。
1. DNA是遗传物质。
- 肺炎双球菌的转化实验和噬菌体侵染细菌的实验证明了DNA是遗传物质,这为基因工程中对DNA的操作提供了理论依据。
2. DNA双螺旋结构和中心法则的确立。
- 沃森和克里克构建的DNA双螺旋结构模型,阐明了DNA的结构特点,为DNA的切割、连接等操作提供了可能。
- 中心法则揭示了遗传信息的传递规律,使得人们能够理解基因表达的过程,从而在基因工程中对目的基因的表达进行调控。
3. 遗传密码的破译。
- 遗传密码的破译使得人们能够根据蛋白质的氨基酸序列推测出相应的DNA序列,反之亦然,这有助于在基因工程中准确获取目的基因并预测其表达产物。
二、基因工程的基本工具。
1. “分子手术刀”——限制性核酸内切酶(限制酶)- 来源:主要从原核生物中分离纯化而来。
- 作用:识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
例如,EcoRI限制酶识别的序列是 - GAATTC -,在G和A之间切开。
- 结果:产生黏性末端(如EcoRI产生的是黏性末端)或平末端。
2. “分子缝合针”——DNA连接酶。
- 类型。
- E.coli DNA连接酶:来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间连接起来。
- T4 DNA连接酶:来源于T4噬菌体,既可以连接黏性末端,也可以连接平末端。
- 作用:恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。
3. “分子运输车”——载体。
- 种类。
- 质粒:是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的双链环状DNA分子,是基因工程最常用的载体。
- λ噬菌体的衍生物:经过改造后可作为基因工程的载体。
基因工程:诞生于20世纪70年代。
概念:实在分子水平上进行的操作,指将多种生物体(供体)的基因或基因组提取出来,或者人工合成基因,按照人们的愿望,严密的设计,经过体外加工重组,转移到另一种生物体(受体)细胞中,使之能在受体细胞遗传并获得新的遗传性状的技术。
三要素:供体受体载体。
基因工程的主要内容:1.目的基因的获取2.重组体的制备 3.重组体的转化4、克隆鉴定5、目的基因的表达限制性内切酶:是一种能够识别双链DNA分子中的某种特定核酸序列(4-8bp)并由此处切割双链的核酸内切酶。
1、来源:原核生物2、性质:在核酸分子链的内部制造切口3、功能:自身保护作用(R/M体系:保护自身的DNA不受限制,破坏外源的DNA使之迅速讲解)影响限制酶活性的主要因素:1、DNA的纯度2、DNA 的甲基化程度3、温度4、缓冲溶液5、DNA的分子结构Klenow片段:E.coli DNA聚合酶Ⅰ经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端605个氨基酸残基片段。
该片段保留了DNA聚合酶I的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。
功能:1、3ˊ断的补平;2、DNA 3ˊ末端标记;3、cDNA第二链的合成。
平齐末端DNA 的连接方法:1、同聚物加尾法2、衔接物法;3、接头连接发。
双酶切相对单酶切的优点:可保证插入外源片段的方向,防止载体自连,提高重组率。
星号活性:在非理想的条件下,内切酶切割与识别位点相似但不完全相同的序列,这一现象称星号活性。
部分酶切:指选用的核酸内切酶对其在DNA分子上的全部识别序列进行不完全的切割。
发生部分酶切的原因:底物DNA纯度低;识别序列甲基化;酶用量不足;反应缓冲液和温度不适宜。
碱性磷酸酶和S1磷酸酶的功能:碱性磷酸酶主要是脱磷酸作用,其产物具有5-OH末端,这种功能使它在DNA 分子克隆实验中发挥着重要作用,利用该酶可以有效防止粘性末端分子自连。
S1核酸酶:是一种高度单链特异的核酸内切酶,可降解单链DNA或RNA,不仅能催化RNA 和单链DNA分子降解成为5单核苷酸,而且它也能作用于双链核苷酸单链区。