流式细胞技术临床应用及研究
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
流式细胞术的基础和临床应用流式细胞术是一种在单个细胞水平上进行多参数快速测定的技术,它利用流体力学原理和荧光化学技术,对细胞进行快速、准确地分析和分类。
流式细胞术具有高速度、高精度和高分辨率的特点,因此在生物学、医学和生物技术等领域得到了广泛应用。
流式细胞术的基础包括细胞物理特性、荧光化学特性以及现代光学、计算机和电子技术的应用。
细胞物理特性是指细胞的大小、形状、粒度等物理性质,这些性质可以通过流式细胞术进行测量。
荧光化学特性是指利用荧光物质标记抗体或核酸等分子,对细胞进行标记和染色,然后通过流式细胞术进行检测。
现代光学技术、计算机技术和电子技术的应用则使得流式细胞术能够实现多参数、高精度和高分辨率的检测。
在临床应用方面,流式细胞术被广泛应用于淋巴细胞亚群分析、功能性T淋巴细胞亚群分析、肿瘤免疫分析等方面。
淋巴细胞亚群分析是流式细胞术最常用的检测项目之一,通过对淋巴细胞亚群的检测和分析,可以了解机体的免疫状态和疾病发病机制,对于免疫相关性疾病的诊断和治疗具有重要意义。
功能性T淋巴细胞亚群分析则可以进一步了解T淋巴细胞的免疫功能和分化特点,对于肿瘤、感染性疾病和自身免疫性疾病等的治疗和预后评估具有指导作用。
肿瘤免疫分析则通过流式细胞术检测肿瘤细胞表面的抗原和抗体,了解肿瘤细胞的免疫逃逸机制和免疫应答情况,为肿瘤的免疫治疗提供依据。
此外,流式细胞术还被应用于干细胞研究、基因表达分析、药物筛选和毒理学研究等领域。
例如,通过对干细胞的表面标志物进行检测和分析,可以了解干细胞的特性和分化能力;通过对基因表达谱的检测和分析,可以了解基因的表达水平和调控机制,为疾病治疗和药物研发提供依据。
总之,流式细胞术作为一种强大的细胞分析工具,其基础包括细胞物理特性、荧光化学特性以及现代光学、计算机和电子技术的应用。
在临床应用方面,流式细胞术已经成为医学研究和诊断中不可或缺的工具之一,其应用范围涵盖了淋巴细胞亚群分析、功能性T淋巴细胞亚群分析、肿瘤免疫分析等多个方面。
流式细胞仪在医学检验中的应用流式细胞术(flow cytometry,FCM)是一种能够对单个细胞或生物微颗行定量分析和分选的检测手段,具有快速、高精度、高准确性、多参数和高通量等优点,是目前先进的细胞定量分析技术之一。
近年来,FCM的发展日新月异,技术不断有新的突破,新型仪器不断涌现,同时,FCM 在医学及其他科学的应用更加广泛和深入,涵盖了从基础研究到临床诊断的多个方面,涉及免疫学、血液学、肿瘤学等。
图1. 流式细胞术工作原理图一、流式细胞术的研究进展1. 流式细胞仪的进展近年来,随着将多种不同波长的新型激光器与新型荧光染料的新型染色剂相结合,流式细胞仪性能不断提升,体现在分析速度的提高、灵敏度和精密度的提升,以及激光通道和参数的增多。
此外,流式细胞仪不断打破传统的界限,实现了多学科的交叉发展,诞生了一些新理念、新技术融合的仪器。
例如,微流控芯片流式细胞仪,是基于微机电技术的一种小型流式细胞仪,具有结构简单、操作方便、体积小、价格低廉等特点;声波聚焦流式细胞仪是采用超声波原理将细胞聚焦于流动室的中轴上,代替传统的流体动力,实现高通量、高精确度分析;质谱流式细胞仪将传统流式细胞仪与质谱分析技术相结合,采用同位素标记特异性抗体,利用质谱原理对单细胞进行多参数检测的流式技术,可以克服荧光素发光光谱相互干扰导致的波谱重叠、影响分辨的问题;将传统的流式细胞仪的荧光信号与荧光显微镜的形态学结合,形成了成像流式细胞仪,检测者可以目睹到每个细胞或颗粒的形态。
质谱流式细胞仪和成像流式细胞仪可以被称为二代流式细胞仪。
2. 流式细胞术的进展FCM主要用于分析荧光标记的细胞和颗粒,也是目前广泛的应用领域。
但是,新近研究打破了这一界限,实现了流式细胞仪由检测荧光标记的细胞,到可以检测无需荧光标记细胞的飞跃,这种技术对细胞无损坏、避免了荧光染料的干扰,将进一步提升FCM的应用范围和价值。
