有理数的乘方-科学计数法教案
- 格式:doc
- 大小:223.50 KB
- 文档页数:2
有理数的乘方教案优秀3篇《有理数的乘方》优秀教案篇一教学目标1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;2、知道底数、指数和幂的概念,会求有理数的正整数指数幂;3、会用科学记数法表示较大的数。
教学重点1、有理数乘方的意义,求有理数的正整数指数幂;2、用科学记数法表示较大的数。
教学难点有理数乘方结果(幂)的符号的确定。
教学过程(教师)问题引入手工拉面是我国的传统面食。
制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。
你能算出拉扣6次后共有多少根面条吗?乘方的有关概念试一试:将一张报纸对折再对折……直到无法对折为止。
你对折了多少次?请用算式表示你对折出来的报纸的层数。
你还能举出类似的实例吗?有理数的乘方:同步练习1、对于式子(-3)6与-36,下列说法中,正确的是()A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果也不相等2、下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为0;③-1的立方与它的平方互为相反数;④±1的倒数与它的平方相等。
其中正确的个数有()A.1B.2C.3D.4有理数乘方的教学反思篇二有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。
所以教师在教这一节课的教学中要从有理数乘方的意义。
有理数乘方的符号法则,有理数乘方运算顺序。
有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。
一、要求学生深刻理解有理数乘方的意义。
即一般地n个相同的因数相乘即。
a。
a。
a…a= ,记作。
在教学上应该抓住以下几点:一、乘方是一种运算。
相当于“+、-、×、÷”。
教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。
强调幂的意义,幂的意义与“和、差、积、商”一样。
有理数的乘方教案一、教学目标:1. 让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。
2. 培养学生运用有理数乘方解决实际问题的能力。
3. 引导学生发现有理数乘方的规律,提高学生的数学思维能力。
二、教学内容:1. 有理数的乘方概念:求n个相同因数相乘的积,写作幂,记作an。
2. 有理数的乘方运算方法:(1)正数的任何次幂都是正数;(2)负数的奇数次幂是负数,负数的偶数次幂是正数;(3)零的任何正整数次幂都是零。
三、教学重点与难点:1. 教学重点:有理数的乘方概念,有理数乘方的运算方法。
2. 教学难点:有理数乘方的规律及其应用。
四、教学方法:1. 采用讲授法,讲解有理数的乘方概念和运算方法。
2. 运用案例分析法,分析有理数乘方在实际问题中的应用。
3. 采用互动教学法,引导学生发现有理数乘方的规律。
五、教学过程:1. 导入:回顾有理数的乘法,引导学生思考有理数乘法的扩展。
2. 新课讲解:(1)介绍有理数的乘方概念,讲解幂的表示方法;(2)讲解有理数乘方的运算方法,举例说明;(3)分析有理数乘方的规律,引导学生发现规律。
3. 案例分析:运用有理数乘方解决实际问题,如计算利息、折扣等。
4. 练习巩固:布置练习题,让学生独立完成,检查掌握情况。
5. 总结:回顾本节课所学内容,强调有理数乘方的关键点。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对有理数乘方概念和运算方法的理解。
2. 练习题:布置课后练习题,评估学生对有理数乘方运算的掌握程度。
3. 小组讨论:组织学生进行小组讨论,共同探讨有理数乘方的规律及应用。
七、教学拓展:1. 探讨有理数乘方在实际问题中的应用,如物理中的速度、面积等。
2. 介绍数学中的幂运算,如指数法则、对数等。
八、教学反思:1. 总结本节课的教学效果,分析学生的掌握情况;2. 针对学生的薄弱环节,调整教学策略,提高教学效果;3. 深入研究有理数乘方的相关知识,提高自身专业素养。
1。
6有理数的乘方一、复习引入:1.什么叫乘方?说出103,―103,(―10)3、a n的底数、指数、幂.2。
把下列各式写成幂的形式:32×32×32×32; ⎪⎭⎫ ⎝⎛-23⎪⎭⎫⎝⎛-23⎪⎭⎫ ⎝⎛-23⎪⎭⎫ ⎝⎛-23;-23×23×23×23;32222⨯⨯⨯. 3.计算:101,102,103,104,105,106,1010。
