(完整版)双相不锈钢焊接知识
- 格式:ppt
- 大小:7.27 MB
- 文档页数:62
双相不锈钢焊接工艺要点
双相不锈钢是一种具有很高的耐腐蚀及耐热性能的材料,所以在
工业领域中得到了广泛应用。
焊接是双相不锈钢的常见加工方法之一,下面介绍几个双相不锈钢焊接工艺的要点。
1. 焊接前的预处理:在双相不锈钢板材或管道上进行焊接前,
必须进行严格的加热处理。
预处理温度一般在1000℃以上,时间要根
据板厚、孔径大小、管子长度等因素来确定。
2. 焊接设备:在进行双相不锈钢焊接时,需要使用直流电弧焊
机和专门针对双相不锈钢的焊丝。
其焊丝的成分应该与基材成分一致,以保证焊接质量。
3. 焊接位置:焊接双相不锈钢时,大部分情况下采用横向焊接
的方式。
如果采用竖直位置焊接,需要加大电弧电流和电弧长度,以
保证焊接质量。
4. 焊接工艺:推荐采用氩弧焊接法进行双相不锈钢的焊接,其
中采用保护气体是关键。
氩气压力一般在0.2~0.4MPa之间,其流量大
小应该根据想要达到的焊接速度来调整。
综上所述,焊接双相不锈钢有以下几个要点:焊接前的预处理、
使用专门的设备和材料、适当选定焊接位置和采用氩弧焊接法。
只有
在严格遵守这些要点的前提下,才能够保证焊接质量以及双相不锈钢
的使用寿命。
双相不锈钢焊接工艺要点
双相不锈钢焊接工艺要点主要包括以下几点:
1. 选择合适的焊接方法:双相不锈钢可以采用氩弧焊、埋弧焊、激光焊等多种焊接方法,但是要根据具体情况选择合适的焊接方法。
2. 熟练掌握焊接技术:在焊接双相不锈钢时,需要对焊接技术有熟练的掌握,包括预热、加热、焊接速度、电流电压等焊接参数。
3. 保证焊接质量:焊接完毕后需要进行外观检查和力学性能检测,以保证焊接质量。
4. 选择合适的焊接材料:双相不锈钢的焊接材料要选择与基材相同或相近的焊接材料,以避免产生微观裂纹和变形等问题。
5. 焊接过程中保护焊缝:焊接过程中,需要采用适当的保护措施,以避免焊缝污染和氧化。
6. 焊接完毕后进行退火处理:焊接完毕后,需要进行退火处理,以消除残余应力,提高焊接质量和力学性能。
总体来说,双相不锈钢焊接过程中需要掌握一系列的工艺要点,以保证焊接质量和力学性能。
2205双相不锈钢的焊接不锈钢焊接易出现的缺陷:焊缝区的腐蚀:为防止其发生晶间腐蚀,首先要控制焊缝金属的化学成分。
主要是降低含碳量和添加足够的TI或NB;其次是控制焊缝隙的组织状态——即金相组织。
敏化区腐蚀:是指热影响区是峰值温度处于敏化温度区间内所发生的腐蚀。
刀状腐蚀:只出现在TI或NB类18-8的焊接接头中,并一定是发生器在紧邻焊缝过热区中。
焊接采取的措施:1.合理的选用焊材。
2.控制焊接的输入热能。
3.调整焊接程序。
4.缩短焊接电弧(焊接时尽量不要摆动防止合金元素烧损)5.合理调整焊缝位置在制定焊接参数时要考虑保证输入热在600~18000J/cm内,输入热的计算(J/cm)=电流(A)*电压(V)/焊接速度(cm/min)焊接层数焊条牌号规格D/mm电流I/A电压U/V速度Vcm/min极性1AVESTA2205AC/DC 3.2100~11023~259~11直流反接2AVESTA2205AC/DC 3.2100~11023~259~11直流反接清根AVESTA2205AC/DC 3.2100~11023~259~11直流反接根据标准节点法(ASTME562)对焊缝及执热影响区进行α相数测定。
焊接A体不锈钢与双相不锈钢的区别:不同点:焊接A不锈钢时要适当增加δ相的数量:打乱A的柱状结晶方向,从而避免产生贫Cr区贯穿于晶粒之间;δ相富Cr,而Cr在δ相中容易扩散,碳化铬在δ相内部边缘沉淀,由于供Cr条件好,不会在A晶粒间形成贫Cr层。
