人教版七年级数学下册 6.1.3 :《平方根》教案设计
- 格式:doc
- 大小:158.50 KB
- 文档页数:3
人教版数学七年级下册教学设计6.1《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版数学七年级下册的教学内容。
平方根是实数的一种基本运算,也是学生学习更高级数学知识的基础。
本节课的内容包括平方根的定义、求一个数的平方根的方法、平方根的性质等。
通过本节课的学习,学生应该能够理解平方根的概念,掌握求一个数的平方根的方法,并能够运用平方根的性质解决一些实际问题。
二. 学情分析七年级的学生已经学习了实数的基本概念,对于运算也有了一定的理解。
但是,平方根的概念和性质对于学生来说可能比较抽象,需要通过具体的例子和练习来帮助学生理解和掌握。
学生在学习过程中可能存在一些困难,比如对于平方根的性质的理解,以及如何运用平方根解决实际问题等。
因此,教师在教学过程中需要耐心引导,通过具体的例子和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能:学生能够理解平方根的概念,掌握求一个数的平方根的方法,理解平方根的性质,并能够运用平方根解决一些实际问题。
2.过程与方法:学生通过观察、实验、探究等活动,培养观察能力、动手能力、思考能力。
3.情感态度价值观:学生能够积极参与学习,克服困难,增强自我信心,培养对数学的兴趣。
四. 教学重难点1.重点:平方根的概念,求一个数的平方根的方法,平方根的性质。
2.难点:平方根的性质的理解,如何运用平方根解决实际问题。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生发现平方根的性质。
2.情境教学法:教师通过创设情境,让学生在实际情境中理解和运用平方根。
3.练习法:教师通过布置练习题,让学生巩固所学知识。
六. 教学准备1.课件:教师需要制作课件,包括平方根的定义、求一个数的平方根的方法、平方根的性质等。
2.练习题:教师需要准备一些练习题,用于巩固学生所学知识。
七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾实数的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示平方根的定义,让学生初步了解平方根的概念。
人教版数学七年级下册6.1.3《平方根》教案3一. 教材分析平方根是数学中的一个基本概念,它是指一个数乘以自身得到另一个数时,这个数就是原数的平方根。
平方根的引入可以帮助学生更好地理解有理数、无理数等概念,并且在实际问题中具有广泛的应用。
二. 学情分析学生在学习平方根之前,已经学习了有理数的乘法、平方等知识,对于乘法运算已经有了一定的理解。
但是,平方根的概念较为抽象,需要学生进行一定的思考和理解。
因此,在教学过程中,需要引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够应用平方根的概念解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:平方根的概念和求一个数的平方根的方法。
2.难点:理解平方根的概念,能够应用平方根解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生通过实际例子来理解平方根的概念,并通过练习来巩固所学知识。
六. 教学准备1.PPT课件2.教学视频或案例七. 教学过程1.导入(5分钟)通过一个实际例子来引入平方根的概念,例如:一个正方形的边长为4,求这个正方形的面积。
引导学生思考,如何求解这个问题。
2.呈现(15分钟)讲解平方根的概念,通过PPT课件或者板书,给出平方根的定义和性质。
同时,给出求一个数的平方根的方法。
让学生理解并掌握平方根的概念。
3.操练(10分钟)通过一些练习题,让学生运用平方根的概念来求解问题。
给予学生解答的指导,并纠正一些常见的错误。
4.巩固(10分钟)让学生通过一些实际问题,应用平方根的概念来解决问题。
让学生感受到平方根在实际问题中的应用价值。
5.拓展(10分钟)引导学生思考平方根的应用场景,例如:在物理学中,平方根的概念可以应用于振动频率的计算;在经济学中,平方根的概念可以应用于需求曲线的计算等。
让学生了解平方根在实际问题中的应用。
人教版数学七年级下册6.1.3《平方根》教学设计6一. 教材分析人教版数学七年级下册6.1.3《平方根》是学生在学习了有理数的乘方、平方差公式等知识的基础上,进一步研究平方根的概念和性质。
本节内容主要让学生掌握平方根的定义,了解平方根的性质,能熟练运用平方根解决实际问题。
