Convex Analysis and Nonlinear Optimization 第三章习题解答
- 格式:pdf
- 大小:66.84 KB
- 文档页数:4
一、导论随着科技的发展和应用,凸优化在各个领域中发挥着越来越重要的作用。
其在工程、金融、计算机科学等领域的应用不断扩展和深化。
对于凸优化的理论和方法的研究,以及文献的翻译与传播变得尤为重要。
本文旨在对凸优化中的一些重要主题和内容进行介绍和讨论,希望能够为相关领域的研究者和读者提供一些参考和帮助。
二、凸优化基本概念1. 凸集与凸函数凸集和凸函数是凸优化中非常基础且重要的概念。
凸集是指集合中任意两个点的线段都在该集合内部的集合。
凸函数则是定义在凸集上的实值函数,其函数图像上的任意两点组成的线段都在函数图像上方。
凸集和凸函数的性质为凸优化问题的理论和方法提供了基础。
2. 凸优化问题的一般形式凸优化问题的一般形式可以表示为:minimize f(x)subject to g_i(x) <= 0, i = 1,2,...,mh_j(x) = 0, j = 1,2,...,p其中,f(x)是要优化的目标函数,g_i(x)和h_j(x)分别为不等式约束和等式约束。
凸优化问题通常要求目标函数和约束函数都是凸的。
三、凸优化中的常见算法1. 梯度下降法梯度下降法是一种常用的优化算法,尤其适用于凸优化问题。
其基本思想是通过计算目标函数的梯度方向,并沿着梯度的负方向进行迭代,以逐步逼近最优解。
2. 拉格朗日乘子法拉格朗日乘子法主要用于处理约束优化问题,通过构建拉格朗日函数并对其进行优化,得到原始优化问题的最优解。
拉格朗日乘子法在凸优化问题中得到了广泛的应用。
3. 内点法内点法是一类迭代法,主要用于求解线性规划和二次规划等凸优化问题。
其优点在于可以较快地收敛到最优解,尤其适用于大规模的凸优化问题。
四、凸优化在科学与工程中的应用凸优化在科学与工程中有着广泛的应用,如在信号处理中的最小二乘问题、在机器学习中的支持向量机、在通信系统中的功率分配问题等。
这些应用不仅推动了凸优化理论的发展,也为实际问题的解决提供了有效的工具和方法。
刘炳初等 《泛函分析》第二版课后习题答案习题二1.设(,)X 是赋范空间. 对于,,x y X ∈令10,,1,,x y d x y x y =⎧=⎨-+≠⎩证明:1d 是X 上的距离但不是由范数诱导的距离.证明:显然1d 满足距离公理1)、2). 若x y =,显然有111(,)0(,)(,)d x y d x z d z y =≤+; 若x y ≠,则当,x z z y ≠≠时,111(,)112(,)(,)d x y x y x z z y x z z y d x z d z y =-+≤-+-+≤-+-+≤+; 当,x z z y =≠时,1111(,)11(,)(,)(,)d x y x y z y d z y d x z d z y =-+=-+==+; 当,x z z y ≠=时,1111(,)11(,)(,)(,)d x y x y x z d x z d x z d z y =-+=-+==+; 因此,1(,)d x y 满足距离公理3).但10,,(,)1,,x d x x x θθθ=⎧=⎨+≠⎩显然不满足11(,)(,)d x d x αθαθ=,因此1d 不是由范数诱导的距离.2.在l ∞中,按坐标定义线性运算且对,k x l x ξ∞∈=定义sup n nx ξ=,证明l ∞是一个赋范空间.证明:显然这是一个范数.3.设M 是空间l ∞中除有穷个坐标之外为0的元之全体构成的子空间. 证明M 不是闭子空间.证明:令01111111,,,,,0,0,,1,,,,,2323n x x n n ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,则显然我们有n x M ∈,且01110,0,,,,0()121n x x n n n n ⎛⎫-==→→∞ ⎪+++⎝⎭ ,但0x M ∉,因此M 不是l ∞得闭子空间.4.试举例说明,在赋范空间中,由1n n x ∞=<∞∑,一般地不能推出1n n x ∞=∑收敛.例:5. 设(,)X 是赋范空间,0X 是X 中的稠密子集,证明:对于每一x X ∈,存在{}0n x X ⊂,使得1n n x x ∞==∑,并且1n n x ∞=<∞∑.证明:取10x X ∈,使得112x x -<,则112x x ≤+;0X X = ,∴可取20x X ∈,使得12212x x x --<,则2121211122x x x x x x ≤--+-<+<;同理可取30x X ∈,使得123312x x x x ---<,则31231223111222x x x x x x x x ≤---+--<+<;继续此法,可得{}0n x X ⊂,使得112ni ni x x =-<∑,且21(2,3,)2nn x n -<= ,由此知1n n x x ∞==∑,并且1n n x ∞=<∞∑11112n n x ∞-=⎛⎫≤++ ⎪⎝⎭∑.6. 设(,)X 是赋范空间,{}0X ≠,证明:X 是Banach 空间,当且仅当,X 中的单位球面{}:1S x X x =∈=是完备的.证明:必要性是显然的(S 为X 中闭集),下证充分性.若S 是完备的,设{}n x 为X 中的Cauchy 列,由于m n m n x x x x -≤-,从而lim n n x →∞存在,不妨设lim n n x a →∞=. 若0a =,则显然0()n x n →→∞.若0a ≠,不妨设0n x ≠,则n n x S x ⎧⎫⎪⎪⊂⎨⎬⎪⎪⎩⎭,因为11()0m n n m m n n m n m nn m nm nm nx xx x x x x x x x x x x x x x x x -=-≤-+-→也即n n x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为S 中的Cauchy 列,由S 的完备性,lim n n n x x →∞存在,不妨设limn n n x x S x →∞=∈,从而有1lim0n n n nn n x a ax ax x x x x x x a →∞-=-→-=,故 lim 0n n x ax →∞-=,即{}n x 收敛,从而证得X 是Banach 空间.7. 证明0c 是可分的Banach 空间. 证明:分以下三步来证明:1). 证明0c 是l ∞的线性子空间. 事实上收敛列必有界,从而显然0c l ∞∈,且设()()12120,,,,,,,,,n n x y c ξξξηηη==∈ ,则()1122,,,,n n x y αβαξβηαξβηαξβη+=+++ ,由于lim 0n x y αβ→∞+=,从而我们有0x y c αβ+∈,即0c 是l ∞的线性子空间.2). 证明0c 是l ∞的闭子空间. 