所以增加δ相有利于提高焊缝的抗晶间腐蚀能力。
在焊接双相不锈钢时要控制δ相的数量:由于双相不锈钢中δ相较多,如不控制其含量则会产生σ相脆化现象和δ相选择性腐蚀。
不锈钢焊接后:热影响区会出现敏化腐蚀,要控制输入热量,故最后一道焊缝要求焊接输入量要小、且安排在不与介质接触的一面。
双相不锈钢焊接后:要防止晶粒粗化和单相铁素体化。
故最后一道焊缝为了防止晶粒粗化及单相铁素体化,安排在与介质接触的一面。
2205双相不锈钢焊接1、初步焊接试验为了了解2205双相不锈钢的性能特点,进行了初步焊接试验,对拟采用的GTAW方法打底、SMA W填充并盖面组合焊接方法焊接接头的理化性能进行测试,初步掌握其力学性能水平,同时对这两种焊接方法的工艺性能进行了解,为制定管道现场焊接工艺方案提供依据。
1.1 试验材料试验母材为瑞典Avesta公司生产的12mm板材,焊材为英国曼彻特公司生产的2205双相不锈钢配套焊材ULTRAMET 2205包括氩弧焊焊丝和手弧焊焊条。
1.2 试验过程及结果对试件加工单面V型坡口,坡口角度65°,钝边尺寸0.5~1.0mm,焊前用丙酮对剖口及其两侧进行清洗,然后进行焊接,焊条在焊前进行了烘干处理,试样、焊接记录已给管材所提供。
1.3 试验结论通过试验可以得出如下初步结论:(1)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法得到的焊接接头的强度、塑性、硬度良好,铁素体含量适中(按WRC图计算),韧性不高,略高于ASTM A923要求的34J;(2)化学成分中抗点蚀元素含量较低,与母材不匹配,尤其是N含量较低。
(3)采用的GTA W方法打底、SMAW填充并盖面组合焊接方法,焊接及背面采用纯氩保护,焊接工艺良好,焊缝背面成型质量好,酸性焊条的电弧稳定、脱渣性良好,无气孔产生,这种组合方法可以在管道施工中应用。
(4)采用的GTA W方法打底、SMA W填充并盖面组合焊接方法,如果背面不加气体保护,焊缝背面严重氧化、焊缝金属表面发渣,成型很差。
可见,采用GTAW打底焊,如果背面不采取气体保护,或者保护效果不良,焊缝成型很差,焊缝及热影响区氧化严重,将严重影响其耐蚀性,背面气体有效保护的实施是2205双相不锈钢管道焊接质量的关键。
(5)采用SMAW打底+SMA W盖面工艺,如果背面不加气体保护,成型较好,但焊缝背面氧化也比较严重。
通过点蚀试验证明,这种氧化色对焊接接头的抗点蚀性能没影响,对背面确实无法通气保护的收口焊缝和焊缝返修可以考虑使用该工艺。
双相不锈钢的焊接技术及工艺要求1. 双相不锈钢的特性1.1双相钢亦称奥氏体—铁素体不锈钢,一般认为其铁素40%~60%,其余奥氏体.1.2双相金属组织具有较高的强度和抗腐蚀能力。
1.3双相钢在整个焊接过程容易形成焊缝及热影响区的相位变化。
1.4双相钢物理性能:1.4.1热传导性:碳钢—47; CrNi 钢—15;双相钢—141.4.2.热膨胀:碳钢—12; CrNi钢—17:双相钢—131.5 双相钢中铁索体含量:1.5.1 F<25%:强度下降,抵抗应力腐蚀开裂能力下降。
1.5.2 F>60—70%:降低抗点蚀能力及韧性,增强抗氢致延迟裂纹2. 焊接材料的选用2.1为了确保焊缝焊后奥氏体—铁素体比例的平衡,双相钢的焊接通常选用铬镍含量比母材略高的双相填充金属。
2.2不得采用与母体金属成分一致的焊接材料焊接或母体材料自熔焊接,否则,会造成焊缝金属的双相不平衡,从而导致金属镍过量稀释、铁素体含量过高。
2.3需采用高一级的焊材,应用奥氏体元素(Ni, N)来超合金化。