有学者研究出一种新的FCM,称为实时变形性流式细胞术(real-time deformability cytometry,RT-DC),利用肿瘤细胞等细胞的内在特性——变形能力,对无标记的目标细胞分析,这种无标记的分析方法为流式细胞分析增加了新的可能。
流式细胞术应用于医学检验的研究进展随着科技的发展和医学人员对诊断和治疗需求的不断提高,流式细胞术逐渐成为了医学检验中的重要技术。
流式细胞术是一种基于细胞表型学和细胞功能学的高科技方法,具有快速、准确和灵敏度高的特点。
它可以用于检测和分析目标细胞在生理状态下的表型和功能,对各种疾病的诊断和治疗提供有力的支持。
本文将重点介绍流式细胞术的原理、技术特点和在医学检验中的应用进展。
一、流式细胞术的原理流式细胞术是一种基于悬液细胞的物理活动特点和光学检测原理的细胞分析技术。
其基本原理是利用流式细胞术仪器将悬浮细胞按照大小、电荷、荧光等物理性质进行识别和分选,通过光散射和荧光检测技术确定细胞数量和特定分子在细胞表面或内部的表达情况,从而分析细胞的表型和功能。
具体而言,流式细胞术的流程包括细胞处理、细胞染色、细胞检测和数据分析等四个步骤。
首先,要将样品中的细胞处理成单细胞悬浮液,并加入适量的细胞染色剂,使目标细胞表面或内部的特定分子产生荧光信号。
然后,将悬浮细胞通过一条狭窄的流式细胞术仪器鉴别通道,利用激光束对细胞进行检测,同时对细胞进行分类和分选,将目标细胞单独收集。
最后,通过计算机软件进行数据分析,得到细胞数量、分子表达和分子数量等信息。
二、流式细胞术的技术特点流式细胞术作为一种高科技的细胞分析技术,具有以下几个显著的技术特点:1. 高速度流式细胞术中的细胞检测和分选速度非常快,每秒钟可检测和分选数千个甚至数万个细胞,数量级比传统细胞分析技术高几百倍,因此适用于大样本的细胞分析。
2. 高准确度流式细胞术能够在单细胞水平对细胞表型和功能进行检测和分析,具有高准确度的特点。
同时,流式细胞术能够检测多个分子的表达情况,从而减少了固定和染色的过程,降低了操作的误差和不确定性。
3. 多功能流式细胞术可以检测和分析不同类型的细胞,包括悬浮细胞和贴壁细胞等,同时可以检测多种荧光颜色和多个标志,能够同时分析多种细胞表型和功能的变化。
流式细胞分析在临床血液学中的应用
1.白血病诊断和监测:
白血病是由于骨髓内的恶性细胞大量增殖导致的一种血液系统疾病。
流式细胞术可以根据细胞大小、颜色和表面标记物的表达水平快速分析并鉴别异常细胞。
这对于白血病的早期诊断、分类和监测来说非常重要。
2.免疫功能评估:
流式细胞术可以评估患者的免疫功能。
通过将标记有特定抗体的细胞与患者的血液混合,可以测量细胞表面抗原的表达水平。
这有助于确定患者是否有免疫缺陷,以及免疫功能是否正在正常运行。
3.血液病的异常细胞鉴定:
流式细胞术可以鉴别和计数血液中的异常细胞。
例如,对于淋巴瘤等恶性疾病,流式细胞术可以检测和分类恶性细胞,以便进行早期诊断和个体化治疗。
4.红细胞和血小板计数:
流式细胞术可以用于快速准确地计数红细胞和血小板。
在患者需要进行输血或者有出血倾向的情况下,流式细胞术可以提供非常重要的信息。
5.免疫治疗监测:
流式细胞术可以用于监测免疫治疗的效果。
例如,在进行造血干细胞移植后,流式细胞术可以帮助监测移植后的免疫细胞比例和功能。
这对于治疗干细胞移植相关并发症和个体化治疗来说非常重要。
总之,流式细胞分析是一种在临床血液学中非常有用的技术,可以用于白血病诊断和监测、免疫功能评估、血液病的异常细胞鉴定、红细胞和血小板计数以及免疫治疗监测。
随着技术的发展,流式细胞分析的应用将进一步扩大,为临床血液学的诊断和治疗提供更多的帮助。