由第3题计算:105=10000,106=1000000,1010=10000000000,左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n 次幂表示较大的数,比如一亿,一百亿等等。
又如像太阳的半径大约是696000千米,光速大约是300000000米/秒,中国人口大约13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法. 二、讲授新课:1.10n的特征 观察第3题:101=10,102=100,103=1000,104=10000, (1010)=10000000000。
提问:10n中的n 表示n 个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?(1)10n=0100个n ,n 恰巧是1后面0的个数; (2) 10n=位)1(0100 n ,比运算结果的位数少1.反之,1后面有多少个0,10的幂指数就是多少, 如 070000000个=107.2.练习:(1)把下面各数写成10的幂的形式:1000,100000000,100000000000。
(2)指出下列各数是几位数:103,105,1012,10100。
3.科学记数法:(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n 次幂的形式。
如:100=1×100=1×102;600=6×1000=6×103;7500=7。
有理数的乘方教案教案:有理数的乘方教学目标:1. 了解有理数的乘法规则;2. 熟练计算有理数之间的乘方;3. 能够应用有理数的乘方解决实际问题。
教学重点:1. 熟练掌握有理数之间的乘方运算;2. 能够将有理数的乘方运用到实际生活问题中。
教学难点:1. 理解有理数之间的乘方运算的含义和规则;2. 能够将问题转化为有理数的乘方运算进行求解。
教学过程:一、导入(5分钟)教师可以通过提问的方式来调动学生的思维,如:你们还记得什么是有理数吗?有理数之间的乘法规则是怎样的?二、讲解有理数的乘方(10分钟)1. 定义:有理数的乘方运算是指一个有理数自乘若干次的运算。
2. 规则:如果有理数a除以正整数b(b≠0),乘以自己b-1次,那么就称a的b次方为a的乘方。
如:2的3次方(2³)= 2×2×2 = 8;-3的4次方(-3⁴)= -3×-3×-3×-3 = 81。
三、解题示例(15分钟)1. 例题1:计算(-2)的5次方。
解:由乘方的定义可知,(-2)的5次方等于(-2)×(-2)×(-2)×(-2)×(-2) = -32。
2. 例题2:计算1/3的2次方。
解:由乘方的规则可知,1/3的2次方等于(1/3)×(1/3) = 1/9。
四、巩固练习(15分钟)1. 计算下列有理数的乘方,并给出结果的最简形式:a) (-5)的3次方;b) 2/3的4次方;c) (-6)的2次方;d) -1的8次方。
2. 根据实际生活中的问题,设计有理数乘方的应用题,让学生动手计算并分析解决方案。
五、拓展延伸(10分钟)1. 进一步应用乘方的知识,解答一些较复杂的问题,如:(-2)的6次方等。
2. 提高学生对乘方运算规则的理解和应用能力,培养学生的逻辑思维和解决问题的能力。
六、小结归纳(5分钟)老师对本节课所讲内容进行小结,强调了有理数的乘方的定义和规则,并要求学生进行复习和巩固。
有理数的乘方教学设计-教案一、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的运算规则。
2. 能够正确计算有理数的乘方运算。
3. 能够应用有理数乘方的知识解决实际问题。
二、教学内容1. 有理数乘方的概念:介绍有理数乘方的定义,即一个有理数自乘若干次的结果。
2. 有理数乘方的运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
3. 有理数乘方的计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
4. 有理数乘方的应用:举例讲解有理数乘方在实际问题中的应用,如计算利息、折扣等。
三、教学重点与难点1. 教学重点:掌握有理数乘方的概念和运算规则,能够正确计算有理数的乘方。
2. 教学难点:理解有理数乘方的计算方法,特别是幂的乘方和积的乘方。
四、教学方法1. 讲授法:讲解有理数乘方的概念和运算规则,引导学生理解和掌握。
2. 示例法:给出具体的例题,引导学生跟随解答,培养学生的计算能力。
3. 练习法:设计相关的练习题,让学生独立完成,巩固所学知识。
五、教学准备1. 教学PPT:制作相关的PPT,展示有理数乘方的概念和运算规则。
2. 练习题:准备一些有关有理数乘方的练习题,用于课堂练习和学生课后巩固。
六、教学过程1. 导入新课:通过复习幂的概念,引导学生过渡到有理数的乘方。
2. 讲解概念:讲解有理数乘方的定义,强调乘方的意义。