事实上,设()()()()120,,,,,k k k k n x c ξξξ=∈()(0)(0)(0)012,,,,n x ξξξ= ,并且()(0)0sup 0()k k n n nx x k ξξ-=-→→∞,因此0ε∀>,1N ∃,使得当1k N >时,()(0)0sup 2k k n n nx x εξξ-=-<. 由于(0)()()(0)()1()2k k k n n n n n k N εξξξξξ≤+-<+>,又因0k x c ∈,()0()k n n ξ→→∞,故存在()1N N ≥,使得当n N >时恒有()2k n εξ<,从而(0)n ξε<,n N ∀>,即00x c ∈,由此知0c 是l ∞的闭子空间.3). 由于l ∞为Banach 空间,而0c 是l ∞的闭子空间,从而0c 是Banach 空间,下证0c 是可分的. 设M 为一切有限有理数列全体,即()12,,,,n n x M ξξξξ=∈⇔ 全为有理数,且存在x N ,使得当x n N >时,0n ξ=. 显然1n n M Q ∞= ,可知M 可数.()1200,,,,,n y c εηηη∀>=∈ ,由于0n η→,故存在N ,使得当n N >时,n ηε<. 对()12,,,N N R ηηη∈ ,存在()12,,,N N Q ξξξ∈ ,使得1sup n n n Nηξε≤≤-<,从而存在()012,,,,0,0,N x M ξξξ=∈ ,使得0y x ε-<,即M 在0c 中稠密. 综上可知0c 是可分的Banach 空间.8. 设(,)n n X 是一列赋范空间,{}(),1,2,n n n x x x X n =∈= 且满足条件1pkk x ∞=<∞∑,用X 表示所有x 的全体,按坐标定义线性运算构成的线性空间,在X 中定义11(1)ppkk x x p ∞=⎛⎫=≥ ⎪⎝⎭∑,证明(,)X 是一个赋范空间.证明:只需证明 是一个范数即可. 事实上,显然0x ≥,且0x =,即10pkk x ∞==∑,从而有0(1,2,)kkx k == ,又k X 是赋范空间,故(1,2,k x k θ== ,从而可得x θ=,即证明了范数公理的条件1)成立,而条件2)显然成立,下证条件3)成立. 设{}{}(),,,1,2,n n n n n x x y y x y X n ==∈= ,由离散情形的Minkowski 不等式,我们有111111ppppp p kk kk k k k x y x yx y x y ∞∞∞===⎛⎫⎛⎫⎛⎫+=+≤+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,从而证得 是一个范数,从而(,)X 是一个赋范空间.9. 证明:1) 离散情形的Hölder 不等式与Minkowski 不等式;2) ()1p l p ≥是可分的Banach 空间.证明:1). 首先证明离散情形的Hölder 不等式,即证明下列不等式成立:11111pqp q k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,其中111,1p p q ≥+=. 令11,pqp q k kk k A B ξη∞∞====∑∑,由不等式pqa b ab p q ≤+可得11p qk k k k AB p A q Bξηξη≤+ 从而有1111111111pqpq pqk kk kkk k k k k k A B AB p A q Bpqp qξηξηξη--∞∞∞∞∞=====≤+=+=+=∑∑∑∑∑,所以11111pqp q k k k k k k k AB ξηξη∞∞∞===⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑. 由离散情形的Hölder 不等式,我们可以推导相应的Minkowski 不等式:111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑事实上,由Hölder 不等式,我们得到111111111(1)(1)1111111111,pp p k k k k kk k kk k k pqpqp q p p q p k k k k k k k k k k qp p p p p k k k k k k k ξηξξηηξηξξηηξηξηξη∞∞∞--===∞∞∞∞--====∞∞∞===+≤+++⎛⎫⎛⎫⎛⎫⎛⎫≤+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑由此即可得到111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.2). 首先,由于(){}12,,,,,1,2,,n n i Q r r r r r Q i n ==∈= 为n R 中全体有理点集,它是n R 中稠密的可数集,因此n R 是可分空间.令(){}12,,,,;,,1,2,,n i M r r r r n N r Q i n ==∈∈= ,易知M 为p l 的可数子集,下证p M l =. 事实上,设()12,,,,,0,p n x l ξξξε=∈∀> 存在()N ε,使得12ppi i N εξ∞=+<∑,从而有()12,,,,0,N y r r r M =∈ ,使得111122p ppNpp p i i i pi i N x yr εεξξε∞==+⎛⎫⎛⎫-=-+<+= ⎪⎪⎝⎭⎝⎭∑∑,因此p M l =,即()1p l p ≥是可分的Banach 空间.10. 证明任意线性空间中存在Hamel 基.证明:设E 是线性空间X 中的线性无关集,令集合M 为包含E 的所有线性无关集全体,在M 上定义偏序关系为''''⊂,显然M 的全序子集都有上界(所有集合的并集),由Zorn 引理,M 有极大元,不妨设为B ,下证B 即为X 的Hamel 基,如若不然,则存在y X ∈,但y B ∉,即y 与B 中任何元素都线性无关,从而{}y B M ∈ ,这与B 的极大性矛盾.11. 设A 是线性空间X 中的子集. 证明:111():,01.nn n k k k k Co A x x X n x A αααα=⎧⎫=++∈∈≥=⎨⎬⎩⎭∑ 是任意自然数,且证明:若令S 表示上式右端,则A S ⊂而且S 是凸集,从而()Co A S ⊂. 反之,设F 是包含A 的任一凸集,那么(1,2,,)i x F i n ∈= ,从而1ni i i x F α=∈∑,即得S F ⊂,从而()S Co A ⊂.12. 设E 是直线上的Lebesgue 可测集,且mE <∞,用p 表示()(1)p L E p ≥的范数,∞ 表示()L E ∞的范数. 证明:对于每一()x L E ∞∈,lim pp xx ∞→∞=.证明:设x M ∞=,若0mE =或0M =,显然成立,下设0,0mE M ≠≠:i). 根据本性上确界的可达性,即存在0E E ⊂,使得00mE =,并且0\sup ()E E M x t =,所以0\\()d ()d d ppp pEE E E E x t t x t t M t M mE =≤=*⎰⎰⎰,所以()1ppx M mE ≤*. 