流式细胞仪的原理及其临床应用流式细胞技术(FCM)是70 年代发展起来得一种快速对单细胞定量分析的新技术, 它借簦了荧光显微镜技术, 同时利用与荧光染料, 激光技术, 单抗技术以及计算机技术的发展, 将荧光显微镜的激发光源改为激光, 使之具有更好的单色性与激发效率, 因而大大提高了检测灵敏度, 同时将固定的标本台改为流动的单细胞悬液, 用计算机进行数据处理, 因而大大提高了检测速度与统计精确性, 而且从同一个细胞中可以同时测得多种参数, 为生物医学与临床检验学发展提供了一个全新的视角和强有力的手段. 目前, 该技术已经广泛用于基础研究与临床应用, 在免疫学, 遗传学, 血液学, 肿瘤学等领域内发挥前重要的作用. 本文着重介绍流式细胞仪基本原理及其在临床上的应用.一. 基本原理流式细胞仪的主要结构可以大致分为这样几个组成部分: 激光系统, 流式系统, 信号处理及放大, 计算机系统. 图一, 图二概括了流式细胞仪的基本原理, 当待测标本被制务成单细胞悬液, 经染色后进入流动室, 流动室内充满流动的鞘液, 鞘液压力与样品流压力是不同的, 当二者的压力差异达到一定程度时, 鞘液裹挟着的样品流中细胞排成单列逐个经过激光聚焦区. 如果我们将细胞中感兴趣的部分特异性地标上荧光染料, 那么这些染料将在细胞通过激光检测区时受激发出特定波长的荧光, 通过一些波长选择通逶性的滤色片, 我们可以将不同波长的散射光, 荧光信号区分开来, 并送到不同的光电配增管中, 经过一系列信号转换, 放大, 数字化处理, 我们就可以在计算机上直观地统计染上各种荧光染料的细胞各自的百分率. 选择不同的单克隆抗体及荧光染料, 我们可以利用流式细胞仪同时测定一个细胞上的多个不同的特征, 如果对具有某种特征的细胞有兴趣, 我们还可以利用流式的分选功能将其分选出来, 以便于进一步培养, 研究二. 流式细胞仪在免疫学中的应用1. 淋巴细胞亚群分析淋巴细胞是正常机体免疫系统功能最重要的一大细胞群, 在免疫应答过程中, 未梢血淋巴细胞发育成为功能不同的亚群. 各亚群的数量和功能了生异常时, 就能导致机体免疫紊乱并产生病理变化.FCM可以同时检测一种或几种淋巴细胞细胞表面抗原, 将不同的淋巴细胞亚群数量的测定来监控病人的免疫状态, 指导治疗.2. 感染及其治疗效果观察由于T 淋巴细胞在人体免疫系统中承担着重要的功能, 因此, 当感染发生时,T 淋巴细胞各亚群的变化往往能很敏感地反映感染的状态与程度. 例如, 细胞膜外CD4分子有HIV 识别部位, 因此CD4细胞是HIV 病毒受体,AIDS 病人CD4+T细胞明显减少, 该指标是诊断AIDS的重要标志. 当病毒感染发生时( 如乙型肝炎,EB 病毒和巨细胞包涵体病毒),CD8+T 细胞增多, 对CD8细胞的测定有助于对感染的诊断, 治疗效果的动态观察.利用流式细胞仪可对器官或骨髓移植后病人进行监控. 当病人CD3+,CD25持+续增加提示已经开始发生排异,CD4/CD8持续下降表明有感染发生, 当其比值小于0.2 时必须停用免疫抑制剂.由于流式细胞仪将静态的, 显微镜下肉眼观察改为动态的, 计算机信号处理, 因此, 在流式细胞仪上T 细胞亚群统计方式已从传统的荧光显微镜下计数200个细胞成为几秒钟内计数上万个, 因此结果更真实, 更具有统计意义.3. 其他免疫功能性疾病分析流式细胞仪便捷, 准确的特点可以用来对自身免疫性疾病进行检测与疗效观察. SLE病人的淋巴细胞变化可以反映该病的活动情况和器官侵犯程度. 活动或非活动性SLE伴有多系统疾病但无肾脏损害的病人可出现CD4/CD8比值升高, 伴有严重肾脏损害的SLE病人可出现低CD4+,高CD8+的现象.有证据表明外周血HLAB27的表达及其表达程度与强直性脊髓炎的发生有很大程度的相关性, 利用流式细胞仪可以进行HLA-B27./HLA-B7 双标记来检测HLA-B27 阳性细胞, 同时排除交叉反应. 另外,CD23 表达的增加与变态反应性疾病, 自身免疫性疾病, 肾病综合症有关, 而且阳性率与病情严重程度呈正相关, 治疗有效后CD23+细胞减少.利用流式细胞仪检测PNH血细胞的细胞膜所缺乏的糖化肌醇磷脂(GPI) 锚连接的蛋白如DAF(CD55.)与MIRI(CD59..) 来确诊阵发性睡眠性血红蛋白尿传统的血清溶血试验具有更高的特异性与灵敏度.一. 流式细胞仪在血小板功能评价方面的应用血小板膜糖蛋白(GP)是参与止血, 血栓形成的重要分子基础, 这些膜糖蛋白是一类重要得黏附分子. 用搞GP.. 的单克隆抗体对血小板进行免疫荧光标记, 用FCM 分析单个血小板或血小板亚群GP是血小板膜糖蛋白检测分析方法的重大发展,方法简便, 快速, 标本用量少, 灵敏度高, 结果准确.