3. 运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
4. 计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
5. 应用实例:举例讲解有理数乘方在实际问题中的应用。
七、课堂练习1. 设计一些有关有理数乘方的练习题,让学生独立完成。
2. 引导学生互相交流解题方法,讨论遇到的困难和问题。
3. 教师对学生的练习进行点评,指出错误和不足之处,并进行讲解。
八、巩固与拓展1. 对本节课的内容进行总结,强调有理数乘方的概念和运算规则。
科学记数法一、教学任务分析本节课的教学目标是:①理解科学记数法的意义,并学会用科学记数法表示比10大的数。
②积累数学活动经验,发展数感、空间感,培养学生自主学习的能力。
③感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性。
二、教学过程设计本节课由六个教学环节组成。
第一环节:创设情景,导入问题;第二环节:探索新知,解析问题;第三环节:运用新知,解决问题;第四环节:分析归纳,探索规律;第五环节:随堂练习,巩固新知;第六环节:课堂小结,布置作业。
第一环节情境引入,导入问题内容:在生活中还经常遇到比100万更大的数. 教师以中国人口、太阳半径、光速中的数据为切入点,引出本节课研究的问题:上面这些数都很大,你该怎样表示它们呢?目的:创设学生感兴趣的问题情景--“神舟”五号载人飞船的发射成功。
激发学生的学习热情,同时培养学生民族自豪感。
从一系列的数据中体会大数“读”“写”的困难,从而导出课题。
效果:学生感受到问题的产生来源于生活实际问题,有了极大的探究热情。
第二环节:探索新知,解析问题;内容:(1)提出以下问题。
问题1、回顾有理数的乘方运算,算一算:102= 104= 108= 1010=请学生讨论回答(1)1021表示什么?(2)指数与运算结果中的0的个数有什么关系?(3)与运算结果的数位有什么关系?问题2、把下列各数写成10的幂的形式:100000=10000000=1000000000=(2)给出情境:小明想知道计算器是怎样表示数的大数的,于是他输入1 000,连续地进行平方运算,两次平方后,发现计算器上出现了下图这样的显示。
并向学生提问:“你知道它表示什么数吗?”希望同学们发挥聪明才智,否自己尝试探索出表示大数的简单方法。
(可以用计算器进行计算)小组讨论交流得出科学记数法的概念:可以借助10的幂的形式来表示大数。
比如:1300000000=1.3×109,69600000000=6.96×1010, 300000000=3×10898000000=9.8×107 , 10100000000=1.01×1010, 61000000=6.1×107(板书)科学记数法:一个大于10的数可以表示成a × 10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法(scientific notation)。
有理数的乘方一、【知识梳理】1.乘方的有关概念.(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示__________.n a n a a a a a =⨯⨯⨯⨯ 个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.如:(32-)2=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数. 2.a n 与-a n 的区别.(1)a n 表示___________,底数是 ,指数是 ,读作:___________.(2)-a n 表示___________,底数是 ,指数是 ,读作:___________. 如:(-2)3底数是 ,指数是 ,读作___________,表示___________. (-2)3=(-2)×(-2)×(-2)= .-23底数是 ,指数是 ,读作___________.-23=-(2×2×2)= .注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同.3.乘方运算的符号规律.(1)正数的任何次幂都是 数.(2)负数的奇次幂是 数.(3)负数的偶次幂是 数.(4)0的奇数次幂,偶次幂都是 .所以,任何数的偶次幂都是 或 .4.乘方如何运算?乘方运算就是根据乘方的意义把它转化为乘法进行计算.如:33=___________= .5.科学记数法:把一个绝对值大于10的数写成的形式(其中a 是整数数位只有一位的数,n 是正整数),这种记数的方法叫做科学记数法。
记做na 10⨯的形式,其中1≤a <10,n 是正整数。
