1-2板形基本概念
- 格式:pdf
- 大小:1.75 MB
- 文档页数:32
第一节 轧制变形基本原理1、金属的塑性变形与弹性变形1.1 影响金属热塑性变形的主要因素影响金属热塑性变形的因素,有金属本身内部因素和加热等外部条件。
1) 钢中存在碳及其他合金元素,使钢的高温组织,除有奥氏体外,还有其他过剩相。
这些过剩相降低钢的塑性。
钢中的杂质也是影响金属热塑性变形的内在因素,钢中的硫能使钢产生热脆。
2)影响热轧时塑性变形的外部条件有加热介质和加热工艺,对碳钢而言,当变形条件相同时,变形金属的化学成分及组织结构不同,温度对塑性的影响也不同,如图1-2-1。
图中I 、II 、III 、IV 表示塑性降低区域(凹谷);1、2、3表示塑性增高区域(凸峰)。
I 区中钢的塑性很低;II 区(200-400℃)——“蓝脆”区中,钢的强度高而塑性低;III 区(850-950℃)——相变温度区又称“热脆”区,钢通常一个相塑性好,另一个相塑性较差;IV 区接近于钢的熔化温度,钢在该区加热时易发生过热或过烧,这时钢塑性最低。
所以,碳素钢热加工时的最有利的温度范围是1000-1250℃。
对合金钢而言,加热介质尤为重要。
镍含量达2-3%以上的合金钢,在含硫气氛中加热时,硫会扩散到金属中,并在晶界上形成低熔点的Ni 3S 2化合物,因而降低了金属的塑性。
含铜超过0.6%的钢,有时甚至是含铜0.2-0.3%的钢,如在强氧化气氛中较长时间的高温加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富铜合金,这层合金在1100℃时熔化并侵蚀钢的表面层,使钢在热轧加工时开裂。
3)热轧温度选择不合适,也会给金属带来不良的影响。
当终轧温度过高时,往往会造成金属的晶粒粗大;若终轧温度过低时,又会造成晶粒沿加工方向伸长的组织,并有一定的加工硬化。
在这两种情况下,金属的性能都会变坏。
所以,合理控制金属的热轧温度范围,对获得所需要的金属组织和性能,具有重要意义。
1.2 金属的弹性变形金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说未超过金属本身弹性极限的变形叫金属的弹性变形。
基本形的概念
基本形,这一概念在空间构成和事物形态描述中都扮演着重要的角色。
它既可以是构成空间图形的基本单位,也可以用来描述事物最基本的形态或形状。
在构成空间图形的基本单位这一含义上,基本形是由点、线、面组成的。
一个面都可以作为基本形,而基本形之间的统一与协调决定了空间图形的整体特征。
许多构成种类都是由基本形的丰富变化而形成的。
为了保持构成变化的秩序和规律,基本形以简单的形态为好。
在单位元素的群集化过程中,数的组合形式需要有一定的规律,以使构成变化不杂乱。
基本形是一个相对而言的概念,在描述事物最基本的形态或形状这一含义上,不同事物的基本形可以有所不同。
例如,在几何学中,基本形可以指代圆、正方形、三角形等;在生物学中,基本形可以指代鸟类的翅膀、鱼类的鳞片等。
这些基本形都是一个事物最基本的外在特征,也是事物内在结构与功能的表现。
通过对基本形的深入了解和研究,我们可以更好地理解空间构成的规律和事物形
态的多样性。
基本形不仅在艺术设计、建筑设计等领域有着广泛的应用,而且在自然界和日常生活中也随处可见。
从微小的原子结构到浩瀚的宇宙星辰,基本形都在各自的领域中发挥着重要的作用。
基本形是一个具有丰富内涵和外延的概念,它涉及到空间构成、形态描述等多个领域。
通过对基本形的深入研究和分析,我们可以更好地理解空间构成的规律和事物形态的多样性,进一步拓展我们的认知视野。