与血小板有关的抗原的临床意义有:1. 诊断遗传性血小板功能缺陷疾病巨血小板综合症(BSS)患者血小板CD42 A\CD42B复合物先天缺陷,FCM中表现CD42A与CD42B不仅严重缺乏, 而且其平均荧光强度显著低于阴性对照,CD61代偿性增加.血小板无力症(GT) 患者FCM表现血小板GPIIB,IIIA(CD41,CD61) 明显缺乏,CD42A 和CD42B基本正常或稍高, 并可出现异常血小板亚群.3. 血栓性疾病和血栓前状态由于活化血小板是血栓的主要成分之一, 也是引起血栓形成的主要原因, 所以血小板活化程度增高与疾病发生发展有关.CD62P.. 和CD63是活化血小板最特异和灵敏的分子标志物, 正常人血小板只有低水平活化, 外周血CD62P只有3-5%.有文献报导糖尿病伴有微血管病变, 冠心病, 高血压病. 高血脂病, 脑血栓形成, 脑动脉硬化患者活化血小板百分率和绝对数显著高于正常人, 而糖尿病无微血管病变, 周围血管病以及深静脉血栓形成患者活化血小板水平与正常人无显著差异.PTCA后24 小时发展成急性血管闭塞或高度再狭窄的患者CD62P..和CD63增多,FCM可用于测PTCA后急性缺血再发作的危险性.四, 流式细胞仪在白血病中的应用血液病多种为肿瘤性免疫性和遗传性疾病, 但恶性血液病约占一半以上.FCM在血液病的发病机制, 诊断, 分类, 治疗和预后判断方面都有广阔的应用前景.1. 白血病的分类研究2. 微小残病变检出(MRD)M R D是白血病复发的主要根源,..FCM 其高特异性与敏感性可以在患者缓解期检避免复发.测是否有残存病变细胞, 早期探测MRD以,五FCM在肿瘤学上的应用1. DNA含量测定及细胞周期分析FMC在肿瘤学上的应用主要是利用DNA含量测定进行包括癌前病变及早期癌变的检出, 化疗指导以及预后评估等工作.大量工作表明, 癌前病变的癌变率与病变的增生程度一致, 而增生程度与DNA含量的异常改变又呈平行关系.FCM通过精确定量DNA含量, 能对癌前病变的性质和了展趋势作出判断, 有助于癌变的早期诊断.DNA非整倍体的出现可能是恶变细胞的重要标志, 目前病理学尚无法从癌前病变中发现癌变和即将癌变的细胞, 而FCM检测中DNA非整倍体细胞的出现可作为一个有价值的参数.DNA倍体分析有助于临界性肿瘤的诊断, 如卵巢的交界性肿瘤, 异倍体的出现与病变的恶性发展有关.细胞异常增殖和分化障碍是肿瘤细胞的特性,DNA含量不仅能非常敏感地反映细胞代谢的异常, 而且能通过DNA倍体分析, 细胞周期各时相的细胞比例分析并结合细胞抗原的表达多参数分析, 全面了解细胞的生物学行为, 从而帮助肿瘤的诊断, 选择治疗方案和预后判断.DNA异倍体, 高S_PHASE细胞比值和高增殖细胞核抗原(PCNA)表达与细胞增殖能力, 恶性程度和不良预后呈正相关.2. 为治疗方案和药理学研究提供依据不同类型的肿瘤对化疗药物的敏感程度是不同的. 可以利用FCM进行细胞期分析, 适当选用周期特异性药物或非周期特异性药物.MDR是由多药耐药基因编的P糖蛋白(PGP)是亲脂化合物, 包括多种抗癌药物和荧光染料的跨膜性排出泵. 从人淋巴细胞排出荧光染料与细胞内P-GP的含量直接相关. 当淋巴细胞出现M D R阳性细胞时, 病人对化疗药物开始出现耐药性, 需要考虑其他治疗方式.六, 活细胞内活性酶的检测法( 如FLUOROMETR及ICCOLORIMDTRIC_ASSAY都S是), 测定总体细胞的总酶活性而非测定单一细胞的酶活性. 若要测定单一细胞的酶活性, 通常都是涉及固定后的死细胞. 近来COULTE公R司推出最新的技术及试剂CELLPROBE_REAGE由N于T,每一个特定的酶都有其专一的受质, 而受质本身是由特别的化学品与荧光染料FLOURENSCE或IN RHODAMINEN共O价结合的, 能迅速进入活细胞, 当其遇到特异性酶时, 会被酶破坏其共价结构而释放其荧光染料, 从而能够被FCM检测到, 因此, 活细胞酶探针能够用来测量单一活体细胞内酶的活性.七. 凋亡细胞检测凋亡最初是作为形态学概念被提出来的. 细胞有两种不同的死亡方式. 