《总体与样本》习题
- 格式:docx
- 大小:21.00 KB
- 文档页数:2
九年级数学第25章(样本与总体)班级姓名学号一、选择题(共8题;每题有四个选项;其中只有一项符合题意。
每题3分;共24分):1.有四位同学从编号为1-50的总体中抽取8个个体组成一个样本;他们选取的样本中个体编号分别为:①5;10;15;20;25;30;35;40;②43;44;45;46;47;48;49;50;③1;3;5;7;9;11;13;15;17;④43;25;2;17;35;9;24;19.你认为样本( )较具有随机性.A.④B.③C.②D.①2.为了了解某校学生早餐就餐情况;四位同学做了不同的调查:小华向初一年级的三个班级的全体同学做了调查;小明向初二年级的三个班级的全体同学做了调查;小华向初三年级的全体同学做了调查;小珍分别向初一(1)班、初二(1)、初三(1)•班的全体同学做了调查;你认为( )同学的抽样调查较科学.3.要了解一批灯泡的使用寿命;从中抽取60只灯泡进行试验;在这个问题中;样本是( )A.这一批灯泡B. 抽取的60只灯泡C. 这一批灯泡的使用寿命D. 抽取的这60只灯泡的使用寿命4.为了考查某地区初中毕业生的数学毕业会考情况;从中抽查了200名考生的数学成绩;在这个问题中;下面说法错误的是( )A. 总体是被抽查的200名考生B. 个体是每一个考生的数学成绩C.样本是200名考生的数学成绩D. 样本容量是2005.某学校生物兴趣小组11人到校外采集植物标本;其中2人每人采集到6件;4人每人采集到3件;5人每人采集到4件;则这个兴趣小组平均每人采集到的标本是( )A. 3件B. 4件C. 5件D. 6件6.目前手机的号码都是11位数;某人的手机号码位于中间的数字是6的概率为( )A.15B.16C.18D.1107.在不透明的袋中装有大小一样的红球和黑球各一个;从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率( )A.摸出红球的概率大于硬币正面朝上的概率B. 相等C. 摸出红球的概率小于硬币正面朝上的概率D. 不能确定8.袋中有5个白球;k 个红球;经过实验;从中任取一个恰为红球的概率是23;则k 值为( ) A.10 B.16 C9.有四条线段;长度分别是2cm;3cm;4cm;5cm;从中任取三条;能构成三角形的概率是 ( ) A.25%; B.50%; C.75%; D.100%10.为了估计一次考试的成绩;某教师在求出38名考生分数的样本平均数后;因为疏忽而把这个样本平均数和38个分数混在了一起;然后求出这39个分数的样本平均数;则后一个样本平均数与正确的样本平均数的比是( ) A 1:1 B.38:39 C.39:38 D.2:1 二、填空题:(每小题4分;共20分)11.张伟为了知道汤的口味怎样;从锅中舀出一勺汤尝尝;这种抽样调查的方法是________的(填“合适”或“不合适”).12.小芳从编号为1-200的总体中随机抽取15•个个体组成一个样本;•依次编号为:21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;你认为她选取这个样本_____随机性(填“具有”或“不具有”)13.某地举行了一次数学竞赛;为了估计平均成绩;在抽取的部分试卷中;有1人得10分;3人得9分;8人得8分;12人得7分;9人得6分;7人得5分;则样本平均数是_________. 14.某班共有学生50人;平均身高为168cm;其中30名男生平均身高为170cm;则20名女生的平均身高为___________.15.一副没有大小王的扑克;共52张;抽出一张恰为“K ”的概率是__________.16.有6张卡片上分别写有0; 1; 2; 3; 4; 5; 将它们放入袋子中;摸出一张是数字小于5的概率是____________.17.转动如图1所示的转盘;指针停止后;指向红色区域的概率是_____.18.抛掷一枚质地均匀的正方体骰子;1点朝上的概率与6点朝上的概率的大小关系是_______.19.小红制作一个转盘;并将其等分成12个扇形;将其中的3块扇形涂上黑色;4块涂上红色;其余涂上白色;转动转盘上的指针;指针停止后;指向白色的概率为_________________.20.商场4月份随机抽查了6天的营业额;结果分别如大(单位:万元):2.8;3.2; 3.4; 3.7; 3.0; 3.1; 试估算该商场4月份的总营业额大约是_______万元. 三、解答题:(各题分值依次为6分、8分、8分、8分、10分;共40分)21.为了了解同学们对教师授课水平的满意程度;•校长召集了全校各班的学习委员开座谈会;了解他们的看法;你认为这样抽样调查合适吗?为什么?22 为了解某商场今年四月份的营业额;抽查了该商场在今年四月里5天的营业额;结果下(单位:万元):2.5; 2.8; 2.7; 2.4; 2.6;黑色红色120(1)在这个问题中;总体和样本分别指的是什么?(2)求样本的平均数;(3)根据样本平均数估计;这个商场四月份的平均日营业额约为多少万元?这个商场四月份的月营业额是多少万元?23.某甲鱼养殖专业户共养甲鱼200只;为了与客户签订购销合同;对自已所养甲鱼的总重量进行估计;随意捞了5只;称得重量分别为1.5; 1.4; 1.6; 2; 1.8;(单位:千克).(1)根据样本平均数估计甲鱼的总重量约是多少千克?(2)如果甲鱼的市场价为每千克150元;那么该专业户卖出全部甲鱼的收入约为多少元?24.有一个普通的骰子;6个面中的每个面都写有数字1;2;3之中的一个;通过100次掷骰子实验所得结果是:出现数字“1”的频率是33%;出现数字“2”的频率是16%;出现数字“3”的频率是51%.(1)请你判断下列说法是否正确.①这100次实验中;出现数字1;2;3的次数分别是33;66;51;②再做100次实验;出现数字1;2;3的次数也分别是33;66;51;③这枚骰子出现数字1;2;3的概率分别是33%;16%;51%;(2)请你估计一下;这枚骰子上写有数字1;2;3的面各有几个.25. 如图4所示的是聪聪从自已家到叔叔家;再到奶奶家的路线图.从图中可以看到聪聪家到叔叔家有4条路;从叔叔家到奶奶家有2条路;你能求出从聪聪家到奶奶家始终利用一种交通工具的路线概率吗?请用树状图表示.参考答案一、选择题:1、A2、D3、D4、A5、B6、D7、B8、A9、C 10、A二、填空题:11、合适12、不具有13、6.85 14、165cm 15、1 1316、5617、2318、相等19、51220、96三、解答题:21、解:因为这样取样不是随机抽样;而是专门选取了学习较好的学生;没有兼顾中等生和差生;不具有代表性。