如母材为2205双相不锈钢的焊接材料一般选用焊材成分为“2309”的牌号。
2.4两种双相不锈钢同种钢焊接的焊丝与焊条见表:(仅供参考)3. 坡口的设计和加工3.1双相钢对接接头坡口的设计、加工应满足焊缝充分焊透又不能烧穿的要求,坡口的设计应避免小角度。
3.2双相钢的焊接都应开坡口、留间隙、加填充金属焊接,禁止焊缝自熔焊接和同材质填充材料焊接。
3.3双相钢焊接时钢水的流动性和润湿性比一般奥氏体钢差,所以,双相钢坡口角度比一般奥氏体钢的坡口角度要大一些,建议手工焊接一般坡口角度30o ~35o ,机械焊接坡口角度一般为35o ~40o .3.4双相钢焊缝坡口一般采用等离子切割+软质砂轮打磨的加工方法加工成形。
双相钢典型坡口形式及匹配焊接方法见下例图示。
焊接方法:SMAW 、FCAW 焊接方法:SAW 焊接方法:FCAW 、FCAW+ SAW 、 FCAW+ SMAW5≤t ≤20mm 5≤t ≤20mm 5≤t ≤20mmA=2.0-2.5 mm B=4~6mm A=4-6 mm B=1.5-2.0mm B=1.5~2.0mm3.5双相钢与CCS异种钢的对接焊缝坡口型式根据双相钢而定。
S32750双相不锈钢焊接摘要:近年来,核电站建设得到了迅猛发展,在设计上也逐步优化改进,许多新型的材料不断应用到核电安装施工中,涉及到了这些新材料的焊接。
如双相不锈钢,因其有良好的抗晶间腐蚀和耐氯化物应力腐蚀的性能,使用到海水介质环境中的管道,安装需焊接连接。
本文通过某核电站中的S32750双相不锈钢管安装中的焊接工艺的分析和应用,阐述了S32750双相不锈钢的焊接要点,为后续核电工程的安装提供借鉴作用。
关键词:双相不锈钢;焊接性;S32750;α相;γ相;核电1、双相不锈钢简介双相不锈钢(Duplex Stainless Steel),指具有铁素体(α相)+奥氏体(γ相)双相组织,且两相组织含量基本相当,较少相的含量一般至少也要达到30%的不锈钢。
在含C较低的情况下,一般Cr含量在18%~28%,Ni含量在3%~10%,有些钢还添加有Mo、Cu、Nb、Ti、N等合金元素。
该类钢兼具了奥氏体和铁素体不锈钢的优点,保持了铁素体不锈钢的475℃脆性、导热系数高、具有超塑性、磁性、强度高等特点,也有比与奥氏体不锈钢更优良的耐腐蚀性能,特别是介质环境比较恶劣(如海水,氯离子含量较高)的条件下,双相不锈钢的抗点蚀、晶间腐蚀、应力腐蚀及腐蚀疲劳性能明显优于普通的奥氏体不锈钢。
由于其特殊的优点,在某些特殊环境,得到了越来越广泛的应用。
我国新标准GB/T 20878-2007《不锈钢和耐热钢牌号及化学成分》也加入了许多双相不锈钢牌号,如: 14Cr18Ni11Si4AlTi、022Cr19Ni5Mo3Si2N、00Cr25Ni7Mo4N等。
双相不锈钢按其化学成分,可分为四类:第1类属低合金型,代表牌号UNS S32304(23Cr-4Ni-0.1N),成分中不含Mo,耐点蚀当量PREN值为24-25,在耐蚀性能可代替ASTM304或316。
第2类属中合金型,代表牌号是UNSS31803(22Cr-5Ni-3Mo-0.15N),PREN值为32-33,其耐蚀性能介于ASTM 316L和6%Mo+N奥氏体不锈钢之间。
双相不锈钢的焊接技巧和要点简介双相不锈钢是一种高强度和耐腐蚀性能良好的材料,其焊接过程需要一些特殊的技巧和注意事项。
本文将介绍一些双相不锈钢的焊接技巧和要点,以帮助焊接人员提高焊接质量和效率。
选择合适的焊接方法双相不锈钢的焊接可以采用多种方法,如TIG焊、MIG/MAG 焊、电弧焊等。
选择合适的焊接方法取决于具体焊接条件和要求。
通常情况下,TIG焊是首选方法,因为其焊接质量较高、焊缝外观美观。