即坏死(MECROSIS和) 凋亡(APOPTOISI). 凋亡典型的形态特征是核染色质固缩并分离, 细胞质浓缩, 细胞膜和核膜皱曲, 核断裂形成片断, 最后形成数量不等的凋亡小体. 利用FCM可以进行DNA断裂点标记检测.DNA片断可以从细胞内漏出, 导致DNA含量减少, 利用F C M进行DNA含量分析, 通过二倍体细胞G0/G1期峰前的亚二倍体峰来确定.在凋亡早期, 一些与膜通透性改变及凋亡有关的蛋白在细胞膜表面有特定表达, 例如FAS基因蛋白(CD95), 线粒体膜蛋白(AP027), 磷脂酰丝氨酸(ANNEXIN_V),FCM结合单克隆抗体可以检测表达这些蛋白的细胞, 从而确定细胞的凋亡情况.自70 年代流式细胞仪成型以来, 历经20 多年的发展, 流式细胞仪应用意义越来越得以体现, 尤其是1982 年以后, 随着白细胞分化抗原意义的确认以及单克隆抗体技术的发展, 给流式细胞仪的应用发展提供了强大的推动力. 在我国, 不仅许多科研单位早在80 年代已经开始使用流式细胞仪作为其科研工具, 进入90 年代后, 以库尔特原理及其相关血细胞分析产品闻名的美国库尔特公司以其在流式领域研究, 应用近二十年的积累, 在其五代流式细胞仪的基础上推出了以单激光同时激发四色荧光的新一代临床型流式细胞仪, 并为其配套了临床标本制备仪, 使临床标本制备标准化, 简单化, 开创了流式应用的新领域. 从而, 不少大中型医院也逐步引进流式细胞仪作为临床诊断的辅助工具, 随着单抗技术, 计算机技术及其它相关技术的不断发展, 流式细胞仪将会在应用领域得到不断的开拓, 成为科研与临床不可或缺的重要手段.。
流式细胞术临床应用范围流式细胞术是一种广泛应用于生物医学领域的高端技术,通过流式细胞仪可以对细胞进行高通量单细胞分析。
随着技术的不断创新和发展,流式细胞术在临床应用中的范围也逐渐扩大,为疾病的诊断、治疗和预防提供了重要的支持和帮助。
一、疾病诊断流式细胞术在临床诊断中的应用范围非常广泛,可以用于各种类型的疾病的确诊和分型。
例如,在血液学领域,流式细胞术可以用于白血病和淋巴瘤等血液系统疾病的诊断与鉴别诊断;在免疫学领域,流式细胞术可以用于自身免疫性疾病的诊断和病情监测。
二、免疫细胞治疗随着免疫细胞治疗技术的不断成熟,流式细胞术在该领域的应用也越来越广泛。
通过流式细胞术可以对患者的免疫细胞进行分选、激活和扩增,用于治疗各种肿瘤和疾病。
例如,CAR-T细胞治疗就是基于流式细胞术的原理开发而来,已经在临床上取得了较好的疗效。
三、药物筛选在药物研发领域,流式细胞术被广泛应用于药物的筛选和评估。
通过流式细胞术可以快速、准确地评估药物对细胞的毒性和活性,为药物研发提供重要的数据支持。
同时,流式细胞术还可以用于研究药物的作用机制和药效评价。
四、疾病预防与流行病学研究流式细胞术在疾病预防和流行病学研究中也发挥着重要作用。
通过流式细胞术可以对疫情中的病原体进行快速检测和鉴定,为疾病的早期诊断和防控提供重要的支持。
此外,流式细胞术还可以用于研究疾病的发病机制和流行规律,为疾病的预防和控制提供科学依据。
综上所述,流式细胞术在临床应用中的范围十分广泛,涉及到疾病诊断、治疗、药物研发、疾病预防和流行病学研究等多个领域。
随着技术的不断进步和应用的深化,相信流式细胞术将在未来发挥更加重要的作用,为人类健康事业作出更大的贡献。
流式细胞术的工作原理及临床应用引言流式细胞术是一种广泛应用于生物医学研究和临床诊断的技术,其工作原理基于细胞在液体流动环境中的特定性质。
该技术广泛用于细胞表型分析、细胞计数、细胞分类和细胞排序等领域,为研究人员和医生提供了重要的工具。
一、流式细胞术的工作原理流式细胞术利用细胞在液体中的流动来实现细胞的分析和排序。
其工作原理可以分为三个主要步骤:细胞的悬浮、细胞的单独通过和细胞的检测。
1. 细胞的悬浮:首先,需要将待分析的细胞样本进行处理,使其转化为单细胞悬浮液。
这可以通过细胞培养、组织切片或体液处理等方法获得。
继续使用细胞培养基、酶消化或机械碎解等方法,将细胞组织分散成单个细胞,并获得细胞悬浮液。
2. 细胞的单独通过:接下来,将细胞悬浮液通过微小通道,通常是称为流式细胞仪的仪器。