板形理论基础孙蓟泉北京科技大学板形研究的意义随着汽车、机械行业的发展,热轧带钢用户对热轧带钢的尺寸精度和组织性能提出了更高的要求;热轧板形直接影响冷轧板形质量;后步工序常要求有微小浪形,如罩式退火炉希望来料为微双边浪的板形状态,而有些厂家的连续退火希望对应微中浪的应力状态;板形影响到镀锌层厚度的均匀性,为保证质量要求板形误差越小越好;从后续深加工上看,需要板形优良,如板形好坏影响板材的深冲性能等,如汽车板、家电板等。
带钢横截面轮廓楔形h e1-h e2中心凸度C h =h c -(h e1+h e2)/2 边部减薄h e1-h e3比例凸度C p =C h /h c *100%局部高点和局部低点h e1h e2h e4h e3h c板形及其度量板形所谓板形直观地说是指板材的翘曲程度;其实质是指带钢内部残余应力的分布。
板形不良:带钢中存在残余内应力称为板形不良。
潜在板形不良:带钢中存在残余内应力,但不足以引起带钢翘曲,称为潜在板形不良。
表观板形不良:带钢中存在残余内应力足够大,以致引起带钢翘曲,则称为表观的板形不良。
平直度热轧成品带钢平直度一般指边浪和中浪,并以二次浪为主要控制指标,对于宽度大而厚度很薄的情况才要适当考虑四次浪a-侧弯;b-中浪;c-边浪;d-小边浪;e-小中浪;f-小偏浪带钢的应力分布承载辊缝轧件残力应力 理论分布板形仪显示 应力分布生成浪形双侧边浪中浪四分之一浪边中复合浪单侧边浪+σ0 -σ-σ 0 +σ板形的度量板形度量的目的:定量地表示板形,既是生产中衡量板形质量的需要,也是研究板形问题和实现板形自动控制的前提条件。
因此,人们依据各自不同的研究角度及不同的板形控制思想,采取不同的方式定量地描述板形。
¾相对长度差表示法¾波形表示法¾张力差表示法¾带材断面形状的多项式表示法¾厚度相对变化量差表示法相对长度差表示的板形翘曲带钢(a)及其分割(b)R VaL VLΔLb这是一种比较简单的表示板形的方法,就是取横向上不同点的相对延伸差D L /L 来表示板形。
轧制原理1、基本原理和工艺1.1基本概念⑴轧制过程:轧制过程是靠旋转的轧辊与轧件之间形成的摩擦力将轧件拖近辊缝之间,并使之受到压缩产生塑性变形的过程。
轧制过程除了使轧件获得一定形状和尺寸外,还必须具有一定的性能。
⑵轧制变形区:①轧制变形区:在辊缝中的轧件承受轧制力作用发生变形的部分称为轧制变形区,通常也称为几何变形区。
②咬入角(α):是指轧件开始轧入轧辊时,轧件和轧辊最先接触的点和轧辊中心连线所构成的园心角。
Δh=D(1- cosα)式中:Δh—该道次的压下量,Δh=H–h。
D—轧辊工作直径。
③接触弧长度:轧件与轧辊相接触的园弧的水平投影长度称为接触弧长度。
④前滑:在轧制过程中,轧件出口速度Vh大于轧辊在该处的线速度V,即Vh与对应点的轧辊园周速度之差与轧辊园周速度之比称为前滑值,即V h -VS h = ×100%V式中:Sh—前滑值Vh—在轧辊出口处轧件的速度V —轧辊的园周速度⑤后滑:轧件进入轧辊的速度V H 小于轧辊在该点处线速度V 的水平分量 Vcos α的现象称为后滑现象。
v cos α-v HS H = ×100% v cos αS H —后滑值。
v H —在轧辊入口处轧件的速度。
在前滑区和后滑区分界的中性面处轧件的水平速度与此处轧辊的水平速度相等,即V γ=Vcos γ。
⑶轧制变形的表示方法:①用绝对变形量表示:即用轧制前,后轧件绝对尺寸之差表示的变形量。
绝对压下是量为轧制前、后轧件厚度H 、h 之差,即△h=H-h ; 绝对延伸量为轧制前、后轧件长度L 、l 之差,即△l=L-l ;②用相对变形量表示,即用轧制前、后轧件尺寸的相对变化表示的变形量。
H-h相对压下量: ×100%H l-L相对延伸量: ×100%L③用变形系数表示:即用轧制前、后轧制尺寸的比值表示的变形程度。
压下系数:η=H/h 延伸系数:μ=l/L变形系数能够简单而正确地反映变形的大小,因而在轧制变形方面得到极为广泛的应用。