《高等代数与解析几何(下) 》期末考试试卷(B 卷)
- 格式:pdf
- 大小:116.98 KB
- 文档页数:5
高数期末试题B 参考答案及评分标准一、判断题二、填空题(本大题共10小题,每小题2分,共20分)(6) 2 (7)x z y 522=+(8) -1 (9)9122≤+<y x (10)2ln 162(11) 6 (12)yPx Q ∂∂=∂∂ (13) 右手 (14)⎰20)2sin(21πdt t (15) 偶(16)求曲面42222=++z y x 在点(1,1,1)处的切平面方程,并求过原点与该切平面垂直的直线方程。
()())2(112)3(042111)2()2,2,4(|),,(11142),,()1,1,1(222分直的直线方程为:通过原点与该切平面垂分点处的切平面方程为,,曲面在分点处的法向量,,则曲面在解:记 zy x z y x F F F z y x z y x F z y x ===-++∴==-++=(17)设函数),(y x z z =由方程23222320x z y z x y +-+=所确定,求全微分dz 。
)1(43344322)3(4334)3(43222),,(222222223222222223322232分分分则解:记 dy zy z x y yz dx z y z x x xz dz zy z x y yz F F y z zy z x xxz F F x z y x z y z x z y x F z y z x ++-+--=∴++-=-=∂∂+--=-=∂∂+-+=(18)计算Ω⎰⎰⎰,其中Ω是由0,1z z ==和222x y x +=围成的区域。
)1(9163238cos 38cos 34)1(21)2(21)1(21)2()1)1(D (203223cos 202222221222212222分分分分分:其中解: =⋅=====+=+=≤+-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ωπππθππθθθθρρθθρρd d d d d d dxdy y x zdz dxdy y x y x dz y x z dxdy dv y x z DDDD(19)计算,)536()24(L⎰+++-+dy y x dx y x 其中L 为三角形(3,0),(3,2),(0,0)的正向边界。
高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。
答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。
答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。
答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。
答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。
答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。
答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。
2014-2015学年第二学期《几何与高等代数(下)》期末试卷(2014级数学类专业)班级 学号 姓名 得分一、判断题(每小题3分,满分15分)1.线性变换A )(V End K ∈可对角化,当且仅当V 是A 的特征子空间的 直和。
( )2.n 阶多项式矩阵)(λA 可逆的充分必要条件是)(λA 满秩。
( )3.设A 为欧氏空间V 上的对称变换,则A 的特征值都为实数,且属于A 的不同特征值的特征向量必正交。
( )4.设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛=000000003B ,则A 与B 相合且相似。
( ) 5.设n 阶矩阵B A 、相似,则B A 、具有相同的不变因子组,但反之 不成立。
( )二、填空题(每小题3分,满分15分)1.以原点为顶点,准线为⎩⎨⎧0102=--=--z y z y x 的锥面方程是 。
2.设()()3213213,,,,,,y y y x x x R V ===βα,则V 上双线性函数3323322111322),(y x y x y x y x y x f +-+-=βα关于自然基321,,εεε的度量矩阵为 。
3.设3阶方阵A 的三个特征值为1,3,31, 则=+*||E A ____ 。
4.设1)(23-+-=x x x x f ,1)(4-=x x g ,则它们的最大公因式 ()=)(),(x g x f 。
5. ⎪⎪⎪⎭⎫ ⎝⎛++=32)1(0000001)(λλλλA 的初等因子组为。
三、计算题(每小题10分,共40分)1. 化简二次曲线方程:012241254222=+--++y x y xy x , 并写出对应的坐标变换公式。
2.设实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛=1010111tt A 与⎪⎪⎪⎭⎫ ⎝⎛=000020001B 相似,(1)求t 的值;(2)求正交矩阵T,使得BT=AT-1。
3.设对称多项式:322232321221231221321),,(x x x x x x x x x x x x x x x f +++++=(1)将),,(321x x x f 按字典序重新排列;(2)用初等对称多项式表示),,(321x x x f 。