一般地,10的n 次幂,在1的后面有n 个0用科学技术法记数时应注意:⑴ 不能改变数的大小;⑵ 表示成n a 10⨯的形式;⑶ 1≤a <10,且n 是正整数; ⑷ 负数也可以用科学记数法表示,“-”照写,其他与 正数一样。
【例1】 23的底数是______,指数是______;434⎛⎫- ⎪⎝⎭的底数是______,指数是______;35-的底数是______,指数是______.【难度】★【答案】3,2;34-,4;5,3.【解析】乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数. 【总结】本题主要考察乘方的定义.【例2】 平方等于它本身的数是______,立方等于它本身的数是______. 【难度】★【答案】0和1,1-、0和1.【解析】在有理数中,平方等于它本身的数是0和1;立方等于它本身的数是1-、0和1. 【总结】本题主要考察有理数的乘方.【例3】 计算:(1)23=______;(2)()23-=______;(3)23-=______;(4)()33-=______. 【难度】★【答案】(1)9;(2)9;(3)-9;(4)-27. 【解析】负数的偶次幂为正数,负数的奇次幂为负数. 【总结】本题主要考察有理数的乘方.【例4】 n 为正整数,则()21n-=______,()211n +-=______,()1n-=______.【难度】★【答案】1;-1;-1(n 为奇数)或1(n 为偶数) 【解析】-1的偶次幂是1,-1的奇次幂是它本身. 【总结】本题主要考察有理数的乘方,注意分类讨论.例题解析【例5】 下列各对数中,数值相等的是( ) A .25-与52- B .53-与()53-C .()22-与22-D .()223⨯与223⨯【难度】★ 【答案】B .【解析】在n a 中,a 是底数,n 是指数. 【总结】本题主要考察有理数的乘方.【例6】 一个数的平方一定是( ) A .正数 B .负数 C .非正数 D .非负数【难度】★ 【答案】D .【解析】任何一个数的平方一定是非负数. 【总结】本题主要考察有理数的乘方.【例7】 计算:(1)232⎛⎫-= ⎪⎝⎭______;(2)332⎛⎫--= ⎪⎝⎭______;(3)3112⎛⎫-= ⎪⎝⎭______;(4)41.5-=______;(5)332-=______;(6)()40.25-=______.【难度】★ 【答案】(1)94;(2)278;(3)278-;(4)8116-;(5)272-;(6)1256. 【解析】n n aa a a a a ⨯⨯⨯⨯=144424443个…….【总结】本题主要考察有理数的乘方.【例8】 如果一个有理数的平方等于()22-,那么这个有理数等于( ) A .2- B .2 C .4 D .2或2-【难度】★★ 【答案】D .【解析】()22=4-,平方等于4的数是2或2-. 【总结】本题主要考察有理数的乘方.【例9】 平方等于164的数是______,立方等于164的数是______. 【难度】★★【答案】18±,14.【解析】根据乘方的定义,n n a a a a a a ⨯⨯⨯⨯=144424443个……,平方等于164的数是18±,立方等于164的数是14. 【总结】本题主要考察有理数的乘方和立方的特征.【例10】 下列代数式中,值一定是正数的是( ) A .2a B .6x -+C .()212a -+D .42x -+【难度】★★ 【答案】C .【解析】正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数. 【总结】本题主要考察有理数的乘方和立方.【例11】 若20a b ->,则b ______0;若20a b -<,则b ______0.(填“>”或“<”) 【难度】★★ 【答案】<;>.【解析】2200a a ≥∴-≤Q ,,则当20a b ->时,0b <;当20a b -<时,0b >. 【总结】本题主要考察有理数的乘法和乘方.【例12】 如果22x x -=-,则x =______. 【难度】★★ 【答案】0.【解析】222222000x x x x x x -≤-≥-=-∴-=-=Q ,,,,即0x =. 【总结】本题主要考察有理数的乘方和绝对值.【例13】 把下列各组数的大小关系用“<”号连接:(1)()21.2,()31.2,()41.2可表示为_________________________; (2)()20.2,()30.2,()40.2可表示为_________________________; (3)()21.2-,()31.2-,()41.2-可表示为_________________________; (4)()20.2-,()30.2-,()40.2-可表示为_________________________. 