§3—2铁碳合金的基本组织与性能
- 格式:doc
- 大小:356.50 KB
- 文档页数:4
第二章 铁碳合金 第一节 铁碳合金的基本组织*什么叫组织? 表示晶体的种类、大小、分布状况。
可以由一个相或多个相组成一.纯铁的晶体结构及其结晶1.(简)同素异晶体:同种元素组成的具有不同晶体结构的晶体,如石墨是金刚石的同素异晶体;α-Fe 与γ-Fe2.(简)纯铁的同素异晶转变α-Feγ-Fe3.重结晶固态下的结晶与液态到固态的结晶的异同...........(以铁为例)同:都属于结晶过程,都有“形核——长大”的过程、“过冷”等现象。
异:在固态下结晶时应力不能及时释放,产生应力。
因此把这种结晶称作:重结晶钢铁材料的种类较多,掌握其性能不太容易。
但这些材料的性能是由其组织决定的。
二.铁碳合金的五种基本组织及其性质1.铁素体温(F ) 形成:碳溶入α-Fe特点:塑性、韧性好,强度、硬度低 δ:30~50%σb :180~280MPa 。
HBS :50~80,很软。
小刀刻划例:08钢,F 含量90%,估计其塑性、韧性2.奥氏体(A ) 形成:碳溶入γ-Fe特点:常温下:塑性和韧性好,具有一定的强度和硬度。
δ:40~50% σb : HBS :170~220高温下(800o C 以上):塑性极好,强度极低。
应用:锻压。
“趁热打铁” 3.渗碳体(Fe 3C )形成:铁与碳生成的化合物 特点:硬而脆、塑性极差 作用:?(双重) 4.珠光体(P )形成:Fe 3C 与F 片状交分布形成的层状结构。
(示意图) 特点:强度、硬度较高。
塑性和韧性不高。
δ:20~30% σb :770MPaHBS :1805.莱氏体(Ld )形成:由A 与Fe 3C 组成 特点:类似于渗碳体根据钢的组织比较性能:10钢(F 多87%+P )与45钢(F 少42%+P ) 10钢(F 多87%+P )与20钢(F 中等74%+P ) 45钢(F+P )与T10A 钢(P+Fe 3C )第二节 铁碳相图如何才能知道钢中某种组织的含量?一.基本概念 1.相图的作用了解合金的组织指导热加工和选材例:仪表、汽车的外壳 选塑性好的材料 F 含量多的钢。
§3-2铁碳合金的基本组织和性能钢和铁是工业上应用最广泛的金属材料,它们都是铁碳合金。
不同成分的钢和铸铁的组织都不相同,因此,它们的性能和应用也不一样。
铁碳合金中碳原子和铁原子可以有几种不同的结合方式:一种是碳溶于铁中形成固溶体;另一种是碳和铁化合形成化合物;此外,还可以形成由固溶体和化合物组成的混合物。
一、铁素体(F)它是碳溶解于α-Fe中的间隙固溶体称为铁素体(简称α固溶体)。
通常用符号F表示。
晶体结构呈体心立方晶格,碳在α铁中的溶解度极小,随温度的升高略有增加,在室温时的溶解度仅有0.008%,在727℃时最大溶解度为0.0218%。
铁素体的性能几乎与纯铁相同,它的强度和硬度较低,σb=250MPa,HBS=80,塑性和韧性则很高,δ= 50%。
二、奥氏体(A)碳溶解于γ-Fe中的间隙固溶体称为奥氏体(简称γ固溶体),通常用符号A表示。
晶体结构呈面心立方晶格。
由于γ铁晶格中间隙较大,因此在727℃时能溶解0.77%碳,在1148℃时的最大溶解度达到2.11%,奥氏体存在于727℃以上的高温区间,具有一定的强度和硬度,以及很好的塑性,是绝大多数钢在高温进行锻造或轧制时所要求的组织。
三、渗碳体(Fe3C)它是铁与碳形成的金属化合物Fe3C,含碳量为6.69%,其晶胞是八面体,晶格构造十分复杂。
渗碳体的性能很硬很脆,HBW≈800,δ≈0。
渗碳体在钢中主要起强化作用,随着钢中含碳量的增加,渗碳体的数量增多,钢的强度和硬度提高,而塑性下降。
四、珠光体(P)珠光体是由铁素体和渗碳体组成的机械混合物,用符号P表示,它是由硬的渗碳体片和软的铁素体片层片相间,交错排列而成的组织。
所以其性能介于它们二者之间,强度较高,σb=750MPa ,HBS=180,同时保持着良好的塑性和韧性δ=(20~25)%。
五、莱氏体(L d)奥氏体与渗碳体的机械混合物称为莱氏体,用符号Ld表示。