在流速适中的条件下,细胞会单个通过通道,并在通过过程中因其特定特征而会发生特别的反应。
3. 细胞的检测:在细胞通过过程中,流式细胞仪能够感应细胞的数量、大小、形状和表面标记物等特征。
通过使用激光器的激光束照射细胞,并测量其散射光、荧光光谱等信息,流式细胞仪能够对细胞的特征进行定量分析。
二、流式细胞术的临床应用流式细胞术作为一种高效、灵敏和准确的细胞分析方法,在临床上有着广泛的应用,以下是一些常见的临床应用:1. 免疫学研究:流式细胞术在免疫学领域的应用非常广泛。
通过对细胞表面的抗原和抗体的特异性结合,可以对免疫细胞进行表型分析,了解不同亚群细胞的比例和功能状态。
这对于研究免疫相关疾病的发生机制、免疫细胞治疗的效果评估等方面非常重要。
2. 癌症诊断和监测:流式细胞术在癌症的诊断和监测中也起着关键作用。
通过检测癌细胞的特定标记物,可以对肿瘤进行识别、分类和判断其恶性程度。
此外,流式细胞术还可以监测肿瘤的治疗反应,评估抗癌药物的疗效,并预测患者的预后。
3. 血液学检测:流式细胞术在血液学检测中也占据重要地位。
通过检测血液中的各种细胞类型和亚群细胞的比例,可以帮助诊断和监测临床上的血液疾病,如白血病、淋巴瘤等。
流式细胞术在免疫学研究中的应用流式细胞术(Flow Cytometry,FCM)是一种对细胞进行自动分析和分选的技术。
它可以快速、准确地测量细胞的物理和化学性质,如大小、形状、表面标志物、核酸含量等。
在免疫学研究中,流式细胞术已经成为了一种重要的研究工具,广泛应用于免疫细胞的分型、功能和活化状态的检测等方面。
1. 免疫细胞分型:流式细胞术可以通过检测细胞表面标志物的表达,对免疫细胞进行分型。
例如,可以通过检测 CD4 和 CD8 分子的表达,将 T 细胞分为辅助性 T 细胞(CD4+)和杀伤性 T 细胞(CD8+);通过检测 CD19 分子的表达,将 B 细胞分为 B1 和 B2 细胞等。
2. 免疫细胞功能检测:流式细胞术可以通过检测细胞内的分子,如细胞因子、活性氧等,来评估免疫细胞的功能。
例如,可以通过检测细胞内的干扰素-γ(IFN-γ)和肿瘤坏死因子-α(TNF-α)的表达,来评估 T 细胞的活化状态和功能。
3. 免疫细胞活化状态检测:流式细胞术可以通过检测细胞表面标志物的表达和细胞内的分子,来评估免疫细胞的活化状态。
例如,可以通过检测 CD69 和 HLA-DR 分子的表达,来评估 T 细胞的早期活化状态;通过检测 CD25 和 FoxP3 分子的表达,来评估调节性 T 细胞(Treg)的活化状态。
4. 免疫细胞分选:流式细胞术可以根据细胞的物理和化学性质,对细胞进行分选。
例如,可以通过分选 CD4+ T 细胞和 CD8+ T 细胞,来进行 T 细胞的功能研究;通过分选调节性 T 细胞(Treg),来进行 Treg 细胞的功能研究等。
总之,流式细胞术在免疫学研究中具有重要的应用价值,可以帮助我们更好地了解免疫细胞的分型、功能和活化状态,为免疫学研究提供了有力的技术支持。
一、诊断性指标如图1所示,图(左)白血病细胞成为一个单一的群体,很难区分原始或病态的白血病细胞和成熟的细胞。
但是通过CD45和(SSC)设门法之后(图右),看到图(左)无法区分细胞被分成了五群。
在这五群中,成熟细胞CD45表达的荧光比较强。
A门里是淋巴细胞,B门里是单核细胞,C门里就是粒细胞群,D门里是原始细胞,一般CD45表达较弱。
一些细胞碎片、红细胞和转移来的瘤细胞,由于不表达CD45,可能位于D门、D门偏下或者E门的位置。
CD45结合侧向散射光之后能把白血病细胞找出来,减少了其它细胞的干扰。
对D门里的白血病细胞做进一步的分型,就能准确看到白血病细胞群免疫分型的表达情况。
图13.白血病的特异性标志免疫表型分析主要是根据细胞的特异表面标志,把白细胞分成T细胞、B细胞和原始细胞。