注意预热和间隙控制双相不锈钢的焊接过程中,预热和间隙控制是重要的技巧。
预热可以帮助减少焊接变形和晶间腐蚀的风险,提高焊接接头的强度。
合适的间隙控制可以确保焊接质量和焊缝的完整性。
使用合适的电流和电压选择合适的电流和电压是双相不锈钢焊接中的关键。
过高的电流和电压会导致焊接区域过热,产生气孔和裂纹。
而过低的电流和电压则可能导致焊接不充分,影响焊缝质量。
根据焊接规范和试验结果确定合适的电流和电压范围。
使用适合的焊接材料双相不锈钢的焊接通常需要使用相同或相似成分的焊接材料,以确保焊接接头的性能和腐蚀性能与基材一致。
同时,选择合适的焊接材料可以有效降低焊接变形和裂纹风险。
控制焊接速度和焊接参数在焊接双相不锈钢时,控制焊接速度和焊接参数是非常重要的。
过高的焊接速度可能导致焊缝质量不佳,而过低的焊接速度则可能引起过热和热影响区过大。
根据焊接试验和经验,控制合适的焊接速度和参数,以获得最佳的焊接质量。
注意焊后处理焊接完成后,及时进行焊后处理是确保焊接质量的重要环节。
焊后处理包括去除焊渣、清理焊缝、消除应力、进行表面处理等。
正确的焊后处理可以提高焊接接头的性能和耐腐蚀性。
结论双相不锈钢的焊接需要一些特殊的技巧和要点,我们应该选择合适的焊接方法,注意预热和间隙控制,使用适合的电流和电压,选择合适的焊接材料,控制焊接速度和焊接参数,以及进行正确的焊后处理。
通过遵循这些技巧和要点,我们可以提高双相不锈钢焊接的质量和效率。
以上为双相不锈钢的焊接技巧和要点,希望能对您有所帮助。
双相不锈钢的焊接摘要:双相不锈钢是由铁素体和奥氏体两相按一定比例构成的一种不锈钢,具有铁素体相和奥氏体相两相的微观组织。
这种材料强度高,耐蚀性好,现已被广泛应用。
关键词:双相不锈钢;奥氏体;焊接工艺;焊缝型式;双相不锈钢根据其合金成分和性能分为三种。
经济节约型(低合金)双相不锈钢(2101、2304);标准双相不锈钢(2205);超级双相不锈钢(2507)。
其中标准双相不锈钢材料现在已比较成熟,这种材料具有铁素体不锈钢的导热系数大、线膨胀系数小、耐点蚀、缝隙腐蚀、应力腐蚀等优点,同时具有奥氏体不锈钢的塑性韧性、抗晶间腐蚀、力学性能和焊接性能好等优点。
市场上2205双相不锈钢现已被广泛使用,焊接性好、焊缝可靠性高。
一、常见不锈钢焊接方法及工艺不锈钢主要包括当离子焊接、氩弧焊接、手工电弧焊和埋弧焊技术等。
1.手工电弧焊。
为了避免焊接接头在危险温度范围停留较长时间而出现贫铬区,避免接头温度过高而出现热裂纹缺陷,应使用小电流快速焊方式应用在手工焊接不锈钢当中,加强熔池保护,并防止基本金属过热,在具体焊接期间需要采用短弧焊接方式,不能形成横向摆动,最佳方式为窄焊道。
如果要实施多层焊接方式,则每焊完一层需要对熔渣进行彻底清除,对焊接缺陷处进行全面检查,并采取有效处理措施。
等到前道焊缝温度降低到140℃左右时,再进行下一道焊接工序。
在焊接期间需要全面按照“先焊接非工作面,后焊接与腐蚀介质直接接触的工作面”的原则进行。
2.氩弧焊。
对于厚度较小的不锈钢焊件而言,需要优先使用氩弧焊方式,该种焊接方式的优势表现在良好的焊接熔池保护作用,焊接质量高、电弧稳定性强、热量集中、无熔渣、焊接变形幅度小。
在焊接之前需要使用夹具夹紧接头或者进行固焊处理,彻底清理接头25 mm范围内的焊丝和工作面,还需要处理油污等杂质。
在实际焊接期间,首先需要确保焊接质量,在此基础之上加快焊接速度,避免焊缝当中存在气孔,降低焊件变形幅度,避免焊接接头热量过高。
双相不锈钢的焊接1.双相不锈钢的焊接性双相不锈钢的焊接性兼有奥氏体钢和铁素体钢各自的优点,并减少了其各自的不足之处。