【难度】★★【答案】(1)()()()2341.2 1.2 1.2<<; (2)()()()4320.20.20.2<<; (3)()()()3241.2 1.2 1.2-<-<-; (4)()()()3420.20.20.2-<-<-.【解析】在n a 中,当01a <<时,n a 随n 的增大而减小,当1a >时,n a 随n 的增大而增大;当0a <时,先判断正负,再比较大小.【总结】本题主要考察有理数的乘方的大小比较,解答的关键是熟练掌握负数的奇数次幂是负数,偶数次幂是正数.【例14】 计算:(1)()323⨯-;(2)()2332-⨯-; (3)()22121--⨯-;(4)()2163⎛⎫-÷- ⎪⎝⎭.【难度】★★【答案】(1)54-; (2)108-; (3)3-; (4)54-. 【解析】(1)()()32322754⨯-=⨯-=-; (2)()2332274108-⨯-=-⨯=-; (3)()22121123--⨯-=--=-; (4)()21166695439⎛⎫-÷-=-÷=-⨯=- ⎪⎝⎭.【总结】本题主要考察有理数的乘方和乘除计算,需要注意计算顺序先乘方再乘除.【例15】 计算: (1)2322⨯; (2)()2322-⨯;(3)()3222⨯-;(4)()2322⨯-.【难度】★★【答案】(1)32;(2)32;(3)32-;(4)32-.【解析】nn aa a a a a⨯⨯⨯⨯=144424443个…….【总结】本题主要考察有理数的乘方和乘法计算,计算顺序先乘方再乘法,注意符号.【例16】 计算: (1)3322÷; (2)()3222-÷;(3)()2322÷-;(4)()3222÷-.【难度】★★【答案】(1)1;(2)2-;(3)2;(4)2-.【解析】(1)3322881÷=÷=; (2)()3222842-÷=-÷=-; (3)()2322842÷-=÷=; (4)()3222842÷-=-÷=-. 【总结】本题主要考察有理数的乘方和乘法计算,计算顺序先乘方再除法.【例17】 计算:(1)()32414554⎛⎫÷--÷- ⎪⎝⎭;(2)()()()23323102---÷-+⨯-.【难度】★★【答案】(1)59-;(2)1-.【解析】(1)()()3241455645594⎛⎫÷--÷-=---=- ⎪⎝⎭;(2)()()()233231024301---÷-+⨯-=-++=-.【总结】本题主要考察有理数的乘方和乘除计算,需要注意计算顺序先乘方再乘除,注意符号.【例18】 计算:()()2232111344113264⎛⎫-+---⋅-÷- ⎪⎝⎭.【难度】★★★【答案】114.【解析】原式=()519911161610566444-+--⨯÷-=+-=.【总结】本题主要考察有理数的乘方和乘除计算,需要注意计算顺序先乘方再乘除,注意符号.【例19】 某公司常用的A4打印纸的厚度约为0.1毫米,现将一张这样的纸连续对折9次,那么它有多厚? 【难度】★★★ 【答案】51.2毫米.【解析】∵一张纸的厚度大约是0.1毫米∴对折一次的厚度是10.12⨯毫米,对折两次的厚度是20.12⨯毫米……, ∴对折9次的厚度是90.1251.2⨯=(毫米). 故答案为:51.2毫米.【总结】本题主要考察有理数的乘方运算法则,根据题意找出每次对折后纸片厚度的规律是解答此题的关键.【例20】 已知()2230a b -++=,则()3a b +=______. 【难度】★★★ 【答案】1-.【解析】∵()22030a b -≥+≥,,根据题意得:2030a b -=+=,, ∴23a b ==-,, 则()()33231a b +=-=-. 【总结】本题主要考察有理数的乘方及非负数的和为零.【例21】 若234a ⎛⎫- ⎪⎝⎭与()45b +互为相反数,则a =______,b =______.【难度】★★★【答案】34,5-.【解析】∵2304a ⎛⎫-≥ ⎪⎝⎭,()450b +≥,()24354a b ⎛⎫-=-+ ⎪⎝⎭,∴2304a ⎛⎫-= ⎪⎝⎭, ()450b +=, 即354a b ==-,.【总结】本题主要考察有理数的乘方及相反数的概念.【例22】 已知x 的倒数是5,y 的相反数是2,求代数式221424x x y ⎛⎫++÷ ⎪⎝⎭的值.【难度】★★★【答案】81400.【解析】由题意得:125x y ==-,,代入得:22142181181424425541004400x x y ⎛⎫⎛⎫++÷=++÷=⨯= ⎪ ⎪⎝⎭⎝⎭.【总结】本题主要考察有理数的乘方,倒数及相反数的概念.【例23】 323332235317340.544641843⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯+÷- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【难度】★★★ 【答案】274-.