人教版五年级数学下册因数与倍数的整理与复习
- 格式:ppt
- 大小:2.50 MB
- 文档页数:21
《因数和倍数》知识点归纳知识点一、整除、因数、倍数的概念前提:整除、因数、倍数研究的对象都是非零整数,不考虑0这个特殊的存在。
1、在整数除法中,有两个整数a、b,如果a÷b的商是整数而且没有余数,那么我们就说a能被b整除,也可以说b能整除a 。
例、18÷6=3 。
则18能被6整除,或者可以说6能整除18 。
2、在整数除法中,如果两个数的商是整数而且没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数又叫约数。
3、因数和倍数是互相依存的。
也就是说:①如果a是b的因数,那么b就是a的倍数。
②如果a是b的倍数,那么b就是a的因数。
例、18÷6=3 。
则18是6和3的倍数,6和3是18的因数。
知识点二、因数和倍数的性质1、找一个数的因数的方法:用这个数依次除以1、2、3、4、5…,如果该算式没有余数,那么算式中除数和商都是这个数的因数。
2、找一个数的倍数的方法:用这个数依次乘以1、2、3、4、5…,所得的积都是这个数的倍数。
3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
4、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
5、一个数除了它本身以外,其它所有的因数之和等于它本身,那么这个数叫做完全数。
例1、6除了它本身之外的因数有1、2、3,而1+2+3=6。
所以6是完全数。
例2、28除了它本身之外的因数有1、2、4、7、14,而1+2+4+7+14=28。
所以28是完全数。
知识点三、2、3、5的倍数特征:1、如果一个数的个位上是0、2、4、6、8其中一个,那么这个数是2的倍数。
2、如果一个数的个位上是0或5其中一个,那么这个数是5的倍数。
3、如果一个数的各个数位上的数之和是3的倍数,那么这个数是3的倍数。
知识点四、奇数和偶数1、在整数中,是2的倍数的数叫做偶数,其它的不是2的倍数的数叫做奇数。
2、因为整数包括0,因此0也是偶数。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
五年级下册数学第二单元因数与倍数知识梳理一、因数和倍数1、如果a×b=c(a、b、c都是不为0的整数),那么我们就说a和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:3×8=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出16的所有因数,方法如下:1×16=162×8=164×4=16所以,16的因数有:1、2、4、8、16共5个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:24÷1=2424÷2=1224÷3=824÷4=624÷5=4.8(因为4.8不是整数,所以5和4.8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
4×1=44×2=84×3=124×4=164×5=204×6=244×7=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
学科教师辅导教案授课类型复习(因数和倍数)教学目标理解因数和倍数的含义,掌握与最大公倍数和最小公因数相关实际问题星级★★★★考点图解知识梳理知识点一:因数和倍数1、几个非零自然数相乘,都叫它们积的因数,积是这几个自然数的。
因数与倍数是2、一个数最小的因数是,最大的因数是,一个数因数的个数是。
(找因数的方法:成对的找。
)3、一个数最小的倍数是它本身,最大的倍数。
一个数倍数的个数是。
(找一个数倍数的方法:从自然数 1、2、3、……分别乘这个数)4、一个数最大的因数等于这个数。
知识点二:质数和合数1按照一个数因数个数的多少可以把非 0 自然数分成三类①只有自己本身一个因数的②两个因数的数叫作质数(素数)。
最小的质数是。
在所有的质数中,是唯一的一个偶数。
③除了两个因数还有的数叫作合数。
(合数至少有个因数)最小的合数是。
按照是否是 2 的倍数可以把自然数分成两类。
最小的偶数是 .2. ,叫做这两个数的公因数,其中最大的一个,叫做这两个数的3. ,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的,用符号[ ,]表示。
两个数的公倍数也是的。
8、两个素数的积一定是。
举例:3×5=15,15 是合数。
4.两个数的最小公倍数一定是它们的最大公因数的。
举例:[6,8]=24,(6,8)=2,24 是 2 的倍数。