因为当p →∞时,()11pmE →,即lim pp xM x ∞→∞≤=;ii). 对任意的0ε>,令{}1:()E t E x t M ε=∈>-,由上确界定义易知10mE >,从而11()d ()d ()p pp EE x t t x t t M mE ε≥≥-*⎰⎰,令p →∞,则lim pp xM ω→∞≥-,由ε的任意性,知lim pp xM →∞≥.从而lim pp xM x ∞→∞==.13. 设()11,X ,()22,X 是赋范空间,在乘积线性空间12X X ⨯中定义()1212112212,max ,z x x zx x =+=,其中()1212,,z X X z x x ∈⨯=.证明1z ,2z 是12X X ⨯上的等价范数.证明:显然2122z z z ≤≤,从而它们是等价范数.14.设X 是区间[],a b 上所有连续函数全体按通常方式定义线性运算所成的线性空间,对于x X ∈定义1sup ();()d ba a t bx x t x x t t ≤≤==⎰.证明: 和1 是X 上两个不等价的范数.证明:显然 和1 是X 上的两个范数,且1()x b a x ≤-,要证两个范数不等价,则只需证明不存在0c >,使得1x c x ≥,即证明存在[]C ,n x a b ∈,使得1n n x x →∞.令()()(),,2()2,,20,,n b aa n t a a t a nb a nbb ax t a b a t a b a n nb a a t b n-⎧+-≤≤+⎪⎪--⎪=--++≤≤+⎨-⎪⎪-+≤≤⎪⎩则()()12,,2n n b a b a x x b n-+==()()122n nx nx b b a b a =→∞-+.15. 设Banach 空间(,)X 具有Schauder 基{}n e ,用M 表示所有使得1k k k e ξ∞=∑在X中收敛的数列{}k ξ的全体,按通常方式定义线性运算构成的线性空间,对于每一{}k x M ξ=∈,定义11supnk knk x eξ==∑,证明(,)M 是Banach 空间.证明:首先易知1 是范数.设{}()m x M ∈是Cauchy 列,()()()()()12,,,,m m m m n x ξξξ=16. 设(,)X 是赋范空间,Y 是X 的子空间,对于x X ∈,令(),inf y Yd x Y x y δ∈==-.如果存在0y Y ∈,使得0x y δ-=,称0y 是x 的最佳逼近.1) 证明:如果Y 是X 的有穷维子空间,则对每一x X ∈,存在最佳逼近. 2) 试举例说明,当Y 不是有穷维空间时,1)的结论不成立. 3) 试举例说明,一般地,最佳逼近不惟一.4) 证明对于每一点x X ∈,x 关于子空间Y 的最佳逼近点集是凸集.证明:1).有下确界定义,0,n y Y ε∀>∃∈,使得n x y δδε≤-<+.因为Y 是有穷维子空间,从而存在子列{}{}k n n y y ⊂,使得0k n y y →,将上面不等式中的n 改为k n ,并令k →∞,便有0x y δδε≤-<+,由ε的任意性即可得到0x y δ-=,即0y 就是x 的最佳逼近元.2).例:在0c 空间中,令{}011:02n n nn n M x c ξξ∞∞==⎧⎫==∈=⎨⎬⎩⎭∑,则易证M 是0c 的闭子空间. 设()02,0,,0,x = ,下面说明对此0x ,M 中不存在最佳逼近元. 事实上,N m ∀∈,令()111,1,,1,0,0,2m m m x M -⎛⎫⎪=---∈ ⎪ ⎪⎝⎭个,则()00111(,)12m m m x x d x M →∞--=+⇒≤.下证0,1y M x y ∀∈->.用反证法.假设存在()12,,,,k y M ξξξ=∈ ,使得01x y -≤,则()0122,,,,k x y ξξξ-=--- ,011,2,12 1.k k x y ξξ⎧≤≥-≤⇒⎨-≤⎩又由()12211,21222kkk kkk k k ξξξξ∞∞==≤≥⇒≤<⇒<∑∑.这与121ξ-≤矛盾.所以0,1y M x y ∀∈->.两边取下确界,得到0(,)1d x M ≥,从而我们可以得到0(,)1d x M =,即在M 上找不到一点,使得该点是0x 的最佳逼近. 3).例:在2R 中,对()212,x x x R ∀=∈,定义范数12max(,)x x x =,并设()00,1x =,()11,0e =,a R ∈,则(){}01,1max ,1x ae a a -=-=,从而01min 1a Rx ae ∈-=,但最佳逼近元{}11a ae ≤不惟一.4).设M 为x 关于子空间Y 的最佳逼近点集,则对[]12,,0,1y y M λ∀∈∈,12(,)x y x y d x Y -=-=,从而()()()121212(1)(1)(1)(,)x y y x y x y x y x y d x Y λλλλλλ-+-=-+--≤-+--=又显然()12(1)(,)x y y d x Y λλ-+-≥,从而()12(1)(,)x y y d x Y λλ-+-=,即12(1)y y M λ+-∈,所以M 是凸集.17. 设(,)X 是赋范空间,如果对任意,,x y X x y ∈≠且1x y ==必有2x y +<,称(,)X 是严格凸赋范空间.1) 证明赋范空间(,)X 是严格凸的,当且仅当,对任意,x y X ∈,x y x y +=+必有(0)x y αα=>.2) 证明在严格凸赋范空间中,对于每一个x X ∈,x 关于任意子空间Y 的最佳逼近是惟一的.证明:1). 必要性. 设x y x y +=+,则11x y x y xy x y x y x x yy +=⇒+=+++,由严格凸性,x yc x y=,即c x x y y=,令c x yα=,即可得到x y α=.充分性.用反证法,如果存在,,x y X x y ∈≠且1x y ==,使得(1)1x y ββ+-=,即(1)(1)x y x y ββββ+-=+-,由假设,必存在α,使得(1)x y βαβ=-,又因为1x y ==,从而可得x y =,矛盾.2).用反证法.事实上,若(),0d x Y >,并有12(,)x y x y d x Y -=-=,则对[]0,1α∀∈,由严格凸性有()()()12121211(1)(1)(,)(,)(1)1(,)(,)x y y x y x y d x Y d x Y x y x y d x Y d x Y αααααα-+-=-+--⎛⎫⎛⎫--=+-< ⎪ ⎪⎝⎭⎝⎭即()12(1)(,)x y y d x Y αα-+-<,这显然与(,)d x Y 的定义矛盾.但若(),0d x Y =,12,y y 是相应的最佳逼近元,则必有12y x y ==,从而最佳逼近元必是惟一的. 18.设(,)X 是赋范空间,如果对任意0ε>,存在0δ>,当x y ε-≥,1x y ==时必有2x y δ-≤-,称(,)X 是一致凸的. 证明: 1) 一致凸赋范空间必是严格凸的. 2) [],C a b 不是一致凸的. 