《随机抽样与用样本估计总体》达标检测[A组]一应知应会1. (2020春•合肥期末)某地区小学、初中、高中三个学段的学生人数分别为2400人,2000人,1200人, 现采用分层抽样的方法调查该地区中小学生的“智慧阅读”情况,在抽取的样本中,初中学生人数为35 人,则该样本中高中学生人数为()A. 21 人B. 42 人C. 64 人D. 98 人2. (2020春•海安市校级期中)一组数据90, 92, 99, 97, 96, X的众数是92,则这组数据的中位数是()A. 94B. 95C. 96D. 973. (2020・天津)从一批零件中抽取80个,测量其直径(单位:〃〃〃),将所得数据分为9组:[5.31,5.33), [5.33, 5.35),…,[5.45, 5.47), [5.47, 5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,A. 10B. 18C. 20D. 364. (2020春•烟台期末)某市从2017年秋季入学的高一学生起实施新高考改革,学生需要从物理、化学、生物、政治、历史、地理六门课中任选3门作为等级考科目.已知该市高中2017级全体学生中,81%选考物理或历史,39%选考物理,51%选考历史,则该市既选考物理又选考历史的学生数占全市学生总数的比例为()A. 9%.B. 19%C. 59%D. 69%5. (2020•新课标In)设一组样本数据Xi, X2,…,X“的方差为0.01,则数据IOXI, 10x2,…,104的方差为()A. 0.01B. 0.1C. 1D. 104 6. (2020・新课标ΠI)在一组样本数据中,1, 2, 3, 4出现的频率分别为pi, pz,p3, p,,且工闭=1,则下面四种情形中,对应样本的标准差最大的一组是()A. p∣=p4=0.1, P2=P3=O∙4B. pι=p4=0.4, p2=p3=O∙lC. PI=P4=0.2, p2=p3=O.3D. p∣=p4=0.3, p2=p3=O.27. (2020春♦平顶山期末)用样本估计总体的统计思想在我国古代数学名著《数书九章》中就有记载,其中有道“米谷粒分”题:粮仓开仓收粮,有人送来一批米,验得米内夹谷,抽样取米一把,数得250粒内夹谷25粒,若这批米内夹谷有160石,则这一批米约有()A. 600 石B. 800 石C. 1600 石D. 3200 石8. (2020春•黔南州期末)已知数据用,X2, X3, X4, X5的方差为5,则数据2xι - 3, 2x2-3, 2x3 - 3, 2x4 -3, 2x5-3的方差为()A. 10B. 15C. 17D. 209. (2020•碑林区校级模拟)2020年3月某省教研室组织了一场关于如何开展线上教学的大型调研活动,共收到有效问卷558982份,根据收集的教学类型得到统计数据如图:以上面统计数据为标准对线上学习的教学类型进行分析,下面说法正确的是()A.本次调研问卷的学生中采用纯直播教学形式进行学习的学生人数超过了30万B,线上利用了直播平台进行学习的学生比例超过了90%C.线上学习观看过录播视频的学生比例超过了40%D.线上学习使用过资源包的学生的比例不足25%10. (2020春•济宁期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标.常用区间[0, 10]内的一个数来表示,该数越接近10表示满意度越高.甲、乙两位同学分别随机抽取10位本地市民调查他们的幸福感指数,甲得到十位市民的幸福感指数为5, 6, 6, 7, 7, 7, 7, 8, 8, 9,乙得到十位市民的幸福感指数的平均数为8.方差为2.2,则这20位市民幸福感指数的方差为()A. 1.75B. 1.85C. 1.95D. 2.0511. (2020春•宣城期末)2020年4月24日下午,随着最后1例新冠肺炎重症患者治愈,武汉重症病例实现了清零,抗疫工作取得了阶段性重大胜利.某方舱医院从出院的新冠肺炎患者中随机抽取IOO 人,将 这些患者的治疗时间(都在[5, 30]天内)进行统计,制作出频率分布直方图如图所示,则估计该院新冠肺炎患者治疗时间的中位数是( ) 频率A. 16B. 17C. 18D. 19 12.(多选)(2020春•枣庄期末)在对某中学高一年级学生身高(单位:的)的调查中,随机抽取了男生 23人、女生27人,23名男生的平均数和方差分别为170和10.84, 27名女生的平均数和方整分别为160 和 28.84,则( )A.总样本中女生的身高数据比男生的高散程度小B.总样本的平均数大于164C.总样本的方差大于45D.总样本的标准差大于713.(多选)(2020春•厦门期末)对300名考生的数学竞赛成绩进行统计,得到如图所示的频率分布直方图.则 下列说法正确的是( )0.100.050.030.010 时间(天) 5 10 1520 25 30A. α=0.01B.成绩落在[80, 90)的考生人数最多C.成绩的中位数大于80D.成绩的平均分落在[70, 80)14. (2020春•开封期末)雷神山医院从开始设计到建成完工,历时仅十天.完工后,新华社记者要对部分参与人员采访.决定从300名机械车操控人员,160名管理人员和240名工人中按照分层抽样的方法抽取35人,则从工人中抽取的人数为.15. (2020•江苏)已知一组数据4, 2a, 3 - α, 5, 6的平均数为4,则。
样本与总体小结与复习知识梳理1.样本、总体、样本容量⑴在统计里,我们把所要考察的全体对象叫做____.其中每一个考察象叫做____.⑵在总体中被抽出来的实际调查的对象组成总体的一个______,一个样本包含的个体的数量叫做这个样本的容量.2.普查与抽样调查:为了一定的目的而对考察对象进行的全面调查,称为______,从总体中抽取部分个体进行调查,这种调查方式称为______调查. 普查是通过总体的方式来收集数据的,抽样调查是通过调查样本的方式来收集数据的.温馨提示:(1)普查可以直接获得总体的情况,但有时总体个体数目较多,普查的工作量较大,无法对所有个体进行普查,有时受客观条件的限制,有时具有破坏性,不允许普查.(2)抽样调查只考察总体的一部分个体,因此它的优点是调查范围小,节省时间、人力、物力,但其调查结果没有普查结果准确,抽样时要注意样本的代表性和广泛性.3.简单的随机抽样要使样本具有代表性,不偏向总体中的某些个体,有一个对每个个体都公平的办法,那就是用_______的办法决定哪些个体进入样本,统计学家称这种理想的抽样方法为简单的随机抽样.抽样之前,我们不能预测到哪些个体会被抽中,像这样不能够事先预测结果的特性叫做随机性.4.用样本估计总体在抽样调查中,当样本在总体中具有___,样本容量又___,也没有遗漏某一群体时,样本的平均数、方差和标准差与总体的平均数、方差和标准差可以很___,此时,可以用样本平均数去估计___,用样本的方差或标准差去估计___.