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。
高等代数(下)期末考试试卷及答案(B 卷)一.填空题(每小题3分,共21分)1. 223[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为2. 设n 阶矩阵A 的全体特征值为12,,,n λλλ,()f x 为任一多项式,则()f A 的全体特征值为 .3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A()-n P[x]=,的核(0)=1A A A4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ⎛⎫⎪⎪ ⎪+⎝⎭,则A (λ)的不变因子________________________;3阶行列式因子D 3 =_______________.5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形J=6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηη下的坐标是12(,,,)n x x x ,那么(,)i ξη=7. 两个有限维欧氏空间同构的充要条件是.二. 选择题( 每小题2分,共10 分)1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为(A) 1; (B) 2; (C) 3; (D) 42. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C)A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A(A) 1; (B) 2; (C) 3; (D) -34.( )设2121),2,1,2(),1,1,0(ααβαα+=-=-=k ,若β与2α正交,则 (A) k=1; (B) k=4; (C) k= 3; (D) k=2 5.( )下列子集哪个不是R 3的子空间(A) }1|),,{(233211=∈=x R x x x w (B) }0|),,{(333212=∈=x R x x x w (C) }|),,{(32133213x x x R x x x w ==∈=(D) }|),,{(32133214x x x R x x x w -=∈=三.判断题(对的打”√”,错的打”X ”,每小题2分,共12分)1.( )设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.2.( )12,,,n εεε是n 维欧氏空间的一组基,矩阵()ijn nA a ⨯=,其中(,)ij i j a εε=,则A 是正定矩阵.3.( ) 若n 维向量空间P n 含有一个非零向量,则它必含有无穷多个向量.4.()在线性空间R 2中定义变换σ:(,)(1,)x y x y σ=+,则σ是R 2的一个线性变换. 5.( )设V 是一个欧氏空间,,V αβ∈,并且αβ=,则αβ+与αβ-正交。
诚信应考 考出水平 考出风格浙江大学城市学院2010 — 2011 学年第 二 学期期末考试试卷 《 高等代数与空间解析几何(II ) 》答题卷开课单位: 计算分院 ;考试形式:闭卷;考试时间:_2011_年_6_月_26_日; 所需时间: 120 分钟 一.___填空题__(本大题共___10__空,每空___2__分,共___20__分。
)1. 2.3. 4. 5.二.问答题(本大题共_ 4_题,每题_5_分,共_20_分。
)2.3.4.2.五.__证明题_(本题6分。
)浙江大学城市学院2010 — 2011 学年第 二 学期期末考试试卷 《 高等代数与空间解析几何(II ) 》试题卷注:答案及过程写入答题卷中才有效。
一.___填空题__(本大题共___10__空,每空___2__分,共___20__分。
)1.σ是3R 上的一个线性变换,则σ保持向量的 运算和 运算. 2.设[][][]123131,251,26TTTαααλ===, 则λ=时,123,,ααα线性相关,且极大无关组可以取为 ,其余向量被此极大无关组线性表示的表示式为 .3.设矩阵01000100A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么齐次线性方程组0A X=的通解为.4.已知3阶方阵A 的特征值为1,3,a ,且9A =,则,a=224A A E --=.5. 矩阵10002003A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦所对应的二次型为,且此二次型的秩为.二.问答题(本大题共_ 4_题,每题_5_分,共_20_分。
)1.集合{}123123123,,1,,,TV x x x x x x x x x =++=⎡⎤⎣⎦其中均为实数是线性空间吗?请说明理由.2.已知向量组[][][]12311,121,31,2,4T TTααα=-=-=,,,,以及[]3,5,2Tβ=,则β能否由123,,ααα线性表示,请说明理由.3.请写出一个与[]3P x 同构的线性空间并说明理由.4.若矩阵1232103x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦能对角化,则x 取何值?请说明理由.三.__简单计算题_(本大题共_6_题,每题均5分,共_30_分。
高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。