T淋巴细胞白血病一般表达的分化抗原有胞浆内的cCD3、抗TCRαβ、抗TCRγδ、CD2、CD5、CD8、CD10和CD7;B淋巴细胞白血病一般表达的分化抗原有胞浆内的cCD79a、CD22、CD19 、CD10和CD20;髓系白血病一般表达的分化抗原有胞浆内的cMPO、CD117、CD13、CD33、CD14、CD15和CD64;NK淋巴细胞白血病一般表达的分化抗原有CD16、CD56和CD57;红白血病一般表达的分化抗原有GlyA和CD36;巨核细胞白血病一般表达的分化抗原有CD41、CD42和CD61;一系列非特异标志在不同的白血病中可能都有表达,尤其是表达在早期的造血干组细胞上,一般表达的分化抗原有CD34和HLA-DR。
其中,对T淋巴细胞白血病来讲比较特异的是胞浆内的CD3,当胞浆内CD3出现阳性的时候,高度怀疑是T淋巴细胞白血病。
对于B淋巴细胞白血病来讲,胞浆内的CD79a和CD19是比较特异的,cCD79a最具特异性。
cCD3和cCD79a分别表达于早期T细胞和B细胞。
cMPO是髓系特异标志。
如图2所示为B-ALL的表达图。
---------------------------------------------------------------最新资料推荐------------------------------------------------------
流式细胞技术临床应用及研究
1 流式细胞技术临床应用及研究流式细胞技术是激光为光源,集流力学技术,电子物理技术,光电测量技术,计算机技术以及细胞荧光化学技术,单克隆抗体技术为一体的新型技术仪,应用流式细胞仪对处于快速直线流动状态中的细胞或生物颗粒经行快速的,多参数的,定量分析和分选技术称为流式细胞技术(FCM)[1]。
其中生物颗粒包括大的免疫复合物,DNA,RNA,蛋白质,病毒颗粒,脂质体,细胞器,细菌,染色体,真核细胞,杂交细胞,聚集细胞等,所检测的生物颗粒理化性质包括大小,细胞形态,胞浆颗粒化程度,DNA 含量,总蛋白含量,细胞膜的完整性和酶活性学。
由于融合了单克隆抗体技术,定量细胞化学和定量荧光化学,流式细胞技术作为一门生物检测技术已经日臻完善,流式细胞或在生物学,免疫学,胞瘤学,血液学,病理性,遗传学,临床检验等学科中都得到广泛的应用,并将为医学科学研究发挥更大的作用。
1 生物分析原理将悬浮分散的单细胞悬液,经特异荧光染料染色后,放入样品管,在气体压力的作用下,悬浮在样品管中的单细胞悬液形成样品流垂直进入流式细胞仪的流动室,沿流动室的轴心向下流动,流动室轴心至外壁的鞘液也向下流动,形成包绕细胞悬液的鞘液流,鞘液和样品在喷嘴附近组成一个圆
2 柱流束自喷嘴的圆形孔喷出,于水平方向的激光束垂直相交,相交点成为测量区。
染色的细胞经激光照射后发出荧光,同时产生光散射。
1 / 6
这些信号分别被呈90℃角方向放置的光电倍增管荧光检测器和向前角放置的光电二级管散射光检测器接收,经转换器转换或电子信号后,经模/数转换输入计算机,计算机通过相应的软件储存,计算,分析这些数字化信息,就可得到细胞的大小活性,核酸含量,酶和抗原的性质学物理和生化指标。
2 细胞分选原理在压电晶体上加上频率为 30kH2 的信号,使之产生同频率的机械振动,流动室也就随之振动,于是通过测量区的液柱断裂成一连串均匀的液滴。
由于各类细胞的特性信息在细胞形成或液滴以前在测量区已被测定,并储存在计算机中,因此当某类细胞特性与要分选的细胞相同时,流式细胞仪就会在这类细胞形成液滴时给含有这类细胞的液滴充以标定的电荷,而不符合分选条件含细胞悬液滴及不含细胞的空白液滴不被充以特定电荷。
带有电荷的液滴向下落入偏转板间的静电场时,依所带电荷的符号分别向左偏转和向右偏转。
落入指定的搜集器内,不带电的液滴不发生偏转,垂直落入废液槽中被排出,从而达到细胞分类,收集的目的。
3 主要性能指标荧光测量的灵敏度:
流式细胞技术均可检测到600 个荧3 光分子指标。
一般是以检测到单个微球上最少存有 FTTC 或 0E荧光数目来显示。
分辨率:
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 分辨率是衡量仪器测量精度的指标,通常用变异系数 CV 表示,流式细胞仪最佳状态 CV2%。
流式细胞仪的分选速度为:
3000 个/s~6000 个/s。