5.求最大公因数和最小公倍数的方法:()①倍数关系的两个数,是较小的数,是较大的数。
举例:15 和 5,[15,5]=15,(15,5)=5②的两个数,最大公因数是 1,最小公倍数是它们的乘积。
举例:[3,7]=21,(3,7)=1④一般关系的两个数,求最大公因数用,求最小公倍数用大数。
知识点三:质因数和分解质因数1.质因数:如果一个数的因数是,这个因数就是它的。
2. 数叫作偶数,叫作奇数。
相邻偶数(奇数)相差 2。
知识点四:2 、5、3的倍数的特征2 的倍数的特征:个位是5 的倍数的特征:个位是3 的倍数的特征:各位上数字的和一定是 3 的。
人教版五年级下册数学第二单元因数和倍数知识点总结专题复习、提升练习知识点总结概念:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
(因数和倍数是相互依存的,不能单独存在。
)(注意:为了方便,在研究因数和倍数时候,我们所说的数指的是不包括0的自然数)找因数的方法:①乘法;②除法。
找倍数的方法:逐次乘自然数(除0外)。
(表示时需要添加“...”)特点:①一个数的最小因数是1,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
②一个数的最大因数和最小倍数是相等的都是它本身。
③一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
④一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身“1”的特殊性:① 1是所有非0自然数的因数,也是任一自然数(0除外)的最小因数;②一个数的因数至少有1个,这个数是1。
易错辨析:①一个数的倍数一定比它的因数大。
这种说法是错误的。
②一个数越大它的因数个数就越多,一个数越小它的因数个数就越少。
这种说法是错误的。
2. 3. 5倍数的特征:2的倍数:个位上是0. 2. 4. 6. 8的数都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫奇数。
3的倍数:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
2和3的倍数:个位上是0、2、4、6、8,而且各个数位上的数字的和是3的倍数,这个数既是2的倍数,也是3的倍数。
(就是6的倍数)。
5的倍数:个位上是0或5的数,都是5的倍数。
2和5的倍数:个位上是0的数,既是2的倍数,也是5的倍数。
(就是10的倍数)。
个位上是0或者5,而且各个数位上的数字的和是3的倍数,这个数既是5的倍数,也是3的倍数。
(就是15的倍数)。
2. 3. 5的倍数:个位上是0,而且各个数位上的数字的和是3的倍数,这个数同时是2. 3. 5的倍数。
(就是30的倍数)。
奇数. 偶数的关系:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数-奇数=偶数奇数-偶数=奇数偶数-偶数=偶数奇数×奇数=奇数偶数×偶数=偶数偶数×奇数=偶数质数(素数)和合数:概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
五年级数学下册概念公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b = c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
比如:2×6 = 12 。
12是2的倍数,也是6的倍数。
特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大倍数。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
如:4,6,15,49都是合数三、长方体的认识、表面积、体积和容积1. 长方体是由6个长方形(特殊情况有两个相对的面是正方形),围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体 有6个面,8个顶点,12条棱, 12条棱可以分为三组:4条长,4条宽,4条高2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
正方体是特殊的长方体。
(长宽高都相等)3. 公式: 长方体的棱长总和 =(长+宽+高)×正方体的棱长总和 = 棱长×124. 长方体6个面的总面积叫作它的表面积。
长方体相对的面的面积相等,长方体的表面积=(长×宽+长×高+宽×高)×2 2)(⨯⨯+⨯+⨯=h b h a b a S正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
