大数定律和中心极限定理例题与解析
- 格式:pptx
- 大小:445.49 KB
- 文档页数:14
第四章 大数定理与中心极限定理典型题解1.计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差相互独立且在)5.0,5.0(-上服从均匀分布,将1500个数相加,问误差总和的绝对值超过15的概率是多少?解 设第k 个加数的舍入误差为),1500,,2,1( =k X k 已k X 在)5.0,5.0(-上服从均匀分布,故知121)(,0)(==k k X D X E .记∑==15001k k X X ,由中心极限定理,当n 充分 时有近似公式)(}121150001500{x x X P Φ≈≤⨯-,于是{15}1{15}1{1515}11[1[21]2(1.342)2[10.9099]0.1802.P x P x P X P >=-≤=--≤≤=-≤≤≈-Φ-Φ=-Φ=Φ=-= 即误差总和的绝对值超过15的概率近似地为1802.0.2.有一批建筑房屋用的木柱,其中%80的长度不小于m 3,现在从这批木柱中地取100根,求其中至少有30根短于m 3的概率. 解 以X 记被抽取的100根木柱长度短于m 3的根数,则)2.0,100(~b X .于是由中心极限定理得{30}{30}()1(2.5)10.99380.0062.P X P X P ≥=≤<∞=≤<=Φ∞-Φ=-Φ=-= 3.将一枚硬币投掷49次,(I )求至多出现28次正面的概率;(II )求出现20-25次正面的概率.解 以X 表示49次投掷中出现正面的次数,则有)21,49(~b X . (I )由中心极限定理得8413.0)1()212149214928(}28{=Φ=⨯⨯⨯-Φ≈≤X P ; (II )由中心极限定理得112549204919{2025}()()770.55570.09850.4572.P X -⨯-⨯≤≤≈Φ-Φ=Φ-Φ-=-= 4.某厂有同号机器100台,且独立工作,在一段时间内每台正常工作的概率为8.0.求正常工作的机器超过85台的概率.解 设ξ为100台中正常工作的机器数,则)8.0,100(~B ξ,且16 ,80====ξξD npq E np .由中心极限定理可得所求概率为080808580{85}1{085}1{}4441[(1.25)(20)]0.1056.P P P ξξξ--->=-≤≤=-≤≤≈-Φ-Φ-= 5.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg ,标准差5kg .若用最大载重量5t 的汽车承运最多可以装多少箱才能保障不超载的概率大于0.977.解 设n 为每辆车所装的箱数,),,2,1(n i i =ε是装运的第i 箱的重量,且25,50==i i D E εε.n 箱的总重量 n εεεε+++= 21有n D n E 25,50==εε,由中心极限定理ε近似服从正态分布)25,50(n n N .现求使下面不等式成立的:n977.0)101000(}5505000550{}5000{>-Φ≈-≤-=≤nn n nn nP P εε 查正态分布表得 2101000>-n n,从而0199.98<n ,即最大可以装98箱.6.设一大批产品中一级品率为%10,现从中任取500件,这500件中一件级品的比例与%10之差的绝对值小于%2的概率.解 设ξ为所取500件中的一级品数,则)1.0,500(~B ξ且45 ,50==ξξD E由中心极限定理得{0.10.02}{5010}5002(1.49)10.8638.P P P ξξ-<=-<=<≈Φ-=7.设一袋味精的重量是随机变量,平均值100g,标准差2g .求100袋味精的重量超过10.05kg 的概率.解 设i i i 第)100,2,1( =ξ袋味精的重量,100袋的总重量10021ξξξξ+++= ,而4,100==i i D E ξξ,所以所求概率为{10050}1{010050}11[(2.5)(500)]10.993790.00621.P P P ξξ>=-≤≤=-≤≤≈-Φ-Φ-=-= 8.一本200页的书,每页上的错误数服从参数为0.1的泊松分布,求该书的错误数大于15个的概率.解 设ξ为该书的总错误数,则20=ξE ,20=ξD ,于是所求概率为{15}1{015}11[( 1.12)( 4.47)]0.8686.P P P ξξ>=-≤≤=-≤≤=-Φ--Φ-=9.某射手打靶,得10分,9分,8分,7分,6分的概率分别为0.5,0.3,0.1,0.05,0.05.现射击100次,求总分多于880分的概率.解 设ξ为100次射击的总分数,依题意,915,122.75E D ξξ==.根据中心极限定理得{880}1{0915}11( 3.16)0.9992.P P P ξξ>=-≤≤=-≤≤≈-Φ-=10.一生产过程的次品率为12%,随机地自这一生产过程生产的产品中取出120只,求次品不多余15只的概率.解 以120~(120,0.12)X X B 记只产品中的次品数,则.所需求的概率为{15}(0.17)0.5675.P X P ≤=≤≈Φ=11.某种难度很大的心脏手术成功率为0.9,对100个病人进行这种手术,以X 记手术成功的人数.求{8495}P X ≤≤.解 依题意有{8495}(1.67)(2)0.95250.977210.9297.P X ≤≤≈Φ-Φ=Φ-Φ-=+-=12.在一零件商店中,其结帐柜台替各顾客服务的时间(以分计)是相互独立的随机变量,均值为1.5,方差为1.求对100位顾客的总服务时间不多余2小时的概率.解 以(1,2,,100)i X i = 记对第i 位顾客的服务时间.按题设需求概率为1001001100 1.5{120}120150()(3)0.0013.10ii X P X P =-⨯≤=≤-≈Φ=Φ-=∑13.某种电子元件的寿命服从数学期望为2的指数分布,各元件的寿命相互独立,随机取100只元件,求这100只元件的寿命之和大于180的概率.解 设X 为100只元件的寿命之和,则()200,()400E X D X ==,则所求概率为{180)1{0180}11[(1)(10)]0.8413.P X P X >=-≤≤=-≤≤≈-Φ--Φ-=14.某工厂有200台同类型的机器,每台机的实际工作时间只占全部工作时间的75%,各台机器是否工作是相互独立的,求一时刻有144至160台机器正在工作的概率.解 设随机变量Y 表示任一时刻正在工作的机器的台数,则Y 服从二项分布(200,0.75)B .所以所求概率为{144160}(1.63)(0.98)0.7849.P Y ≤≤≈Φ-Φ=Φ-Φ-=15.在次品率为16的一大批产品中,任意抽取300件产品,利用中心极限定理计算抽取的产品中次品书在40~60之间的概率.解 设X 为300件产品中次品的件数,依题意知1250~(300,),()50,()66X B E X D X ==, 利用中心极限定理得(4060)(1.55)( 1.55)2(1.55)10.8788.P X P <<=<<≈Φ-Φ-=Φ-=。
第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。