3) []1,L a b 不是一致凸的.证明:设X 是一致凸的赋范空间,,,x y X x y ∈≠且1x y ==,则必存在00ε>,使得0x y ε-≥(若不然,对0ε∀>,都有x y x y ε-<⇒=,矛盾). 由一致凸性,对此00ε>,必存在0δ>,使得22x y δ-≤-<,从而X 是严格凸的. 2). 由1),只需证明[],C a b 不是严格凸的即可.以[]0,1C 为例.取()1,()x t y t t ≡= 都满足1x y ==,但2x y +=.从而不是严格凸的.3). 同理. 取()1,()2x t y t t ≡=,都满足1x y ==,但2x y +=.从而不是严格凸的.习题三1. 设1sup n n α≥<∞,在1l 上定义算子:T y Tx =,其中{}{},k k x y ξη==,k k k ηαξ=(1,2,)k = . 证明T 是1l 上的有界线性算子并且1sup n n T α≥=.证明:111,sup k k k k k k k k k k x ηαξηαξα∞∞≥====≤∑∑ ,()112,,,,,k x l ξξξ∀=∈()112,,,,k y l ηηη∴=∈ ,且1sup k k Tx x α≥≤ ,1sup k k T α≥∴≤.另一方面,由上确界定义,对任意的n ,存在k n ,使得11sup k n k k n αα≥>-. 取()010,0,,1,0,k n x = 第项为,则显然01x =,且00k n Tx T x T α=≤=,从而11sup k k T nα≥-<. 令n →∞,则有1sup k k T α≥≤. 所以1sup k k T α≥=.3. 证明Banach 空间X 是自反的,当且仅当*X 是自反的.证明:必要性. 设X 是自反的,:**()J X X J X →=为典型映射,现证*X 也自反. 任取****:x x J X =→ k ,显然**x X ∈. 因为()****()()(*)x Jx x x Jx x ==,及X 的自反性得()**R J X =,因此对任意的****x X ∈,()*******(*)x x x x =,由此知1****J x x =,其中1:****J X X →为典型映射,且()1***R J X =,从而*X 是自反的.充分性. 设*X 自反,假设X 不是自反的,即0()J X X =为**X 的真闭子空间(因为J 是X 到0X 上的等距同构映射,且X 完备),由Hann —Banach 定理,存在0******x X ∈,满足0***1x =,且()**x J X ∀∈,()0*****0x x =. 因为()1****J X X =,故存在*0*x X ∈,使得********001001,()x x J x x ===,********001001,()x x J x x ===,因而对任意的****x X ∈,()****00(**)**x x x x =,但()()*****000()0,x x x x Jx x X ===∀∈,因此*0*x X θ=∈,这与*01x =矛盾,从而设X 是自反的. 20. 设X 是一致凸赋范空间,()0,1,2,n x x X n ∈= . 证明如果()0Wn x x n −−→→∞且()0n x x n →→∞,则()0n x x n →→∞.证明:不妨设00,n x x θ≠≠,用反证法. 为简单起见,设01n x x ==,且n x 不按范数收敛于0,那么可设00ε∃>,使得00n x x ε-≥,由空间的一致凸性,0δ∃>,使得02n x x δ+≤-. 由于0Wn x x −−→,故*f X ∀∈,且1f =有()()0n f x f x →,从而有()()002n f x x f x +→. 由于()002n n f x x f x x δ+≤+≤-及()()0001112sup sup lim22n n f fx f x f x x δ→∞==-==+≤知01x <,这与01x =矛盾,从而必有()0n x x n →→∞.22. 证明空间(1)pl p <<∞上的有界线性泛函的一般形式为()1k kk f x αξ∞==∑,其中{}pk x l ξ=∈,{}111qk y l p q α⎛⎫=∈+= ⎪⎝⎭并且11q k k f q α∞=⎛⎫= ⎪⎝⎭∑,()*p q l l =.证明:令()0,,0,1,0,n e = ,显然()12,,,,pn x l ξξξ∀=∈ ,有1i ii x eξ∞==∑. 设()1i i i f x ξη∞==∑,其中()12,,,,qn y l ηηη=∈ ,则由Hölder 不等式,我们可以得到 ()11111qpqpi i i i i i i f x y x ξηηξ∞∞∞===⎛⎫⎛⎫=≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑,从而可知()*pf l ∈,且f y ≤.反之,对任一()*p f l ∈,()()1,2,i i f e i η== ,()12,,,,n y ηηη= ,下证q y l ∈且()1i i i f x ξη∞==∑及f y =. 事实上,令11sgn nq p n ii i i x e l ηη-==∈∑,则()()111sgn nnq qn ii i i n i i f x f e f x ηηη-====≤∑∑. 由于()11111nnppp q q n ii i i x ηη-==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑,因此()111,2,nqq i i fn η=⎛⎫≤= ⎪⎝⎭∑ ,令n →∞得11nqq i i y fη=⎛⎫=≤ ⎪⎝⎭∑,令(),:*p q Tf y T l l =→,则y T f f =≤,从而y T f f ==. 又显然T 是线性算子,且为满射,故为()*p l 到q l 上的等距同构映射,从而()*p q l l =.习题四1. 设12,,,,n H H H 是一列内积空间,令{}21:,.n n n nn H x x H x ∞=⎧⎫=∈<∞⎨⎬⎩⎭∑对于{}{},n n x y H ∈,定义{}{}{}(,)n n n n x y x y αβαβαβ+=+∈k ,{}{}(),n n x y ()1,n n n x y ∞==∑.证明H 是内积空间,并且当每一个n H 都是Hilbert 空间时,H 是Hilbert 空间. 证明:先证H 是内积空间. 因为()()11222211111,,n n n n n n n n n n n n n x y x y x y x y ∞∞∞∞∞=====⎛⎫⎛⎫≤≤≤<∞ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑,故定义{}{}(),nnx y ()1,nnn x y ∞==∑是有意义的. 