一般来说,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确,相应地,搜集、整理、计算数据的工作量也就越大,因此,在实际工作中,样本容量既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价的大小.5.借助调查做决策通过选取恰当的统计图或统计量对数据进行分析,同样可以利用样本的平均数、方差或标准差对问题作出相应的决策.考点呈现考点1普查与抽查例1(2012年淄博市)要调查下面的问题,适合做全面调查的是()A.某班同学“立定跳远”的成绩B.某水库中鱼的种类C.某綦江河水质情况D.某型号节能灯的使用寿命分析:本题考查了调查的方式,注意选择调查的方式必须切合实际,切实可行.调查方式有普查(全面调查)与抽样调查两种,根据每个选项中的实际问题所要调查对象的数目多少,工作量大小,以及是否受客观条件限制难以完成,或是否带有破坏性等诸多方面,进行全盘考虑,选择合适的调查方式即可.解:由于一个班级人数有限,每个同学的“立定跳远”成绩可以逐一测量得知,适合进行全面调查;要了解水库中鱼的种类及其綦江河水质情况,受客观条件的限制难以做到一一进行统计,工作量较大,进行普查没有必要;节能灯的使用寿命都具有破坏性,不适合进行普查.故选A.例2 (2012年包头市)下列调查中,调查方式选择正确的是( )A.为了了解1000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量,选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查分析:本题主要考查了调查方式的选用,理解两种调查方式的适用范围和特点是解决问题的关键.选项A 、C 、D 的调查都具有破坏性,所以只能用抽样调查,选项B 调查对象的范围太大,所以适合抽样调查,故方式正确的是B ,所以应选B . 考点2 总体、个体、样本以及样本容量例3(2012年梅州市)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的( )A .总体B .个体C .样本D .以上都不对 分析:根据总体、个体、样本三个概念对各选项的对错进行判断.解:此问题中的总体是梅州市火车站今年“五一”期间每天乘车人数,A 错误;个体是“五一”期间乘车的每一个人,B 错误;样本是所抽查的这五天中每天乘车人数,C 正确,故选C.例4(2012年攀枝花)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A. 150B. 被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩 分析:根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩,故选C . 考点3 用样本估计总体例5(2012年泰安市)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:节水量(3m )0,2 0,25 0.3 0.4 0.5家庭数(个) 2 4 6 7 1请你估计这400名同学的家庭一个月节约用水的总量大约是( )A .130m 3B .135m 3C .6.5m 3D .260m 3分析:先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,再乘以总数400得到结果.解:20名同学各自家庭一个月平均节约用水是(0.2×2+0.25×4+0.3×6+04×7+0.5×1)÷20=0.325(m 3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m 3),故选A .例6 (2012年苏州市)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图1所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ________ 人.分析:关键是弄清每个图表所表示的意义.由统计图可得50人中坐公交车上学校的有15人,由此可以估算全校坐公交车到校的学生数.图1解:由统计图,得坐公交车上学的人数有15人,占50人中的百分比是15÷50=30%,而720×30%=216(人),所以可以估计全校坐公交车到校的学生有216人.评注:先求出所抽取的个体占样本的百分率,进而用来估算全体.求解时要能从统计图中准确地获取信息,并对数据进行整理,掌握相关统计量的计算方法.例7(2012年凉山州)吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:根据统计图解答下列问题:⑴同学们一共调查了多少人? ⑵将条形统计图补充完整.⑶若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?⑷为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传.若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?分析:⑴根据替代品戒烟50人占总体的10%,即可求得总人数;⑵根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;⑶根据图中“强制戒烟”的百分比再进一步根据样本估计总体.⑷第一期宣传后支持“警示戒烟”的市民约有3500×(1+增长率),第二期宣传后支持“警示戒烟”的市民约有3500×(1+增长率)(1+增长率).解:⑴50÷10%=500(人),故一共调查了500人. ⑵完整的统计图如图3所示:⑶10000×35%=3500(人);⑷3500×(1+20%)2=5040(人). 考点4 方案决策例8 (2012年宁波市)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图6,部分统计量如下表:警示戒烟 强制戒烟药物戒烟替代品戒烟 10%15%戒烟 戒烟 戒烟 戒烟戒烟方式图6(1)求乙队身高的平均数及身高不小于1.70米的频率;(2)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由. 分析:⑴乙队身高的平均数=乙队身高的总数÷6;求乙队身高不小于1.70米的频率,先找到乙队身高不小于1.70米的频数,再除以总人数.(2)根据整齐程度可知数学的稳定性,越整齐就越稳定.解:(1) 1(1.70 1.68 1.72 1.70 1.64 1.70) 1.696x =+++++=乙( 米), ∴乙队身高的平均数为1.69米,身高不低于1.70米的频率为4263=.(3) ∵S S <乙甲,∴乙队的身高比较整齐,乙队将被录取. 误区点拨例1 估计观众收看2012年伦敦奥运会开幕式的收视率,选择哪种调查方式?错解:全面调查.