大型仪器可达每秒几万个细胞。
4 流式细胞技术的临床应用与分析流式细胞仪是今年来发展起来的现代细胞学分析技术中的常用仪器。
它具备快速,准确量,化学特性。
目前已广泛应用于免疫学,细胞生物学,血液学,肿瘤学,病理学,遗传学,临床经验学多领域。
4.1FCM 在免疫学中的应用流式细胞术是在细胞分析和分选的基础上发展起来的一种新的细胞参数计量技术。
它以其快速灵活和定量的特点,广泛应用于免疫学理论研究和临床实践:
有现代免疫技术基石之一之称。
尤其同单克隆抗体的结合应用,在淋巴细胞及其亚群分析,淋巴细胞功能分析,免疫分型,分选,肿瘤细胞的免疫检测,机体免疫状态的监测,免疫细胞系统发生及特性研究等方面都起着相对重要作用。
4.2 在血液学中的应用血液病多为肿瘤性,免疫性和遗传性疾病,恶性血液病约占总数的一半以上,流式细胞仪(FCM)
3 / 6
在血液病及淋巴4 瘤的发病机制,诊断治疗和预后判断学方面都具有重要价值。
白血病患者的异常细胞在分化过程中受外因,内因或突变等因素的影响曾克隆性异常增殖。
白血病的免疫分型是选择化疗方案和判断预后的重要依据。
FCM 结合单克隆抗体的应用对白血病经行免疫分型。
可以提高白血病分型诊断的符合率。
可为指导治疗和判断预防提供帮助。
4.3 流式细胞技术在细胞生物学中的应用流式细胞技术在细胞生物领域内的应用,是流式细胞仪在基础研究中应用范围最广的领域。
目前细胞生物学研究中,应用最频繁也是最普通的是细胞周期分析,包括细胞周期个时期的百分比和细胞周期动力学参数的测定内容。
在方法学上除一般的化学染色方法外还有抗溴脱氧脲嘧啶核苷单克隆抗体技术,对同一细胞的参数测定技术则导致了对细胞周期的一些新发现,典型的方法是吖啶橙双染技术,这个技术不仅可以进行细胞周期分析,而且给细胞周期的研究带来了一些新的概念。
流式细胞测量术和分选术在染色体,精子,和精细胞的研究及遗传学,分子遗传学也都有用武之地。
4.4 流式细胞术在肿瘤学中的应用流式细胞仪在肿瘤学研究方面已成为重要手段之一。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 近年来引起肿瘤研究者的极大关注。
对于制定近年来荧光细胞化学技术的发展以及荧光探针标记单克隆抗体为流式细胞5 技术研究各种肿瘤抗原,肿瘤蛋白,致癌基因开辟了新途径,极大地提高了肿瘤研究水平,并为流式细胞技术在肿瘤学研究中开辟了更广阔的应用前景。
4.5 流式细胞技术在 AIDS 病检测在的分析流式细胞术用 AIDS 病免疫功能的检测的重要手段,采用参数荧光标记计数可对 T 淋巴细胞及亚群经行分析并通过动态监测 T 细胞亚群可以对HIV 感染者或 AIDS 发病都进行区别。
仅为 HIV 携带者,病毒未复制时,其 Th 细胞下降不明显。
当发展为 AIDS 时 Th 细胞水平明显下降,如 Th1 细胞<Th2 细胞时,HIV 在细胞间的传播和感染更敏感,易发生AIDS。
同时,当 HIV 阳性而无症状的患者,其 Tc 对 Tc 激活剂不反应者,其体内 CD+4Th 细胞水平下降迅速。
条件致病微生物感染率也同时增加,对 Tc 激活剂反应敏感者,可维持 CD+4Th 细胞水平降低较慢或不降低,减少发生 AIDS 的几率。
4.6 流式细胞仪对自身免疫性疾病相关 HLA 抗原的分析有些疾病的发病常与一些类型的 HLA 抗原检出有关,在这些疾病中,某些 HLA 抗原检出率比正常人群检出率高,最典型疾病是强直性脊柱炎,其外用 HLA-B27 表达及表达程度与疾病的发生有很高的相关
5 / 6
性,利用 FCM 可以进行HLA-B27/HLA-B7 双标记抗体检测 HLA-B27 阳性细胞,同时又排除交叉反应。
通 58%~97%的强直性脊柱炎患者可检出这种 6 抗原,而正常人仅为 2%~7%检出这种抗原。
FCM 检测 HLA-B27快速,特异,敏感,为强直性脊柱炎的临床诊断提供了有力帮助。
总之,流式细胞技术在血液学,肿瘤,细胞生物学和自身免疫性疾病临床诊断治疗中具有广泛的应用价值。
参考文献[1]王兰兰,吴健民.临床免疫学与检验.人民卫生出版社出版,2004.。