【解析】原式=2725127172727166436464186464⎛⎫⎛⎫-⨯+⨯-+⨯+⨯- ⎪ ⎪⎝⎭⎝⎭ =2725117166436418⎛⎫-⨯+-+ ⎪⎝⎭ =27259341664363636⎛⎫-⨯+-+ ⎪⎝⎭=271664-⨯ =274-. 【总结】本题主要考察有理数的乘方,分数的简便运算.【例24】 用科学记数法表示下列各数:(1)7013 =___________________; (2)123000000 =______________; (3)304500-=________________; (4)101010.1 =_______________; (5)490.04-=________________; (6)0.00036 =________________; (7)4924.7510⨯=______________; (8)50.003110⨯=_______________. 【难度】★【答案】(1)37.01310⨯;(2)81.2310⨯;(3)53.04510-⨯;(4)51.01010110⨯; (5)24.900410-⨯; (6)43.610-⨯;(7)69.247510⨯;(8)23.110⨯.【解析】科学计数法的表示形式为10n a ⨯(其中110a ≤<,n 是整数),a 与原数相比小数点移动几位,a 的绝对值就是几;原数绝对值小于1时,n 取负数,原数绝对值大于1时,n 取正数.【总结】本题主要考察科学计数法的意义及用科学计数法表示一个数的方法,关键是确定a 与n 的值.【例25】 下列用科学记数法表示的数,原来各是什么数:(1)3310⨯=________________;(2)41.3410⨯=________________; (3)53.01210-⨯=________________; (4)39.810-⨯=________________.【难度】★【答案】(1)3000;(2)13400;(3)-301200;(4)-9800.【解析】将科学计数法10n a ⨯还原成原来的数时,当n >0时,这个数乘以10的几次方,就把这个数的小数点向右移动几位;当n <0时,这个数乘以10的几次方,就把这个数的小数点向左移动几位.【总结】本题主要考察科学计数法的应用.【例26】 若53000 5.310n =⨯,则n 的相反数的倒数是______. 【难度】★【答案】14-.【解析】因为45300 5.310=⨯,所以n =4;4的相反数的倒数是14-.【总结】本题主要考察科学计数法的应用及相反数、倒数的概念.【例27】 (1)若一个数等于95.6210⨯,则这个数的整数位有______位; (2)若一个数等于50.00018510⨯,则这个数的整数位有______位. 【难度】★【答案】(1)10;(2)2.【解析】判断一个数的整数位时,将这个数化成原数再判断. 【总结】本题主要考察科学计数法表示有理数.【例28】 我国研制的“曙光300超级服务器”的峰值运算速度达到每秒403200000000次,它的峰值运算速度用科学记数法表示为( ) A .120.403210⨯次/秒 B .9403.210⨯米/秒 C .114.03210⨯米/秒D .114.03210⨯次/秒【难度】★ 【答案】D .【解析】用科学计数法表示大数时,10的指数n 的值=整数位数-1. 【总结】本题主要考察用科学计数法表示实际生活中的数.【例29】 2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学记数法表示为______帕. 【难度】★★ 【答案】84.58110⨯.【解析】科学计数法的表示形式为()10110n a a ⨯≤<,所以4.581亿帕=84.58110⨯帕. 【总结】本题主要考察用科学计数法表示实际生活中的数.【例30】 地球绕太阳公转的轨道半径约是149000000千米,则地球绕太阳公转一年经过的路程约为多少千米? 【难度】★★★【答案】89.357210⨯千米.【解析】因为地球围绕太阳公转一周的周期是一年,所以地球绕太阳公转一年经过的路程约为822 3.141490000009357200009.357210r π≈⨯⨯==⨯千米. 【总结】本题主要考察用科学计数法在实际生活中的应用.【习题1】如果一个数的平方是它的相反数,那么这个数是______;如果一个数的平方是它的倒数,那么这个数是______.【难度】★【答案】0和1-;1.【解析】如果一个数的平方是它的相反数,那么这个数是0和1-;如果一个数的平方是它的倒数,那么这个数是1.【总结】本题主要考察有理数的乘方,倒数及相反数的概念.【习题2】如果一个有理数的偶次幂是非负数,那么这个数是()A.正数B.负数C.非负数D.任何有理数【难度】★【答案】D.【解析】任何有理数的偶次幂都是非负数,正数的任何次幂都是正数,负数的奇次幂是负数.【总结】本题主要考察有理数的乘方.