分析:我国有13亿多人口,如果采有全面调查,工作量太大,几乎无法完成.所以不宜采用全面调查.正解:随机调查足够数量的对象,也就是抽样调查.例2 调查学生对评价教师情况,若选择抽样调查,样本怎样选择合理? 错解:只调查尖子学生.分析:只调查尖子生不具有普遍性,也就是不具有代表性.像只调查课代表或只调查学习干部或只调查中等学生都是不具有代表性的.正解:随机利用学号抽查部分学生或在男生、女生中各抽取部分学生进行调查.例3 为了了解一批电视机的使用寿命,从中抽取了100台电视机进行试验,这个问题中的样本是( )A .这批电视机的使用寿命B .抽取的100台电视机C .100D .抽取的100台电视机的使用寿命 错解:选B .分析:错解在没有理解调查的对象.本题调查的对象100台电视机的使用寿命.而不是调查100台电视机. 正解:选D .例4 甲、乙两家汽车销售公司近几年的销售量的对比如下图所示,试问销售量增长较快的是哪个公司?年份年份甲公司乙公司错解:根据统计图的走势可知,销售量增长较快的是乙公司.剖析:两个统计图虽然描述的都是近年公司的汽车的销量情况,但是这两个统计图的纵轴与横轴的单位刻度都不一致.易给人造成错误的印象:乙公司的销售量较甲公司的销售量快,观察两个统计图可知,甲、乙两公司在2006年的销售量基本相同,而在2010年,甲公司的销量突破500多辆,乙公司仅是400辆,为此,不难判断哪家公司的增长快慢.正解:销售量增长较快的是甲公司.跟踪训练1.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体C.样本容量D.总体的一个样本2.以下问题,不适合用普查的是( )A.了解全班同学每周体育锻炼的时间B.制药厂每瓶农药的药效时间C.学校招聘老师,对应聘人员面试D.黄河三角洲中学调查全校753名学生的身高3.四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差s2如下表所示:如果选出一个成绩较好且状态稳定的人去参赛,那么应选()A.甲B.乙 C.丙 D.丁4.(2012年资阳市)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.5.(2012年南通市)为了了解学生参加家务劳动的情况,某中学随机抽取部分同学,统计他们双休日两天劳动的时间,将统计的劳动时间(单位:分钟)分成5组:30≤x<60,60≤x <90,90≤x<120,120≤x<150,150≤x<180,绘制成频数分布直方图(如图5).⑴这次抽样调查的样本容量是;⑵该中学共有1000名学生,估计双休日两天有多少名学生家务劳动的时间不少于90分钟?6.(2012年宁夏)商场对每个营业员在当月某种商品销售件数统计如下:解答下列问题 ⑴设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比; ⑵为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励.如果要使得所有优秀和称职的营业员中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?并简述其理由.跟踪训练1. C2. B3. B4. 76005. ⑴5+20+35+30+10=100;⑵100103035++=0.75,所以1000×0.75=750(人).6. 解:(1)优秀营业员人数所占百分比 %10%100303=⨯. (2) 奖励标准应定为21件.中位数是一个位置代表值,它处于这组数据的中间位置,因此大于或等于中位数的数据至少有一半.所以奖励标准应定为21件.6090 120 150 180时间/分30图5图6。
名词解释1.总体和样本:根据研究目的所确定的研究对象的全体称为总体,按照随机化原则从总体中抽取一部分个体组成的集合称为样本。
2.统计量:根据样本的资料计算出来,用来描述样本的特征的量或指标。
3.全距:最大值与最小值的差4.I 类错误:拒绝实际上存在的H 0,所犯的错误,犯I 类错误的概率为α。
5. 回归系数:在回归模型中,y=a+bx, b 就是回归系数,表示当x 没改变一个单位,因变量y 平均变动1.标准误:统计量的标准差称为标准误,是描述抽样误差大小的指标。
2.变异系数:公式:%100⨯=xscv ,用于度量衡单位不同或均数相差比较悬殊时几组资料变异程度的比较。
3.数值变量:用定量方法对每个观察单位的某项指标测得的对应数据,有度量单位,如身高等。
4.方差: 是描述对称分布,特别是正态分布离散程度的指标,总体方差,22()x Nμσ-=∑,样本方差22()1x x s n -=-∑5. 医学参考值范围: 也称正常值范围,是指包括绝大多数正常人的某指标范围。
填空题1. 实验设计中的基本原则为:(1)对照原则 (2)均衡性原则(3)随机化原则(4重复原则 。
2. 统计分析工作包括两方面内容:统计描述与统计推断;统计推断包括_参数估计和假设检验_。
3.当自由度逐渐增大时,t分布逐渐逼近于标准正态分布。
4. 由样本均数推断总体均数属于统计推断,总体均数的估计包括点估计和区间估计。
5.变量的类型包括: 计数资料 、 计量资料 。
()6.实验设计的基本要素有: 实验对象 、 处理因素 、 实验效应 () 7.正态分布的参数为总体均数和_总体标准差。
8.对于标准正态分布,正态曲线下(1.96, 2.58)范围内的面积为__0.02_. 9.(1)当样本例数固定时,α增大时,β_减小______。
(2)要想同时减小α 和β错误,唯一的办法是____增加样本含量___.()10.实验设计中的基本要素为:(1)受试对象(2) 处理因素(3)实验效应。
华东师大版九年级数学下册第28章样本与总体同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列调查活动中最适合用全面调查的是()A.调查某批次汽车的抗撞击能力B.调查你所在班级学生的身高情况C.调查全国中学生的视力情况D.对端午节市场粽子质量进行调查2、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元3、下列问题不适合用全面调查的是()A.旅客上飞机前的安检B.企业招聘,对应试人员进行面试C.了解全班同学每周体育锻炼的时间D.调查市场上某种食品的色素含量是否符合国家标准4、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有()A.0种B.1种C.2种D.3种5、下面调查中,适合采用全面调查的是()A.调查全国中学生心理健康现状B.调查你所在班级同学的身高情况C.调查我市食品合格情况D.调查黄河水质情况6、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A.