又由{}{}{}()()()(){}{}(){}{}()111,,,,,,nnnnn n n n n n n n n n n n n x y z xy z x z y z x z y z αβαβαβαβ∞∞∞===+=+=+=+∑∑∑及{}{}()()()(){}{}()111,,,,,nnnnnnnnnnn n n x y x y y x y x y x ∞∞∞=======∑∑∑,而且{}{}()()1,,0nnnnn x x x x ∞==≥∑及{}{}()()(),0,01,2,n n n n x x x x n =⇔==⇔(){}1,2,n n x n x θθ==⇔= ,由内积定义可知H 是内积空间.再证H 是完备的. 设{}()1i i x ∞=是H 中的Cauchy 列,其中()()()()()12,,,,i i i i n x x x x = .由定义00,i ε∀>∃,使得当0,i j i >时,有()()i j x x ε-<,即122()()1i jn nn x x ε∞=⎛⎫-< ⎪⎝⎭∑,于是()()i j n n x x ε-<,所以{}()1i n n x ∞=是n H 中的Cauchy 列(n 固定),设()(0)i n n x x →,并令()(0)(0)(0)12,,,,n x x x x = ,由前证122()()1i j n n n x x ε∞=⎛⎫-< ⎪⎝⎭∑,0,i j i ∀>,故对固定的k 使得2()()21ki j n nn x x ε=-<∑. 令j →∞,则2()(0)21ki n nn x x ε=-≤∑,再令k →∞,就有2()(0)21i n nn x x ε∞=-≤<∞∑,即()i x x H -∈. 因为H 是线性空间,于是有()()()i i x x x x H =--∈,故点列()()1,2,i x i = 按H 中范数收敛于x ,于是H 是完备的,即是Hilbert 空间.2. 设H 是Hilbert 空间,M 是H 的闭子空间. 证明M 是H 上某个非零连续线性泛函的零空间,当且仅当M ⊥是一维子空间.证明:必要性. 若M 是H 上某个非零连续线性泛函的零空间,由Riesz 表示定理知存在f y H ∈,使得()(),,f f x x y x H =∀∈,于是()(){}{}:,0,f f f M x f x x y y H y ⊥===∈=,由本节题4知.{}(){}span f f M y y ⊥⊥⊥==是一维子空间.充分性. 若M ⊥是非零元y 生成的一维子空间,,x H ∀∈令()(),f x x y =,则显然有()0f x x y =⇔⊥,即()x M M ⊥⊥∈=,所以M 是非零连续线性泛函f 的零空间.4. 设M 是Hilbert 空间H 上的非空子集,证明()M ⊥⊥是包含M 的最小闭子空间.证明:记span Y M =,则Y 是包含M 的最小闭子空间,故只需证()M Y ⊥⊥=.事实上,x Y ∀∈,有s p a n n x M ∈,使得n x x →. y M ⊥∀∈有()(),lim ,0n n x y x y →∞==,故()x M ⊥⊥∈,即有()Y M ⊥⊥⊂. 又因为Y 是闭子空间,故有()Y Y ⊥⊥=(证明见指南P63例5). 于是由M Y ⊂可得Y M ⊥⊥⊂,进而可得()()M Y Y ⊥⊥⊥⊥⊂=,所以可得()span M Y M ⊥⊥==.5. 设H 是内积空间,M 是H 的线性子空间. 证明如果对于每一个x H ∈,它在M 上的正交投影存在,则M 必是闭子空间.证明:x M ∀∈,存在{}n x M ⊂,使得lim n n x x →∞=. 由条件0101,,x x x x M x M ⊥=+∈∈, 于是001n x x x x x M ⊥-→-=∈. 注意到0n x x M -∈,故有()()1101,lim ,0n n x x x x x →∞=-=即1x θ=,从而0x x M =∈,从而M 是闭子空间.6. 证明在可分内积空间中,任一标准正交系最多为一可数集.证明:设H 为可分的内积空间,{}1n n x ∞=为H 的可数稠密子集,又设{}:e λλ∈Λ为H 中任意一簇标准正交系,则,n x λ∀∈Λ∃,使得2n x e λ-<. 若Λ不可数,则必有{}1k n n x x ∞=∈以及,','λλλλ∈Λ≠,使得',22k k x e x e λλ-<-<,于是''k k e e x e x e λλλλ-≤-+-<但由勾股定理,有222''2e e e e λλλλ-=+=,即'e e λλ-=H 中的任一标准正交系最多为可数集. 7. 设{}e I αα∈是内积空间H 中的标准正交系. 证明对于每一个x H ∈,x 关于这个标准正交系的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.证明:记{}:F e I αα=∈,由Bessel 不等式, x X ∀∈,若取n 个F 中元素e λ排成一列,不妨设为12,,,n e e e ,则有()221,ni i x e x =≤∑,于是在F 中使(),x e λ≥得e λ只能为有限个,记():,,n F e x e λλλ⎧=∈Λ≥⎨⎩及1ˆnn F F ∞== . 显然ˆF 为可数集,且当ˆe F F λ∈-时,(),0x e λ=,即x 的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.8. 设H 为Hilbert 空间,()0,1,2,n x x H n ∈= .当n →∞时,0Wn x x −−→,且0n x x →,证明()0n x x n →→∞.证明:由()()()()()2,,,,,n n n n n n n x x x x x x x x x x x x x x -=--=--+,故当n →∞时,()2222,0n x x x x x -→-=,即()0n x x n →→∞.11. 设T 是Hilbert 空间H 上的线性算子且对所有,x y H ∈,()(),,Tx y x Ty =.证明T 是有界算子.证明:只需证明T 是H 上的闭线性算子. 设n x H ∈,且满足00,n n x x Tx y →→,则y H ∀∈,由条件()(),,n n Tx y x Ty =. 令n →∞,则有()()()000,,,y y x Ty Tx y ==,故00y Tx =,即T 是闭线性算子,从而由闭图像定理可知T 有界.13. 设H 是Hilbert 空间,(),x y ϕ是定义在H H ⨯上的泛函且关于x 是线性的,关于y 是共轭线性的并且存在常数C ,使得()(),,x y C x y x y H ϕ≤∈.证明:存在惟一算子()A B H ∈,使得对所有,x y H ∈,()(),,x y Ax y ϕ=且A ϕ=,其中()11sup ,x y x y ϕϕ===.证明:因(),x y ϕ关于y 是共轭线性的,故(),x y ϕ关于y 是线性的,固定x H ∈,则(),x y ϕ为H 上的有界线性泛函,由Riesz 表示定理,存在惟一*x H ∈,使得()(),,*x y y x ϕ=,即()(),*,x y x y ϕ=. 