正方体的表面积=棱长×棱长×6 266a a a S =⨯⨯=5. 物体所占空间的大小叫作物体的体积。
计量体积要用体积单位常用的体积单位有:立方厘米(cm 3),立方分米(dm 3),立方米(m 3)。
1立方米=1000立方分米 (大约一个指尖的体积) 1立方分米=1000立方厘米 (大约一个粉笔盒的体积) 1立方米=1000000立方厘米1 m 3=1m ×1m ×1m 1 dm 3=1dm ×1dm ×1dm =10dm ×10dm ×10dm =10cm ×10cm ×10cm =1000dm 3 =1000cm 3概念:容器所能容纳物体的体积叫作容器的容积。
整理和复习--------------因数和倍数教学内容:义务教育课程标准实验教科书五年级下册第二单元《因数和倍数的整理和复习》教学目标:1、通过整理与复习,使学生系统掌握本单元的概念,形成一定的知识网络。
2、使学生能灵活用这部分知识解决生活中的实际问题,体验数学和日常生活密切相关。
3、通过合作交流等活动培养学生思维能力、说理能力,使学生感受到学习的快乐,使每个学生得到不同的发展。
教学重点:1、复习整理这一单元的概念,使其在学生头脑中形成网络。
2、利用所学知识解决实际问题。
教学难点:如何有序整理知识教学过程:一、回忆梳理构建网络1、学生课前整理:(针对本单元特点,让学生独立构建知识结构图有困难,教师要把整理的方法和内容定位好,提高课前整理的实效性)(1) 复习整理本单元6个概念(因数、倍数、偶数、奇数、质数、合数)及概念之间的联系。
整理倍数和因数的特征以及找一个数倍数因数的方法。
整理复习2、3、5倍数的特征以及数的奇偶性。
(2) 思考自己对本单元及相关知识的不足,要提出困惑的问题。
(3)小组内交流,再次激活知识记忆,并组内解决能解决的困惑问题。
2、课堂交流,师生共同构建知识网络。
(1)师:同学们,老师刚来的时候呀,大家都问了我的QQ号码,很多同学都加了老师为好友,有空会和老师聊聊天,尤其是和老师讨论数学问题,为了方便同学们一起参与讨论和交流,老师建了个我们五(1)班的班级群,想知道这个群的号码吗?不过老师要大家来猜一猜,谁猜对了,老师就让他当这个群的管理者。
好吗?先给自己鼓鼓劲:比一比,我最棒!请大家看大屏幕(投影)。
这个群号是一个8位数:第一位数字是2和3的积;第二位数字8的因数的个数;第三位数字是最小的质数;第四位数字是9的最小倍数;第五位数字既是7的倍数又是7的因数;第六位数字是10以内既是质数又是偶数;第七位数字是自然数的单位。
第八位数字是最小的奇数与最小的合数之和。
(2)课件依次出示每句话:第一位数字是2和3的积;问:怎样得到6的?答:2×3=6。
第二单元因数与倍数整理与复习一、选择题1.4的倍数都是()的倍数。
A.2B.3C.5D.82.一个数的最大因数和它的最小倍数()A.相等B.不相等C.无法比较3.把130块糖分装成数量相等的小包,每包糖的块数多于4块,但不超过20块,有()种分法。
A.2B.3C.4D.134.两个数都是质数,这两个数的和是20,积是91,这两个数分别是()A.13和7B.12和8C.9和115.一个比20小的偶数,它有因数3,又是4的倍数,这个数是()。
A.24B.16C.14D.126.我们发现一些数具有一个有趣的特点,例如,6有四个因数1、2、3、6,除6本身以外,还有1、2、3三个因数。
6=1+2+3,恰好是所有因数(本身除外)之和。
那么下面的数中也具有同样特点的是()。
A.12B.28C.327.下列各数中,()同时是3和5的倍数。
A.18B.102C.458.两个质数的和是20,积是51,这两个质数是()。
A.13和7B.11和9C.3和17D.2和189.下面的3组数中,第()组中的数都是奇数。
A.11、12和13B.21、23和27C.39、49和2410.自然数按是不是2的倍数来分,可以分为()。
A.奇数和偶数B.素数和合数C.素数、合数、1 11.两个连续自然数的积一定是()。
A.奇数B.偶数C.都有可能12.最小的合数与最小的质数的积是()。
A.2B.4C.6D.813.两个连续非零自然数的乘积一定是()。
A.合数B.奇数C.偶数D.质数14.三个连续偶数,如果中间的一个偶数用m表示,那么其中最小的一个偶数是()A.m-1B.m-2C.2m D.m+2 15.72分解质因数的正确写法是()。
A.72=8×9B.72=2×4×3×3C.72=2×2×2×3×3D.72=2×2×2×3×3×116.有一个三位数,百位上是最小的奇数,十位上是最小的质数与最小的合数的积,个位上的数既是8的因数,又是8的倍数,这个三位数是().A.881B.188C.81817.如果a÷b=9,那么()A.a一定是b的倍数B.a可能是b的倍数C.b一定是a的因数二、填空题18.一个数的最大因数和最小倍数都是60,这个数是________。