调查方式是普查B.该校只是360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度7、某校为了解本校七年级500名学生的身高情况,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校七年级500名学生的身高.其中正确的说法有()A.1个B.2个C.3个D.4个8、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是()A.这600名学生的“中华经典诵读”大赛成绩的全体是总体B.50名学生是总体的一个样本C.每个学生是个体D.样本容量是50名9、下列调查中最适合采用全面调查的是()A.调查甘肃人民春节期间的出行方式B.调查市场上纯净水的质量C.调查我市中小学生垃圾分类的意识D.调查某航班上的乘客是否都持有“绿色健康码”10、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是()A.这100名七年级学生是总体的一个样本B.该市七年级学生是总体C.该市每位七年级学生的一分钟跳绳成绩是个体D.100名学生是样本容量第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)(1)了解一批圆珠笔芯的使用寿命________.(2)了解全班同学周末时间是如何安排的________.(3)了解我国八年级学生的视力情况________.(4)了解中央电视台春节联欢晚会的收视率________.(5)了解集贸市场出售的蔬菜中农药的残留情况________.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.2、为了解某校七年级400名学生的身高情况,从中抽查了100名学生的身高情况进行统计分析,在此次调查中样本容量是____.3、为调查全校896名学生的视力情况,现随机抽查了100名学生进行抽样调查,该调查的样本容量是 ______.4、中学生骑电动车上下学给交通安全带来隐患,为了了解某中学823个家长对“中学生骑电动车上下学”的态度,从中随机抽取150个家长进行调查,结果有136个家长持反对态度.则这次调查中样本容量是________.5、为了解七年级共650名学生的体质情况,从中抽取了50名学生进行体能测试并统计分析,在此次调查中,样本容量是 _____.6、下面几个问题,应该做全面调查还是抽样调查?(1)要调查市场上某种食品添加剂是否符合国家标准_______;(2)检测某城市的空气质量_______;(3)调查一个村子所有家庭的收入_______;(4)调查人们对保护环境的意识_______;(5)调查一个班级中的学生对建立班级英语角的看法_______;(6)调查人们对电影院放映的电影的热衷程度_______7、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_____.8、为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数.请根据统计表计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为_______.9、食品卫生部门从某区域3200户商家中随机抽选160家进行专项检查,发现2户存在过期食品仍然在售的情况,相关部门按要求处罚相应商家,并销毁过期商品.请你估计该区域有_____户商家需要下架销毁过期商品.10、小张所在的公司共有600名员工,他为了解公司员工所使用的手机品牌情况,随机调查了部分员工,并将调查得到的数据绘制成如图所示的统计图,那么小张所在公司使用“华为”品牌手机的人数约是_____人.三、解答题(5小题,每小题8分,共计40分)1、国家实施“双减”政策后,为了解学生学业负担的减轻情况,学校随机抽取部分学生进行问卷调查,调查设置“显著”,“一般”,“略有”,“未有”四个减轻程度的等级.根据收集到的数据绘制如下不完整的条形统计图和扇形统计图.(1)本次共调查了名学生;(2)补全条形统计图;(3)若该校共有1800名学生,请根据抽样调查结果,估算该校学生学业负担“显著”和“一般”减轻的总人数.2、为加强安全教育,某校开展了“预防水,珍爱生命”安全知识竞赛,现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析,部分信息如下:a .参赛学生成绩频数分布直方图(数据分成五组:5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)如图所示;b .参赛学生成绩在7080x <<这一组的具体得分是:70,71,73,75,76,76,76,77,77,78,79.c .参赛学生成绩的平均数、中位数、众数如下:d .参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题: (1)在这次竞赛中,成绩在75分以上的有______人;(2)表中m 的值为______.(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.3、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A :三本,B :四本,C :五本,D :六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.(1)请指出条形统计图中存在的错误,并说明理由;(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.(3)请计算D类学生在扇形统计图中的圆心角.4、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?5、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:收集数据:从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:min)30 60 81 50 44 110 130 146 80 10060 80 120 140 75 81 10 30 81 92整理数据:按下表分段整理样本数据:分析数据:样本的平均数、中位数、众数如下表所示:请回答下列问题:a_______,b=________,c=_______;(1)表格中的数据=(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数...估计该校学生每人一年(按52周计算)平均阅读________本课外书.