它是C=4.3%的铁碳合金液体在1148℃发生共晶转变的产物。
金属材料与热处理(第七版)习题册参考答案绪论一、填空题1. 石器青铜器铁器水泥钢铁硅新材料2.材料能源信息3. 40 5% 金属材料4.金属材料的基本知识金属的性能金属学基础知识热处理的基本知识金属材料及其应用5.成分热处理用途二、选择题1.A2.B3.C三、思考与练习1.答:为了能够正确地认识和使用金属材料,合理地确定不同金属材料的加工方法,充分发挥它们的潜力,就必须熟悉金属材料的牌号,了解它们的性能和变化规律。
为此,需要比较深入地去学习和了解有关金属材料的知识。
2.答:3. 答:要弄清楚重要的概念和基本理论,按照材料的成分和热处理决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和试验等教学环节,是完全可以学好这门课程的。
第一章金属的结构与结晶§1—1 金属的晶体结构1.非晶体晶体晶体2.体心立方面心立方密排六方体心立方面心立方密排六方3.晶体缺陷点缺陷线缺陷面缺陷二、判断题1.√ 2.√ 3.×4.×三、选择题1.A 2.C 3.C四、名词解释1.答:晶格是假想的反映原子排列规律的空间格架;晶胞是能够完整地反映晶体晶格特征的最小几何单元。
2.答:只由一个晶粒组成的晶体称为单晶体;由很多大小、外形和晶格排列方向均不相同的晶粒所组成的晶体称为多晶体。
五、思考与练习答:三种常见的金属晶格的晶胞名称分别为:(体心立方晶格)(面心立方晶格)(密排六方晶格)§1—2 纯金属的结晶一、填空题1.液体状态固体状态2.过冷度3.冷却速度冷却速度低4.形核长大5.强度硬度塑性二、判断题1.×2.×3.×4.√ 5.√6.√1.CBA 2.B 3.A 4.A四、名词解释1.答:结晶指金属从高温液体状态冷却凝固为原子有序排列的固体状态的过程。
在结晶的过程中放出的热量称为结晶潜热。
2.答:在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象称为金属的同素异构转变。
第二章铁碳合金§2-1 铁碳合金的基本组织一、【纯铁的同素异构转变】:固态金属随温度变化而发生晶格改变的现象,称为同素异构转变。
纯铁即具有同素异构转变的特征,如图所示:同素异构转变是纯铁的一个重要特性,以铁为基的铁碳合金之所以能通过热处理显著改变其性能,就是由于铁具有同素异构转变的特性。
金属的同素异构转变过程与液态金属的结晶过程相似,实质上它是一个重要结晶过程。
因此,它同样遵循着结晶的一般规律:有一定的转变温度;转变时需要过冷;有潜热产生;转变过程也括晶核的形成和晶核的长大两阶段。
二、铁碳合金的基本组织【铁碳合金的(基本组织)相】:铁素体、奥氏体、渗碳体均是铁碳合金的基本相。
1、【铁素体Ferrite(F)】:碳溶于α铁中的间隙固溶体称为铁素体,用符号F或α表示。
它仍保持α铁的体心立方晶格;在727℃时的最大溶碳量为Wc=0.0218%,在600℃是溶碳量约为Wc=0.0057%,室温下几乎为零Wc=0.0008%。
其室温性能几乎和纯铁相同,铁素体的强度、硬度不高(σb=180-280MPa,50-80HBS),但具有良好的塑性和韧性(δ=30%-50%,Akv=128-160J)。
所以以铁素体为基体的铁碳合金适于塑性成形加工。
2、【奥氏体Austenite(A)】:碳溶于γ铁中的间隙固溶体称为奥氏体,用符号A或γ表示。
它仍保持γ铁的面心立方晶格。
在727℃时的溶碳量为Wc=0.77%,到1148℃是时达到最大Wc=2.11%。
奥氏体的力学性能与其溶碳量及晶粒大小有关,一般奥氏体的强度、硬度为(σb 约为400MPa,160-200HBS),但具有良好的塑性和韧性(δ=40%-50%),无磁性。
因为奥氏体的硬度较低而塑性较高,易于锻压成型。
3、【渗碳体Cementite】渗碳体具有复杂晶格的间隙化合物,分子式为Fe3C,其Wc=6.69%,是钢和铸铁中常用的固相。
熔点约为1227℃,渗碳全硬度很高(950-1050HV),而塑性与韧性几乎为零,脆性很大。