【习题3】一个数的科学记数法是73.1410⨯,它的原数是______________.【难度】★【答案】31400000.【解析】科学计数法中,指数n>0时,将小数点向右移动七位即可.【总结】本题主要考察科学计数法的定义.【习题4】计算:(1)323⎛⎫- ⎪⎝⎭;(2)323⎡⎤⎛⎫---⎢⎥⎪⎝⎭⎢⎥⎣⎦;(3)334⎛⎫-- ⎪⎝⎭;(4)3113⎛⎫- ⎪⎝⎭;(5)()42--;(6)()21.375-.随堂检测【答案】(1)827-;(2)827-;(3)274;(4)6427-;(5)16-;(6)12164. 【解析】n n aa a a a a ⨯⨯⨯⨯=144424443个…….【总结】本题主要考察有理数的乘方,先确定符号,注意计算顺序,先乘方后乘除.【习题5】 70.062410⨯是______位数. 【难度】★★ 【答案】6.【解析】判断一个数的整数位时,将这个数化成原数再判断. 【总结】本题主要考察科学计数法表示数.【习题6】 计算:(1)22512+; (2)()2183-÷-;(3)()()22233322---+--.【难度】★★【答案】(1)169; (2)2-; (3)22-. 【解析】(1)原式=25144169+=; (2)原式=1892-÷=-;(3)原式=994822--+-=-.【总结】本题主要考察有理数的乘方,先确定符号,注意计算顺序,先乘方后乘除.【习题7】 我国国土面积约为960万平方千米,用科学记数法可表示为________平方千米,或者__________平方米. 【难度】★★【答案】69.610⨯,129.610⨯.【解析】960万平方米=69.610⨯平方千米, 因为1平方千米=6110⨯平方米,69.610⨯平方千米=129.610⨯平方米.【总结】本题主要考察科学计数法表示数及单位换算.【习题8】 如果把整数a 称为“旧数”,而将旧数先立方,再除以1000所得的数为“新数”,则 “旧数”15按照上述规则运算得到的“新数”为______.【答案】278.【解析】根据题意:新数=31000a ÷=1515152710008⨯⨯=. 【总结】本题主要考察有理数的乘方,理解题意是关键.【习题9】 计算:44211318.13746⎛⎫⎛⎫-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭.【难度】★★★ 【答案】0.01.【解析】44211318.13746⎛⎫⎛⎫-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭ =4424781211210⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =44781812112100⨯⎛⎫⨯⨯ ⎪⎝⎭ =1100.【总结】本题主要考察有理数的乘方及分数的简便计算.【习题10】 计算:()()()323313821320.25⎡⎤--÷--+-⨯-÷⎣⎦.【难度】★★★ 【答案】43-.【解析】原式=()()27119842721843----+⨯-÷=-+-=-.【总结】本题主要考察有理数的乘方及分数的简便计算,注意计算顺序,先乘方再乘除.【作业1】 计算:(1)43=______;(2)()35-=______;(3)512⎛⎫- ⎪⎝⎭=______;(4)211-=______; (5)235⎛⎫- ⎪⎝⎭=______;(6)235-=______.【难度】★【答案】(1)81;(2)-125;(3)132-;(4)-121;(5)925;(6)95-. 课后作业【解析】nn aa a a a a⨯⨯⨯⨯=144424443个…….【总结】本题主要考察有理数的乘方.【作业2】 一个数的平方是正数,则这个数的立方是( )A .正数B .负数C .正数或负数D .非负数【难度】★ 【答案】C .【解析】任何非零有理数的平方都是正数;所以这个数是正数或负数,即它的立方为正数或负数.【总结】本题主要考察有理数的乘方.【作业3】 (1)30070000-=______710⨯;(2)5432000 =5.43210n ⨯,则n =______.【难度】★【答案】(1) 3.007-;(2)6.【解析】用科学计数法表示绝对值大于10的数时,10的指数n 比原数的整数位数少1. 【总结】本题主要考察科学计数法表示大数.【作业4】 平方等于36的数是______,立方等于127-的数是______. 【难度】★【答案】6或6-,13-.【解析】根据乘方的定义,nn aaa a a a ⨯⨯⨯⨯=144424443个……,平方等于36的数是6或6-,立方等于 127-的数是13-. 【总结】本题主要考察有理数的乘方.【作业5】 ()()()()12233420162017-⨯-⨯-⨯⨯-=L ______. 【难度】★★【答案】1.