-参考答案-一、单选题1、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合用抽样调查,故此选项错误;B、调查你所在班级学生的身高情况,适合用全面调查,故此选项正确;C、调查全国中学生的视力情况,适合用抽样调查,故此选项错误;D、对端午节市场粽子质量进行调查,适合用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、A【解析】【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.3、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.【详解】解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意故选D【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.4、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【详解】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.故选:C【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.5、B【解析】【分析】根据全面调查和抽样调查的特点解答即可.【详解】解:A.调查全国中学生心理健康现状,适合抽样调查,故本选项不合题意;B.调查你所在班级同学的身高情况,适合全面调查,故本选项符合题意;C.调查我市食品合格情况,适合抽样调查,故本选项不合题意;D.调查黄河水质情况,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题主要考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解析】【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.7、B【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是我校八年级学生期中数学考试成绩,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①本次调查方式属于抽样调查.故①正确;②每个学生的身高情况是个体.故②错误;③100名学生的身高情况是总体的一个样本.故③错误;④总体是该校七年级500名学生的身高.故④正确;故正确的说法有2个.故选:B.【点睛】本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、A【解析】【分析】根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.【详解】解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;C、每个学生的成绩是个体,故本选项错误,不符合题意;D、样本容量是50,故本选项错误,不符合题意;故选A.【点睛】本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.9、D【解析】【分析】根据抽样调查和全面调查的定义逐一判断即可.【详解】解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;D、样本容量是100,故该选项不符合题意;故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题1、抽样调查全面调查抽样调查抽样调查抽样调查全面调查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、100【解析】【分析】样本容量则是指样本中个体的数目.【详解】解:从中抽查了100名学生的身高,则这次调查中的样本容量是100,故答案为:100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3、100【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】解:为调查全校896名学生的视力情况,现随机抽查了100名学生进行抽样调查,该调查的样本容量是100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.4、150【解析】【分析】根据样本容量是样本中包含的个体的数目,可得答案.【详解】解:为了解某中学823个学生家长对“中学生骑电动车上学”的态度,从中随机抽取了150个家长进行调查,故样本容量为150.故答案为:150.【点睛】此题主要考查了样本容量,关键是掌握样本容量只是个数字,没有单位.5、50【解析】【分析】根据样本容量则是指样本中个体的数目,可得答案.【详解】解:为了解七年级共650名学生的体质情况,从中抽取了50名学生进行体能测试并统计分析,在此次调查中,样本容量是50.故答案为:50.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、抽样调查抽样调查全面调查抽样调查全面调查抽样调查【解析】略7、100【解析】【分析】直接利用样本容量的定义分析得出答案.【详解】解:∵从中抽取100份试卷进行分析,∴样本容量是:100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本.8、40%【解析】【分析】用120≤x<200范围内人数除以总人数即可.【详解】解:总人数为10+50+30+10=100(人),120≤x<200范围内人数为30+10=40人,在120≤x<200范围内人数占抽查学生总人数的百分比为40100=40%.故答案为:40%.【点睛】本题考查的是统计表的运用.读懂统计表,从中得到必要的信息是解决问题的关键.9、40【解析】【分析】设该区域有x户商家需要下架销毁过期商品,根据样本中存在销售过期食品商户的数量所占比例=总体中存在销售过期食品商户的数量所占比例列出方程求解即可.【详解】解:设该区域有x户商家需要下架销毁过期商品,根据题意,得:2 3200160x=,解得:x=40,所以该区域有40户商家需要下架销毁过期商品,故答案为:40.【点睛】本题考查用样本估计总体,解答本题的关键是明确题意,利用概率的知识解答.10、210【解析】【分析】用样本中使用华为品牌的人数所占比例乘以总人数即可得出答案.【详解】解:小张所在公司使用“华为”品牌手机的人数约是600×3535152051015+++++=210(人),故答案为:210.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.三、解答题1、 (1)150;(2)补全条形统计图见解析;(3)该校学生学业负担“显著”和“一般”减轻的总人数为1260名.【解析】【分析】(1)利用等级为“未有”程度的学生人数除以其所占百分比即可得出所调查的总人数;(2)根据总人数减去其它等级的人数,求出等级为“一般”程度的学生人数,即可补全条形统计图;(3)求出该校学生学业负担“显著”和“一般”减轻的人数所占的百分比,再乘以总人数1800即得出答案.(1)根据题意可知:等级为“未有”程度的学生有30名,其占比为20%,÷=名.所以总人数为:3020%150故答案为:150.(2)等级为“一般”程度的学生为:150********---=名,故补全条形统计图如下:。