作映射:*A x x ,有()()(),*,,x y x y Ax y ϕ==由于()()()()()()()()1212121212,,,,,,,A x x y x x y x y x y Ax y Ax y Ax Ax y αβϕαβαϕβϕαβαβ+=+=+=+=+,即()1212A x x Ax Ax αβαβ+=+又因为()()2,,Ax Ax Ax x Ax x y ϕϕ==≤,即A ϕ≤,所以()A B H ∈.再由Schwartz 不等式,有()(),,x y Ax y Ax y A x y ϕ=≤≤,故A ϕ≤,于是 A ϕ=. 若设()T B H ∈,且满足()(),,x y Tx y ϕ=,则()(),,,,A xy T x y xy H =∀∈,即()(),0,,A T x y x y H -=∀∈. 特别地,令()y A T x =-,得()20A T x -=,因此(),A T x x H θ-=∀∈,故0A T -=,所以A T =.14. 设{}n T 是Hilbert 空间H 上的有界自共轭算子列且()0n T T n -→→∞. 证明T 也是自共轭的.证明:由()()***0n n n T T T T T T n -=-=-→→∞,即可得**n T T →,由n T 的自共轭性即可得T 也是自共轭的.2011年博士研究生第二次公开招考报考须知发布时间:2011-02-24 08:37 来源:本站点击量:303一、报名2011博士研究生第二次公开招考网上报名时间:2011年3月4日-13日,网址:/hityzb/zs.jsp?cla=2。
虽然二者有联系,但实际上是两个相对独立的问题,要分开回答。
这里提供的只是解决方案,所有的方法都用上了还是不收敛得情况也是有的。
首先要分清scf不收敛和几何构型优化不收敛:scf不收敛指的是自洽场叠代不收敛(什么?没听说过什么叫自洽场?那还是回去学习些量化基础知识再开展计算吧!),可以认为是对指定结构的波函数不断优化的过程,是为了找到这个某个指定结构下能量最低的波函数,而几何构型优化是对结构的优化的过程,是为了找到某个指定的组分下能量极小结构(注意,不一定是能量最小结构)。
在量子化学计算的几何构型优化中,每一步的几何构型优化都包含的很多次的scf计算。
1、scf不收敛的解决方案。
(1) 可以加大scf的循环次数,默认的循环次数是128次,通过scf=(maxcycle=n)来设置最大循环次数n。
建议不要超过512,更多的循换没有必要。
(2) 如果加大循环次数不管用,在分子有对称性的情况下,使用scf=dsymm关键词来强制密度对称,有时可以收敛。
另外,此关键词很多时候对"scf is confused”这种错误很管用。
(3) 使用scf=symm关键词,使用的前提同上,有时可以收敛。
(4) 如果(2)(3)两步都不行,可以将对称的分子中的某几个原子的位置微调,使分子丧失对称性。
这等效于nosymm关键词,但个人经验,这种方式比nosymm好用的多。
(5) 如果还不行,只能拿出杀手锏了,就是使用qc,但不建议直接使用,而是使用xqc关键词,比如scf=(maxcycle=80,xqc),意思是如果scf正常计算(dc)在80个循环之内不收敛才进行昂贵的qc计算,因为scf不收敛多数在几个优化的过程中出现,无法判断哪一步优化的时候会出现scf不收敛,所以用xqc比纯粹使用qc要省时的多。
(6) 中级用户可以在输入文件的井号“#”开头那一行井号后面加上字母"p"来输出更多的信息,其中就有自洽场叠代的信息,分析原因可能会对采用什么方法提供指导。
cma-es和粒子群算法-回复"CMA-ES and Particle Swarm Optimization: A Comparative Study"Introduction:In the field of optimization, different algorithms have been devised to solve complex problems efficiently. Two such algorithms are Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Particle Swarm Optimization (PSO). Both algorithms are widely used in various domains due to their ability to find near-optimal solutions. In this article, we will explore the key concepts and working principles of CMA-ES and PSO, followed by a comparative analysis of their strengths and weaknesses.CMA-ES:CMA-ES is an evolutionary algorithm that utilizes a strategy called Covariance Matrix Adaptation to optimize the objective function. The main idea behind CMA-ES is to estimate the covariance matrix of a multivariate Gaussian distribution, which models the parameter search space. The algorithm maintains a population of candidate solutions that evolve over generations. At each iteration,CMA-ES updates the distribution mean and covariance matrix based on the successful candidates.The core steps of CMA-ES can be summarized as follows:1. Initialization: Select an initial mean vector and covariance matrix.2. Generating offspring: Sample candidate solutions from the estimated distribution.3. Evaluating fitness: Evaluate the fitness of each candidate solution.4. Updating distribution: Update the mean and covariance matrix using the fitness information.5. Termination