第三章 刚体和流体的运动习题及解答1
- 格式:ppt
- 大小:420.00 KB
- 文档页数:16
第3章 刚体和流体3.1 在描述刚体转动时,为什么一般都采用角量,而不采用质点力学中常采用的线量? 答:对于刚体,用角量描述方便可行,这是因为对刚体上的各点角量(βωθ∆,,)都相同,若采用线量描述,由于刚体上各点线量(a r ϖϖϖ,,υ∆)均不相同,这对其运动的描述带来麻烦,甚至不可行。
3.2 当刚体绕定轴转动时,如果角速度很大,是否作用在它上面的合外力一定很大?是否作用在它上面的合外力矩一定很大?当合外力矩增加时,角速度和角加速度怎样变化?当合外力矩减小时,角速度和角加速度又怎样变化?答:(1)当刚体绕定轴转动时,如果角速度很大,作用在它上面的合外力不一定很大(它们没有必然联系);(2)当合外力矩增加时,角加速度增大,若角加速度方向与角速度方向相同时,角速度也增大,反之,角速度减小。
(3)当合外力矩减小时,角加速度减小,但角速度同(2)中情况。
3.3 有人把握着哑铃的两手伸开,坐在以一定角速度转动着的(摩擦不计)凳子上,如果此人把手缩回,使转动惯量减为原来的一半。
(1)角速度增加多少?(2)转动动能会发生改变吗?答:(1)角速度增加一倍(据角动量守恒=ωJ 常量) (2)由221ωJ E k =知,转动动能增加一倍。
3.4 什么是流体?流体为什么会流动?答:具有流动性的物体叫流体。
流体之所以会流动是由于构成流体的分子间的作用很小,可以忽略,使得流体中的各分子可以自由运动。
3.5 连续性原理和伯努利方程成立的条件是什么?在推导过程中何处用过? 答:连续性方程成立的条件是理想流体作稳定流动(其核心是不可压缩性t s t s ∆=∆2211υυ)。
伯努利方程成立的条件是:理想流体,稳定流体,同一流线。
在推导中按理想稳定流体对待(未考虑粘滞力,考虑不可压缩性流线上的速度不随时间改变)。
3.6 为什么从消防栓里向天空打出来的水柱,其截面积随高度增加而变大?用水壶向水瓶中灌水时,水柱的截面积却愈来愈小?答:从救火筒理向天空打出来的水柱,其截面随高度增加而变大,是由于从高度的增加,水流的速度变小,由连续性方程就决定了液面截面积要增加。
第三章 流体的运动习题解答1.应用连续性方程的条件是什么?答:不可压缩的流体作定常流动。
2.在推导伯努利方程的过程中,用过哪些条件?伯努利方程的物理意义是什么?答:在推导伯努利方程的过程中,用过条件是不可压缩、无内摩擦力的流体(即理想流体)作定常流动。
方程的物理意义是理想流体作定常流动时,同一流管的不同截面处,单位体积流体的动能、势能与该处压强之和都是相等的。
3.两条木船朝同一方向并进时,会彼此靠拢甚至导致船体相撞。
试解释产生这一现象的原因。
答:因为当两条木船朝同一方向并进时,两船之间水的流速增加,根据伯努利方程可知,它们间的压强会减小,每一条船受到外侧水的压力大,因此两船会彼此靠拢甚至导致船体相撞。
4.冷却器由19根Φ20×2mm (即管的外直径为20mm ,壁厚为2mm )的列管组成,冷却水由Φ54×2mm 的导管流入列管中,已知导管中水的流速为1.4m/s ,求列管中水流的速度。
解:已知Φ120×2mm ,d 1=20-2×2=16mm ,n 1=19,Φ254×2mm ,d 2=54-2×2=50mm ,v 2=1.4m/s ,根据连续性方程知:S 0v 0= S 1v 1+S 2v 2 +……+S n v n ,则72.016194.15041412221122221122211221=⨯⨯==ππ==d n d d n d S n S v v v v m/s5.水管上端的截面积为4.0×10-4m 2,水的流速为5.0 m/s ,水管下端比上端低10m ,下端的截面积为8.0×10-4m 2。
(a)求水在下端的流速;(b)如果水在上端的压强为1.5×105Pa ,求下端的压强。
解:(a)已知S 1=4.0×10-4m 2,v 1=5.0 m/s ,h 1=10m ,S 2=8.0×10-4m 2,1p =1.5×105Pa ,根据连续性方程:S 1v 1=S 2v 2 知:5.2100.80.5100.4442112=⨯⨯⨯==--S S v v ( m/s ) (b) 根据伯努利方程知:222211212121p gh p gh ++=++ρρρρv v ,h 2=0,水ρ=1.0×103 kg/m 3(Pa)106.25.2100.121105.11010100.15100.121212152353232221121⨯=⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=--++=gh p gh p ρρρρv v 26.水平的自来水管粗处的直径是细处的两倍。
⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。
若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。