教材通过引入平方根的概念,让学生感受数学与实际的联系,培养学生的数学应用能力。
二. 学情分析学生在学习本节内容时,已经具备了一定的数学基础,例如有理数的乘方、平方差公式等。
但平方根的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要关注学生的认知水平,采取合适的教学策略,帮助学生掌握平方根的知识。
三. 教学目标1.知识与技能:让学生掌握平方根的定义和性质,能运用平方根解决实际问题。
2.过程与方法:通过观察、操作、探究等活动,培养学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,感受数学与实际的联系。
四. 教学重难点1.重点:平方根的定义和性质。
2.难点:理解平方根的概念,能运用平方根解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究,发现平方根的性质。
3.归纳总结法:在教学过程中,引导学生总结平方根的定义和性质。
六. 教学准备1.教学课件:制作平方根的相关课件,包括图片、动画等。
2.教学素材:准备一些实际问题,用于导入和巩固环节。
3.板书设计:设计简洁明了的板书,突出平方根的关键信息。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如面积、体积等,引导学生思考这些实际问题与数学的关系。
通过解答这些问题,引入平方根的概念。
2.呈现(10分钟)展示平方根的定义,让学生观察、思考,引导他们发现平方根的性质。
同时,通过举例说明平方根的实际应用,帮助学生理解平方根的概念。
3.操练(10分钟)让学生分组讨论,尝试解决一些关于平方根的实际问题。
人教版七年级数学下册教学设计6.1 第2课时《平方根》一. 教材分析本节课的教学内容是《平方根》,这是人教版七年级数学下册第六章第一节的一部分。
在此之前,学生已经学习了有理数、实数等基础知识,对数的运算也有一定的了解。
本节课主要让学生掌握平方根的定义、性质和求法,以及了解平方根在实际问题中的应用。
二. 学情分析七年级的学生已经具备了一定的数学基础,但部分学生在实数方面的理解还不够深入。
在导入新课环节,教师需要通过生活中的实例激发学生的学习兴趣,让学生感受到平方根在实际生活中的重要性。
在教学过程中,要注意引导学生主动探索、发现和总结平方根的性质,提高学生的数学思维能力。
三. 教学目标1.知识与技能:让学生掌握平方根的定义、性质和求法,能够运用平方根解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生探究数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:平方根的定义、性质和求法。
2.难点:平方根在实际问题中的应用。
五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索平方根的性质。
2.情境教学:结合生活实例,让学生感受平方根在实际问题中的应用。
3.小组合作:引导学生进行合作交流,共同探讨平方根的问题。
六. 教学准备1.教学课件:制作课件,展示平方根的相关知识点。
2.实例材料:准备一些实际问题,用于引导学生运用平方根解决。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如测量土地面积、计算物体高度等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。
2.呈现(10分钟)教师引导学生回顾实数的相关知识,然后给出平方根的定义,并通过PPT展示平方根的性质。
同时,教师可以通过讲解、举例等方式,让学生了解平方根的求法。
3.操练(10分钟)教师提出一些有关平方根的问题,让学生独立解答。
人教版七年级数学下册6.1.3《平方根》教学设计一. 教材分析平方根是初中数学的重要内容,是实数系统的基础概念之一。
人教版七年级数学下册6.1.3《平方根》一节,主要让学生了解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析七年级的学生已经学习了有理数的乘方,对实数的概念有一定的了解。
但是,平方根的概念比较抽象,学生可能一时难以理解。
因此,在教学过程中,教师需要借助实例,引导学生从实际问题中发现平方根的概念,并通过大量的练习,让学生熟练掌握求一个数的平方根的方法。
三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根解决实际问题。
3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.重点:平方根的概念,求一个数的平方根的方法。