condition: Repeat steps 2-4 until the termination condition is met.CMA-ES is particularly suitable for continuous optimization problems with a large number of variables. It adapts the search distribution over generations, enabling efficient exploration and exploitation of the search space. However, CMA-ES may struggle with optimization problems that contain deceptive landscapes or multiple local optima.Particle Swarm Optimization:PSO is a population-based optimization algorithm inspired by the social behavior of bird flocking or fish schooling. In PSO, a group of particles moves through the search space in search of the optimal solution. Each particle maintains its current position and velocity and updates them based on its own experience and the experiences of its neighboring particles.The key steps of PSO can be summarized as follows:1. Initialization: Select an initial position and velocity for each particle.2. Evaluating fitness: Evaluate the fitness of each particle.3. Updating velocity and position: Update the velocity and position of each particle based on its own experience and the global best position found so far.4. Termination condition: Repeat steps 2-3 until the termination condition is met.PSO is well-suited for both continuous and discrete optimization problems. It has been widely used in various domains due to itssimplicity and ease of implementation. However, PSO may suffer from premature convergence, especially in high-dimensional search spaces with complex landscapes.Comparative Analysis:Both CMA-ES and PSO have their strengths and weaknesses, and their performance can vary depending on the optimization problem at hand.CMA-ES excels in high-dimensional continuous optimization problems where the objective function is non-linear andnon-convex. Its ability to adapt the search distribution over generations enables efficient exploration and exploitation. However, CMA-ES may struggle with optimization problems that contain deceptive landscapes or multiple local optima. It also requires a considerable number of function evaluations to converge to the optimal solution.On the other hand, PSO is particularly suitable for optimization problems with a large number of variables, both continuous and discrete. Its population-based approach allows for globalexploration of the search space, which can be beneficial in finding the global optimum. However, PSO may suffer from premature convergence, especially in high-dimensional search spaces with complex landscapes. It also requires fine-tuning of several parameters to achieve optimal performance.Conclusion:In conclusion, both CMA-ES and PSO are powerful optimization algorithms that have been widely used in various domains. CMA-ES is well-suited for high-dimensional continuous optimization problems, while PSO is suitable for both continuous and discrete optimization problems. The choice between the two algorithms depends on the specific characteristics of the optimization problem and the trade-off between exploration and exploitation. Researchers and practitioners should consider the strengths and weaknesses of each algorithm when choosing the most appropriate one for their problem. Additionally, hybrid approaches that combine the strengths of CMA-ES and PSO may provide even better optimization capabilities.。
