R210R(R5)225.1 01R10 当 R5时 , 即 L10R5
2时 , Sm ax25
练习1.化下列各角为度数或弧度:
1)-225°
2)
12
2.已知扇形OAB的圆心角为120°,
半径为6,求扇形弧长及所含弓形的面积。
思考:钟表分针和时针在3点到5点40分 这段时间里 分针转过_______弧度的角, 时针转过___弧度的角。
例2:设集A={x|2kπ≤x≤2kπ+π,k∈Ζ},
B={x| X2 -36<0},求A∩B
解∵A={x|2kπ≤x≤2kπ+π,k∈Ζ}=┄∪{x|
-2π≤x≤-π}∪ {x|0≤x≤π} ∪{x|
2π≤x≤2π+π}∪┄,
B={x|-6≤x≤6}, ∴A∩B={x|圆图的的中半阴径影弧为部1分所个角单的对位集长合应度。时的,圆圆心角心角称为1弧度的角,记为1rad
7下(节3)课(4直). 线与圆的(即位置在关系单中将位会重圆点表中达!,弧长为1的弧所对应的圆心角称为
1弧度的角) 方向可用“-”、“+”表示。
﹟ 1°周角的弧度数为2π; 2°正角的弧度数为正,负角的弧度数为负; 零角的弧度数为零。
假设时针转过3cm,那么时针转过的弧长 是
作业:_P_习__题_1_._(_1)_ 2.(1),(3) 4. 6. 7 (3) (4). 8.
小结:
角的度量形式(角度制,弧度制),弧度的单 位.弧度的意义,角度制与弧度制间的互 换.会用弧度研究有关问题(弧长,扇形面 积等)
小宝结:剑锋从磨砺出 本节课重点学习了圆的标准方程和一
思考:弧度数
与实数是一一 对应的
例3 1)扇形所在圆半径为5,圆心角 为135°,求扇形面积。