2.难点:平方根在实际生活中的应用。
五. 教学方法1.实例导入:通过实际问题,引导学生发现平方根的概念。
2.讲解演示:教师讲解平方根的定义,演示求一个数的平方根的方法。
3.练习巩固:学生进行大量的练习,巩固平方根的概念和方法。
4.拓展应用:引导学生运用平方根解决实际问题。
5.总结归纳:教师引导学生总结平方根的知识点。
六. 教学准备1.教学课件:制作平方根的教学课件,包括实例、讲解、练习等内容。
2.练习题:准备一些有关平方根的练习题,用于课堂练习和巩固。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生发现平方根的概念。
例如:一块长方形的地毯,边长为6米,求这块地毯的面积。
学生可以很容易地得出答案,即36平方米。
教师进而引导学生思考:36平方米的面积,对应的长方形地毯的边长是多少?学生可以通过计算得出,边长是6米。
教师解释,6米就是36的平方根。
2.呈现(10分钟)教师讲解平方根的定义,演示求一个数的平方根的方法。
平方根的定义:如果一个非负数a的平方等于b,那么这个非负数a叫做b的平方根。
人教版数学七年级下册6.1.3《平方根》教学设计5一. 教材分析平方根是数学中基础的概念之一,对于七年级下册的学生来说,平方根的学习是在已有整数、分数和小数知识的基础上进行的。
本节课的内容包括平方根的定义、求一个数的平方根的方法以及平方根的性质。
通过学习平方根,学生可以更好地理解乘方的概念,并为后续学习根式、分式等知识打下基础。
二. 学情分析七年级下册的学生已经具备了一定的数学基础,对于新知识的学习有一定的接受能力。
但是,由于平方根的概念比较抽象,学生可能难以理解。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握平方根的概念和性质。
三. 教学目标1.了解平方根的概念,掌握求一个数的平方根的方法。
2.理解平方根的性质,能够运用平方根解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.平方根的概念和求法。
2.平方根的性质。
五. 教学方法1.实例教学:通过具体的例子,让学生理解和掌握平方根的概念和性质。
2.问题驱动:提出问题,引导学生思考和探索,激发学生的学习兴趣。
3.分组讨论:学生进行小组讨论,促进学生之间的交流和合作。
4.练习巩固:通过适量的练习题,帮助学生巩固所学知识。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行多媒体教学。
2.练习题:准备适量的练习题,用于课堂练习和巩固所学知识。
3.教学工具:准备好黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的实例,如测量身高、计算面积等,引导学生思考和探索这些实例中是否存在某种数学规律。
通过实例的引入,激发学生的学习兴趣。
2.呈现(10分钟)介绍平方根的概念,讲解平方根的定义和求法。
通过具体例子,让学生理解和掌握平方根的概念和性质。
同时,引导学生发现和总结平方根的性质。
3.操练(10分钟)根据所学知识,让学生进行一些实际操作,如求一个数的平方根、判断一个数的平方根等。
一、情境导入 填空:(1)3的平方等于9,那么9的算术平方根就是________; (2)25的平方等于425,那么425的算术平方根就是________; (3)展厅的地面为正方形,其面积49平方米,则边长为________米. 还有平方等于9,425,49的其他数吗? 二、合作探究 探究点1:平方根的定义及性质 填一填: (1)4的平方等于16,那么16的算术平方根就是________; (2)25的平方等于425,那么425的算术平方根就是_______; (3)展厅地面为正方形,其面积是49 m 2,则其边长为______m.. (4)写出左圈和右圈中的“?”表示的数: 问题1: 平方等于9的数有几个?是哪些数? 问题2: 如果a 是一个正数,平方等于a 的数有几个?怎样把它们表示出来?它们有什么关系? 问题3: 平方等于0的数有几个?有平方是负数的数吗? 问题4: 平方根与算术平方根有什么区别与联系? 要点归纳: 1.平方根的性质: (1)正数有两个平方根,两个平方根互为相反数. (2)0的平方根还是0. (3)负数没有平方根. 2.平方根与算术平方根的联系与区别:
联系:
(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)只有非负数才有平方根和算术平方根.
(3)0的平方根是0,算术平方根也是0.
区别:
(1)个数不同:一个正数有两个平方根,但只有一个算术平方根.