(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。
(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。
(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。
[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。
(1)021 F F,=0合外F ,动量守恒。
(2)2211r F r F A =合。
21F F,但21r r时0A 外,因此E不⼀定守恒。
(3)21F F,2211d F d F M =合。
两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。
2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。
则物体 (A) 动能不变,动量改变。
(B) 动量不变,动能改变。
(C) ⾓动量不变,动量不变。
(D) ⾓动量改变,动量改变。
(E)⾓动量不变,动能、动量都改变。
[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。
r 减⼩,v 增⼤。
因此p 、E k 均变化(m不变)。
3. 有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。
[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。
另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。
流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300×400的矩形风道,风量为2700m 3,求平均流速.如风道出⼝处断⾯收缩为150×400,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=102=53=2.5的管道流⼊⼤⽓中. 当出⼝流速10 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3,,流速不超过20 。
试设计直径,根据所定直径求流速。
直径规定为50 的倍数。
解:vA Q = 将s m v /20≤代⼊得:mm d5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。
设想⽤和管轴同⼼但不同半径的圆周,将全部断⾯分为中间是圆,其他是圆环的五个⾯积相等的部分。
刚体的简单运动习题及答案刚体的简单运动习题及答案刚体是物理学中的一个基本概念,它指的是在运动过程中形状和大小不发生改变的物体。
在学习刚体的运动时,我们可以通过一些简单的习题来加深对刚体运动的理解。
下面,我将为大家提供一些常见的刚体运动习题及答案。
习题一:平抛运动小明站在一个高处,手中拿着一个小球,以一定的初速度将球水平抛出。
假设空气阻力可以忽略不计,请问球的运动轨迹是什么形状?答案:球的运动轨迹是一个抛物线。
在平抛运动中,刚体在水平方向上做匀速直线运动,在竖直方向上受到重力的作用,所以球的轨迹是一个抛物线。
习题二:滚动运动一个圆柱体沿着水平面滚动,它的质心速度和边缘速度哪个更大?答案:质心速度和边缘速度相等。
在滚动运动中,刚体的质心沿着运动方向做匀速直线运动,而刚体的边缘点则具有线速度和角速度的叠加效果。
由于圆柱体的每个点都有相同的角速度,所以质心速度和边缘速度相等。
习题三:转动惯量一个均匀的圆盘和一个均匀的长方体,它们的质量和半径(或边长)相同,哪个的转动惯量更大?答案:圆盘的转动惯量更大。
转动惯量是刚体旋转时惯性的量度,它与刚体的质量分布有关。
由于圆盘的质量分布更加均匀,所以它的转动惯量更大。
习题四:平衡条件一个悬挂在绳子上的物体处于平衡状态,绳子与竖直方向的夹角是多少?答案:绳子与竖直方向的夹角等于物体所受的重力与绳子张力的夹角。
在平衡状态下,物体所受的重力与绳子张力必须保持平衡,即两者的合力为零。
因此,绳子与竖直方向的夹角取决于物体所受的重力与绳子张力的大小关系。
习题五:平移运动和转动运动一个刚体在平面上做平移运动时,它的转动惯量是多少?答案:在平移运动时,刚体的转动惯量为零。
平移运动是指刚体的质心沿直线运动,此时刚体没有绕任何轴心旋转,所以转动惯量为零。
通过以上习题的解答,我们可以更好地理解刚体的运动特性。
刚体的运动涉及到平抛运动、滚动运动、转动惯量和平衡条件等方面的知识,通过解答这些习题,我们可以加深对刚体运动的理解,提高解题能力。
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。