(1)热裂纹的敏感性比奥氏体钢小得多;(2)冷裂纹的敏感性比一般低合金高强钢也小得多;(3)热影响区冷却后,总是保留更多的铁素体,从而增大了腐蚀倾向和氢致裂纹(脆化)的敏感性;(4)双相不锈钢焊接接头有析出δ相脆化的可能,δ相是Cr和Fe的金属间化合物,它的形成温度范围600~1000℃,不同钢种形成δ相的温度不同;(5)双相不锈钢含有50%的铁素体,同样也存在475℃脆性,但不如铁素体不锈钢那样敏感;2.焊接方法的选用双相钢焊接方法首选TIG焊,然后是焊条电弧焊,采用埋弧焊时应严格控制热输入和层间温度,且应避免大的稀释率。
注意:采用TIG焊时,宜在保护气体中加入1-2%的氮气(若N超过2%就会增加气孔倾向,且电弧不稳定),以使焊缝金属吸氮(防止焊缝表面区域因扩散而损失氮),有利于稳定焊接接头中的奥氏体相。
3.焊材的选用选用奥氏体形成元素(Ni、N等)较高的焊材,以促进焊缝中的铁素体向奥氏体转变。
2205钢多选用22.8.3L的焊条或焊丝,2507钢多选用25.10.4L的焊丝或25.10.4R的焊条。
4.焊接要点(1)焊接热过程的控制焊接线能量、层间温度、预热及材料厚度等都会影响焊接时的冷却速度,从而影响到焊缝和热影响区的组织和性能。
为获得最佳的焊缝金属性能,建议最高层间温度控制在100℃,当焊后要求热处理时可以不限制层间温度。
(2)焊后热处理双相不锈钢焊后最好不进行热处理。
焊后要求热处理时,所用的热处理方法是水淬。
热处理时加热应尽可能快,在热处理温度下的保温时间为5~30min,应该足以恢复相的平衡。
在热处理时金属的氧化非常严重,应考虑采用惰性气体保护。
1 绪论随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。
为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。
传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。
双相不锈钢是近二十年来开发的新钢种。
通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。
所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。
在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。
有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。
该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。
与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。
双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。
由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。
上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。
1.1 我国双相不锈钢的应用双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于双相不锈钢除具有很强的各类抗腐蚀性能之外,还具有很好的强度和韧性,为此,在一般民用工程和能源交通方面也逐步得到越来越多的应用,如桥梁、飞机、船舶、汽车以及沿海城市和化工区的装饰建筑等。