a,而算术平方根表示为
一个正数的两个平方根分别是2a+1和
因为一个正数的平方根有两个,且它们互为相反数,
互为相反数,根据互为相反数的两个数的和为。
课题 6.1.3平方根(3)备课时间序号授课时间主备人授课班级七年级课标要求教学目标知识与技能:了解平方根的概念,掌握平方根的特征,明确平方根和算术平方根之间的联系和区别过程与方法:能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系,会求某些非负数的平方根情感态度价值观:培养学生的探究能力和归纳、解决问题的能力教学重点平方根的概念和特征教学难点平方根和算术平方根之间的联系和区别教学方法启发式、讲授式教学过程设计师生活动设计意图一、创设情境:如果一个数的平方等于9,这个数是多少?二、参与实践:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果,那么x 叫做a的平方根.例如:3和-3是9的平方根,简记是9的平方根通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。
教师放手让学生思考问题问题,培养了学生的动脑思考问题能力2x a=3±三、评价反馈通过具体问题,强化学生对概念及性质的理解,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力。
如果知道一个数的算术平方根就可以立即写出它的负的平方根,为什么?你能总结一下平方根与算术平方根的概念的区别与联系吗?归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
平方根与算术平方根的联系与区别:联系(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。
(2)存在条件相同:平方根和算术平方根都具有非负性(3)0的平方根和算术平方根都是0。
区别(1)定义不同:“如果一个数X的平方等于a,那么这个数X叫做a的平方根”,“如果一个正数x的平方等于a,即x2 =a,那么这个正数x叫做a 的算术平方根”。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
人教版七年级数学下册教学设计6.1 第3课时《算术平方根和平方根》一. 教材分析本节课的教学内容是算术平方根和平方根。
这是人教版七年级数学下册第六章第一节的一部分,主要介绍了平方根和算术平方根的概念、性质和运算。
这一部分内容是学生学习平方根和算术平方根的基础,对于后续学习二次根式、勾股定理等知识具有重要意义。
教材通过例题和练习题,帮助学生掌握平方根和算术平方根的求法,提高学生的运算能力。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、平方根的概念,为本节课的学习奠定了基础。
然而,对于算术平方根的概念和求法,部分学生可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际需求进行有针对性的教学。
三. 教学目标1.理解平方根和算术平方根的概念,掌握它们的性质和运算方法。
2.能够运用平方根和算术平方根解决实际问题,提高运算能力。
3.培养学生的逻辑思维能力和团队合作精神。
四. 教学重难点1.平方根和算术平方根的概念及其区别。
2.平方根和算术平方根的求法。
3.运用平方根和算术平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平方根和算术平方根的概念,激发学生的学习兴趣。
2.小组讨论法:让学生在小组内讨论平方根和算术平方根的性质和运算方法,培养学生的团队合作精神。
3.案例教学法:通过例题和练习题,让学生巩固所学知识,提高运算能力。
4.启发式教学法:引导学生思考问题,培养学生的逻辑思维能力。
六. 教学准备1.教学课件:制作课件,展示平方根和算术平方根的概念、性质和运算方法。
2.练习题:准备一些有关平方根和算术平方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例,如正方形的面积公式,引入平方根的概念。
引导学生思考:什么是平方根?如何求一个数的平方根?2.呈现(10分钟)介绍平方根的性质和运算方法,引导学生总结平方根的定义和求法。
6.1.1平方根
【教学目标】
知识与技能:
通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示; 过程与方法:
通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:
通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
教具准备: 三块大小相等的正方形纸片;学生计算器。
教学方法: 自主探究、启发引导、小组合作
【教学过程】
一、情境引入:
问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?
二、探索归纳:
1.探索:
学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:
如果正方形的面积分别是1、9、16、36、25
4,那么正方形的边长分别是多少呢? 学生会求出边长分别是1、3、4、6、5
2,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:
⑴算术平方根的概念:
一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:
a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:
例1、 求下列各数的算术平方根:
⑴100 ⑵6449 ⑶9
71 ⑷0001.0 ⑸0 解:⑴因为,100102=所以100的算术平方根是10,即10100=; ⑵因为6449)87
(2=,所以6449的算术平方根是8
7,即876449=; ⑶因为916)34(,9169712==,所以9
71的算术平方根是34,即34916971==; ⑷因为0001.001.02=,所以0001.0的算术平方根是01.0,即01.00001.0=;
⑸因为002=,所以0的算术平方根是0,即00=。
注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;
②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;
③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:
你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?
归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
即:只有非负数有算术平方根,如果a x =有意义,那么0,0≥≥x a 。
注:0≥a 且0≥a 这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、 求下列各式的值:
(1)4 (2)81
49 (3)2)11(- (4)26 分析:此题本质还是求几个非负数的算术平方根。
解:(1)24= (2)9
78149= (3)1111)11(22==- (4)662= 例3、 求下列各数的算术平方根:
⑴23 ⑵34 ⑶2)10(- ⑷610
1
解:(1)因为932
=,所以3932==; ⑵因为2
38644==,所以86443==; ⑶因为2210100)10(==-,所以10100)10(2==-; ⑷因为6310
1101=,所以36101101=。
根据学生的学习能力和理解能力可进行如下总结:
1、由332=,662=,可得)0(2≥=a a a
2、由11)11(2=-,10)10(2=-,可得)0(2≤-=a a a 教师需强调0=a 时对两种情况都成立。
四、随堂练习:
1、算术平方根等于本身的数有_____。
2、求下列各式的值:
1, 25
9, 25, 2)7(- 3、求下列各数的算术平方根:
0025.0, 121, 24, 2)21(-,16
91 4、已知,011=-++b a 求b a 2+的值。
五、课堂小结
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
六、布置作业
课本第44页习题第1、2题
教学反思。