【解析】原式=()()()()1111-⨯-⨯-⨯⨯-…… (共2016个1-) =1.【总结】本题主要考察有理数的乘方,关键是找到规律.【作业6】 计算:(1)()33131--⨯-;(2)()2233-÷-; (3)()2233---;(4)222233⎛⎫-- ⎪⎝⎭.【难度】★★【答案】(1)2;(2)1-;(3)18-;(4)89.【解析】(1)()33131132--⨯-=-+=; (2)()2233991-÷-=-÷=-; (3)()22339918---=--=-; (4)222244833399⎛⎫--=-= ⎪⎝⎭.【总结】本题主要考察有理数的乘方,注意先乘方再乘除.【作业7】 据统计,地球上每分钟约有8500000吨污水排入江河湖海,用科学技术法表示每天的排污量为______________千克. 【难度】★★ 【答案】131.22410⨯.【解析】8500000吨=8500000000千克=98.510⨯千克,故每天的排污量为:9138.5106024 1.22410⨯⨯⨯=⨯(千克). 【总结】本题主要考察科学计数法表示数,注意单位换算.【作业8】 计算:()()33323332232238-⨯-÷+--.【难度】★★★【答案】132819-.【解析】原式=()()319823274182723827812781919⎛⎫-⨯-÷+-=-⨯+-=⨯-- ⎪⎝⎭321327281919=--=-. 【总结】本题主要考察有理数的乘方及混合运算.【作业9】 计算:()()26422543452854⎛⎫-⨯+-⨯-÷-+ ⎪⎝⎭.【难度】★★★ 【答案】164-.【解析】原式=654196259962516510108251644444⎛⎫⎛⎫-⨯+-⨯⨯+=--+=-+- ⎪ ⎪⎝⎭⎝⎭=10154164--=-.【总结】本题主要考察有理数的乘方及分数简便运算.【作业10】 计算:(1)10919999⎛⎫⨯ ⎪⎝⎭;(2)()()502520.25-⨯-.【难度】★★★【答案】(1)199;(2)1-.【解析】(1)1099911111999919999999999⎛⎫⎛⎫⨯=⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()2525502550251120.2524144⎛⎫⎛⎫-⨯-=-⨯=-⨯=- ⎪ ⎪⎝⎭⎝⎭.【总结】本题主要考察有理数的乘方及分数简便运算.。
七(上)3.3 有理数的乘方(2)——科学计数法
一、学习目标:
1、什么叫科学计数法?
2、怎样正确使用科学计数法表示数?
二、学习重点与难点:
重点:正确运用科学计数法表示比10大的数。
难点:正确掌握10n的特征以及科学计数法中n与数值的关系。
三、学习过程:
(一)自主学习,探求新知:
自主学习63至64页,回答问题:
1、科学计数法:一个绝对值大于10的有理数可以记作的形式,其中a是,n是。
2、大于10的数用科学计数法表示时n的规律:10的指数n比原来的整数位数少。
3、下列各数计数法是否是科学计数法:
(1)1.5×103 (2)29×104(3)0.32×103 (4)2.58×1003
(二)精讲点拨、探索规律:
1用科学计数法表示下列各数:
(1)24000000000 (2)—10800000
把普通的数字写成科学计数法的方法:
方法1:查出已知数的整数的位数,整数的位数减去1就等于10的次数。
方法2:把已知数的小数点向左移动几位,就乘以10的次方
2、用科学计数法表示下列各数:
(1)1000 (2)—120000 (3)3050000
(三)有效训练:
1、用科学计数法表示下列各数:
696000 1000000 58000
2、、指出下列各数各是几位数
9.597×105 1.707×104—6×104—3.95×105
3、北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学计数法表示应为平方米。
(四)拓展提升:
1、用科学记数法记出下列各数:
(1)银河系中的恒星数约是160 000 000 000万吨;
(2)地球绕太阳公转的轨道半径约是149 000 000千米;
(3)1cm3的空气中约有25 000 000 000 000 000 000个分子
2、在去年四川汶川地震抗震救灾过程中,国内外各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学计数法表示为元
四、学习小结,浅谈收获:
五、达标检测:
1、用科学计数法表示下列各数:
(1)8 700 000; (2)500 900 000; (3)3742; (4)70005.
2、2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米。
11.8千米用科学计数法表示是米。
六、课后训练:1、课本练习题:1、2、3。