低秩张量补全算法综述刘慧梅;史加荣【摘要】随着现代信息技术的快速发展,待分析的数据大都具有很复杂的结构。
在获取高维多线性数据的过程中,部分元素可能丢失,低秩张量补全就是根据数据集的低秩性质来恢复出所有丢失元素。
低秩张量补全是压缩感知理论的高阶推广,在数学上可以描述为核范数最小化问题。
对求解低秩张量补全的核范数最小化模型的现有算法进行了综述。
介绍了张量的基础知识和低秩张量补全模型,给出了低秩张量补全的几种主流算法,如:简单低秩张量补全、高精度低秩张量补全以及核心张量核范数的张量补全等,指出了现有低秩张量补全算法中值得研究与改进的方向。
【期刊名称】《陕西理工学院学报(自然科学版)》【年(卷),期】2016(032)002【总页数】7页(P80-86)【关键词】张量补全;低秩;核范数最小化;核心张量核范数;交替方向乘子法【作者】刘慧梅;史加荣【作者单位】西安建筑科技大学理学院,陕西西安710055;西安建筑科技大学理学院,陕西西安710055【正文语种】中文【中图分类】基础科学2016 年 4 月陕西理工学院学报( 自然科学版)Apr. 2016第 32 卷第 2 期Journal of Shaanxi University of Technology ( Natural ScienceEdition)Vol. 32 No. 2[文章编号] 1673 -2944( 2016) 02 - 0080 - 07低秩张量补全算法综述刘慧梅,史加荣(西安建筑科技大学理学院,陕西西安 710055)[摘要]随着现代信息技术的快速发展,待分析的数据大都具有很复杂的结构。
在获取高维多线性数据的过程中,部分元素可能丢失,低秩张量补全就是根据数据集的低秩性质来恢复出所有丢失元素。
低秩张量补全是压缩感知理论的高阶推广,在数学上可以描述为核范数最小化问题。
对求解低秩张量补全的核范数最小化模型的现有算法进行了综述。
介绍了张量的基础知识和低秩张量补全模型,给出了低秩张量补全的几种主流算法,如: 简单低秩张量补全、高精度低秩张量补全以及核心张量核范数的张量补全等,指出了现有低秩张量补全算法中值得研究与改进的方向。
课程号:20100440 课程名:泛函分析课程英文名:Functional Analysis学时:68 学分:4先修课程:实变函数、高等代数基本面向:数学学院教材:《泛函分析》江泽坚、孙善利编高等教育出版社1998 一版参考书:1.《实变函数与泛函分析》(下册)夏道行等等教育出版社1984 一版2.《实变函数与泛函分析》(下册)曹广福、严从荃编人民教育出版社第2版3. W.Rudin,Functional Analysis,McGraw_HillBook Company,1973课程简介:线性赋范空间,Banach空间,Hilbert空间(包括有界,紧集,列紧集,完全有界集等)。
Banach 空间上有界线性算子(包括算子范数,有界性,连续性,Hahn-Banach定理,闭图象定理,逆算子定理,谱理论,紧算子Riesz-Schauder理论等)Hilbert 空间上的有界线性算子(射影定理、Riesz表示定理)。
课程号:20100640 课程名:概率统计课程英文名Probability and Statistics学时:68 学分:4先修课程:数学分析、线性代数基本面向:数学学院各专业教材:《概率论基础》(第二版)李贤平高等教育出版社1997参考书:1.《概率论》(第一册概率论基础)复旦大学高等教育出版社,1979。
2.《概率论引论》汪仁官北京大学出版社19943.《概率论及数理统计》(第二版)(上)梁之舜等高等教育出版社1988课程简介:事件与概率,条件概率与统计独立性,随机变量与分布函数,数字特征与特征函数,极限定理。
课程号:20100850 课程名:高等代数-1课程英文名:Advanced Algebra-1学时:102 学分:5先修课程:高中数学基本面向:数学数院各专业教材:《Advanced Algebra》彭国华、李德琅高等教育出版社-Springer(计划2004年出版参考书:1。
《高等代数》北京大学数学系几何代数教研空编高等教育出版社2.《高等代数》张禾瑞、郝锅新高等教育出版社3.《Linear Slgebra》B。
数学与统计学院硕士研究生课程内容简介学科基础课-------------------- 泛函分析--------------------课程编号:1 课程类别:学科基础课课程名称:泛函分析英文译名:Functional Analysis学时:60学时学分:3学分开课学期:1 开课形式:课堂讲授考核形式:闭卷考试适用学科:基础数学、应用数学、运筹与控制论、课程与教学论授课单位及教师梯队:数学与统计学院,基础数学系教师。
内容简介:本课程介绍紧算子与Fredholm算子、抽象函数简介、Banach代数的基本知识、C*代数、Hilbert 空间上的正常算子、无界正常算子的谱分解、自伴扩张、无界算子序列的收敛性、算子半群、抽象空间常微分方程。
主要教材:张恭庆、郭懋正:《泛函分析讲义》(下册),北京大学出版社,1990年版。
参考书目(文献):1.定光桂:《巴拿赫空间引论》,科学出版社,1984年版。
2.M. Reed, B. Simon, Methods of Modern Mathematical Physics I, Functional Analysis, 1972.3.K. Yosida, Functional Analysis, Sixth Edition, 1980.4.张恭庆、林源渠:《泛函分析讲义》(上册),北京大学出版社,1987。
5.V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, 1976.6.A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, 1983.-------------------- 非线性泛函分析--------------------课程编号:2 课程类别:学科基础课课程名称:非线性泛函分析英文译名:Nonlinear Functional Analysis学时:60学时学分:3学分开课学期:2 开课形式:课堂讲授考核形式:闭卷考试适用学科:应用数学、基础数学、运筹学与控制论授课单位及教师梯队:数学与统计学院,应用数学系教师。