第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。
2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。
3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。
《抽样调查》复习题概述1.1 结合以下所列情况讨论哪些适合用全面调查,哪些适合用抽样调查,并说明理由;1. 研究居住在某城市所有居民的食品消费结构;抽样调查2. 调查一个县各村的粮食播种面积和全县生猪的存栏头数;全面调查3. 为进行治疗,调查一地区小学生中患沙眼的人数;全面调查4. 估计一个水库中草鱼的数量;抽样调查5. 某企业想了解其产品在市场的占有率;抽样调查6. 调查一个县中小学教师月平均工资。
全面调查1.2 结合习题1.1的讨论,你能否概括在什么场合作全面调查,什么场合适合做抽样调查。
答:全面调查:是一种有策划、有方法、有程序的活动,调查的结果一般表现为搜集的数据。
抽样调查:为某一特定目的而对部分考查对象进行的调查1.3 某刊物对其读者进行调查,调查表随刊物送到读者手中,对寄回的调查表进行分析。
试问这是不是一项抽样调查?样本抽取是不是属于概率抽样?为什么?答:属于抽样调查,属于概率抽样,每一个样本单元被选中入样的概率是已知的。
1.5 结合习题1.3的讨论,根据你的理解什么是概率抽样?什么是非概率抽样?它们各有什么优点?答:非概率抽样:优点:操作简单,调查数据的处理较容易,省时,省费用。
概率抽样:根据随机原则,按照事先设计的程序,从总体抽取部分单元的抽样方法(要求每一个样本单元被选中入样的概率是已知的)优点:1.6抽样调查的特点。
答:1、节约费用2、时效性强3、完成全面调查不能胜任的项目4、有助于提高数据抽样调查基本原理2.1 试说明以下术语或概念之间的关系与区别;1. 总体、样本与个体;总体:是指所要研究对象的全体,它由研究对象中所有性质相同的个体组成,组成总体的各个个体称为总体单元或单位。
抽样总体:是指从中抽取样本的总体。
2. 总体与抽样框;总体与抽样框应保持一致抽样框:是一份包含所有抽样单元的名单,给每一个抽样单元编上一个号码,就可以按照一定的随机化程序进行抽样。
抽样总体的具体表现是抽样框。
用样本估计总体(填空题:较易)1、在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差可能的最大值是__________.2、从某高校的高一学生中采用系统抽样法选出30人测量其身高,数据的茎叶图如图所示(单位:cm),若高一年级共有600人,估算身高在1.70m以上的有_______人.3、如图是甲,乙两名同学次综合测评成绩的茎叶图,则乙的成绩的中位数是,甲乙两人中成绩较为稳定的是 .4、为了普及环保知识,增强环保意识,某高中随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则这三个数的大小关系为_______________.5、甲,乙两人在相同条件下练习射击,每人打发子弹,命中环数如下则两人射击成绩的稳定程度是6、下图是甲、乙两市领导干部年龄的茎叶图,对于这两市领导干部的平均年龄给出的以下说法正确的是________.①甲市领导干部的年龄的分布主要集中在40~60之间;②乙市领导干部的年龄分布大致对称;③甲市领导干部的平均年龄比乙市领导干部的平均年龄大;④平均年龄都是50.7、从某高校的高一学生中采用系统抽样法选出30人测量其身高,数据的茎叶图如图所示(单位:cm),若高一年级共有600人,估算身高在1.70m以上的有_______人.8、某市为了了解居民家庭网购消费情况,调查了10000户家庭的月消费金额(单位:元),所有数据均有区间上,其频率分布直方图如图所示,则被调查的10000户家庭中,月消费金额在1000元以下的有__________户.9、一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人.10、某人连续五周内收到的包裹数分别为3,2,5,1,4,则这5个数据的标准差为________.11、下列四个命题①样本方差反映的是所有样本数据与样本平均值的偏离程度;②从含有2008个个体的总体中抽取一个容量为100的样本,现采用系统抽样方法应先剔除8人,则每个个体被抽到的概率均为;③从总体中抽取的样本数据共有m个a,n个b,p个c,则总体的平均数的估计值为;④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.其中真命题的个数是_____个12、某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.13、某植树小组测量了一批新采购的树苗的高度,所得数据如茎叶图所示(单位:),则这批树苗高度的中位数为__________.14、某人5次上班途中所花的时间(单位:分钟)分别为.已知这组数据的平均数为10,方差为2,则的值为___.15、若1,2,3,4,这五个数的平均数为3,则这五个数的方差为__________.16、某学院的三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的专业有380名学生,专业有420名学生,则在该学院的专业应抽取____________名学生.17、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,则该35名运动员成绩的中位数为__________.18、为了解学生答卷情况,某市教育部门在高三某次测试后抽取了名同学的试卷进行调查,并根据所得数据画出了样本的频率分布直方图(如图),该样本的中位数是__________.19、已知一组数据,,,,,则该组数据的方差是____.20、气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.则肯定进入夏季的地区有____个.21、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为,,,,则这四个社区驾驶员的总人数为.22、已知一组数据的方差是S,那么另一组数据的方差是。
《总体与样本》讲义在我们探索和理解这个世界的过程中,经常会遇到需要从大量的数据和现象中获取信息、得出结论的情况。
而“总体”与“样本”就是帮助我们实现这一目标的重要概念。
首先,咱们来聊聊什么是总体。
总体,简单来说,就是我们研究中所关注的全部对象的集合。
比如说,我们要研究某个城市所有居民的收入情况,那么这个城市的全体居民就构成了总体。
再比如,要研究某一批产品的质量,这一批产品的全体就是总体。
总体通常具有一些特征和属性,比如总体的规模、总体的分布情况等等。
了解总体的这些特点对于我们后续的研究是非常重要的。
但问题是,在很多实际情况中,要对整个总体进行研究是几乎不可能的。
这时候,样本就登场啦。
样本呢,就是从总体中抽取出来的一部分对象。
为什么要抽取样本呢?主要是因为总体往往太大、太复杂,直接研究总体成本太高、难度太大。
通过抽取样本,我们可以用相对较小的代价和时间来获取关于总体的一些信息。
那怎么抽取样本呢?这可不是随便抽抽就行的,得有科学的方法。
常见的抽样方法有简单随机抽样、分层抽样、系统抽样等等。
简单随机抽样,就好像从一个大箱子里摸球,每个球被摸到的机会都相等。
这种方法简单直接,但有时候可能不能很好地反映总体的结构。
分层抽样呢,是先把总体按照某些特征分成不同的层次,然后从每个层次中分别抽取样本。
这样能保证样本在各个层次上都有代表性。
系统抽样则是按照一定的规律从总体中抽取样本。
抽取了样本之后,我们就要通过对样本的分析来推断总体的情况。
这就涉及到一些统计量,比如样本均值、样本方差等等。
样本均值就是样本中所有数据的平均值,它可以用来估计总体的均值。
样本方差则反映了样本数据的离散程度,能帮助我们了解总体的离散情况。
但是,要注意的是,样本毕竟只是总体的一部分,通过样本得出的结论并不一定完全准确地反映总体的情况。
这就会存在抽样误差。
抽样误差的大小与样本的大小、抽样的方法等都有关系。
一般来说,样本越大,抽样误差就越小,对总体的估计就越准确。
第三十章样本与总体一、抽样调查的意义1、人口普查和抽样调查你能回答下列问题吗?(1)你们班级每个学生的家庭各有多少人?平均每个家庭有多少人?(2)2000年,你所在的省、自治区或直辖市平均每个家庭有多少人?(3)今年,全国平均每个家庭有多少人?第1个问题容易回答,我们只要调查全班每一个学生将结果填入下表,就可计算得到第2个问题稍难一些,因为要调查的家庭数太多了,不过,利用2000年第五次全国人口普查数据,我们还是能够回答的。
在国家统计局中国统计信息网上,能够查到全国和各地发布的人口普查数据公报。
就全国范围来说,“祖国大陆31个省、自治区、直辖市共有家庭户34837万户,家庭户人口为119839万人,平均每个家庭户的人口为3.44人。
”第3个问题最难回答,因为全国人口普查的工作量极大,我国今后每十年进行一次全国人口普查,每五年进行一次全国1%人口的抽样调查。
所谓全国1%人口的抽样调查是指从全国近13亿的总人口中抽取1%,即约1300万人口,然后答对这部分人进行的调查。
2005年的抽样调查数据显示,全国共有家庭户39519万户,家庭户人口为123694万人,平均每个家庭户的人口为3.13人。
我们没有今年的现成数据,只能在2000年与2005年数据的基础上,再结合近几年来我过家庭户人口数的变化情况,估计一个答案了。
我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体。
从总体中取出的一部分个体叫做这个总体的一个样本。
一个样本包含的个体的数量叫做这个样本的容量。
例如人口普查中,当考察我国人口年龄构成时,总体就是所有具有中华人民共和国国籍并在中华人民共和国境内常住的人口的年龄,个体就是符合这一条件的每一个公民的年龄,符合这一条件的所有北京市的公民的年龄就是一个样本。
普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本的方式来收集数据的。
练习:下列调查中哪些是用普查方式,哪些是用抽样调查方式来收集数据的?(1)为了解你所在班级的每个学生穿几号的鞋,向全班同学作调查。
第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。
《总体与样本》习题
一、选择题
1.下列调查中,调查方式选择正确的是( )
A.为了了解100个灯泡的使用寿命,选择普查
B.为了了解某公园全年的游客流量,选择普查
C.为了了解生产的50枚炮弹的杀伤半径,选择普查
D.为了了解一批袋装食品是否有防腐剂,选择普查
2.实验中学七年级进行了一次数学测验,参考人数共480人,为了解这次数学测验成绩,下列所抽取的样本中较为合理的是( )
A.抽取前100名同学的数学成绩
B.抽取后100名同学的数学成绩
C.抽取(1)、(2)两班同学的数学成绩
D.抽取各班学号为3号的倍数的同学的数学成绩
3.为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是( )
A.总体的一个样本B.个体C.总体D.样本容量
4.下列调查中,样本最具有代表性的是( )
A.在重点中学调查全市高一学生的数学水平
B.在篮球场上调查青少年对我国篮球事业的关注程度
C.了解班上学生的睡眠时间.调查班上学号为双的学生的睡眠时间
D.了解某人心地是否良善,调查他对子女的态度
5.下列调查工作需采用普查方式的是( )
(A)环保部门对长江某段水域的水污染情况的调查.
(B)电视台对正在播出的某电视节目收视率的调查.
(C)质检部门对各厂家生产的电池使用寿命的调查.
(D)企业在给职工做工作服前进行的尺寸大小的调查.
6.为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本.其中正确的判断有( )个
(A)1(B)2(C)3(D)4
二、填空题
7.①为了了解你们班同学的视力情况,对全班同学进行调查;②为了了解你们学校学生对某本书的喜爱情况,对所有学号是9的倍数的学生进行调查.在调查过程中,①采取了_____________调查方式;②采取了________调查方式.
8.妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了_____的思想.
9.为了了解某校1200学生的体重情况,从中抽取了100名学生的体重,在这个问题中个体是_________;总体是_________;样本是_________;样本容量为______.
10.某市为了了解七年级学生身体素质,随机抽取了500名七年级学生进行检测,身体素质达标率为92%.请你估计该市6万名七年级学生中,身体素质达标的大约有万人.。