f行列式的计算
- 格式:pptx
- 大小:315.20 KB
- 文档页数:13
(完整版)⾏列式的计算⽅法(课堂讲解版)计算n 阶⾏列式的若⼲⽅法举例n 阶⾏列式的计算⽅法很多,除⾮零元素较少时可利⽤定义计算(①按照某⼀列或某⼀⾏展开②完全展开式)外,更多的是利⽤⾏列式的性质计算,特别要注意观察所求题⽬的特点,灵活选⽤⽅法,值得注意的是,同⼀个⾏列式,有时会有不同的求解⽅法。
下⾯介绍⼏种常⽤的⽅法,并举例说明。
1.利⽤⾏列式定义直接计算例计算⾏列式 001002001000000n D n n=-LLMM M M L L解 D n 中不为零的项⽤⼀般形式表⽰为 112211!n n n nn a a a a n ---=L .该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n nD n --=-2.利⽤⾏列式的性质计算例:⼀个n 阶⾏列式n ij D a =的元素满⾜,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称⾏列式,证明:奇数阶反对称⾏列式为零.证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L故⾏列式D n 可表⽰为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----L L L L L L L L L,由⾏列式的性质A A '=,1213112232132331230000n nn n n n na a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00n n n n n n na a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =-当n 为奇数时,得D n =-D n ,因⽽得D n = 0.3.化为三⾓形⾏列式若能把⼀个⾏列式经过适当变换化为三⾓形,其结果为⾏列式主对⾓线上元素的乘积。
行列式的若干计算方法摘 要 归纳总结行列式的计算方法,并举例说明它们的应用. 关键词 行列式;初等变换;计算方法;化简 中图分类号 O175The number of calculation method of determinantAbstract :Summarized determinant method of calculation, and examples of their application. Keywords:Determinant; elementary transformation; calculation methods; simplification.引言行列式是研究线性代数的一个重要工具,在线性方程组,矩阵,二次型中用到行列式,在数学其它分支也常常用到行列式,因此行列式的计算显得尤其重要,但行列式的计算灵活多变,需要较强的技巧,一直是学生不易领会和掌握的,本文在已经学过行列式的计算方法的基础上总结出如下一些常用方法.1 定义法根据行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑我们可以利用定义直接计算行列式,其中11()n j j j τ是11n j j j 的逆序数.例1证明1112131415212223242531324142515200000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j j nj a a a则 12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑. (1)其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(1)式中每一项至少有一个来自后三行后三列.故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2化三角形法化三角形是将原行列式化为上(下)三角形或对角形行列式进行计算的一种方法,是计算行列式最基本的计算方法之一,这是因为由行列式的定义我们可以直接计算上(下)三角形或对角形行列式.一般而言,对任意行列式都可化为三角形行列式,但是有的行列式化简时非常繁琐,应该先利用性质实施一些初等变换,然后再化简.例2 计算行列式12312341345121221n n n n D n n n -=--.分析 直接用化三角形法化简很烦,观察发现对于任意相邻两列中的元素,位于同一行的元素中,后面元素与前面元素相差1,因此先从第1n -列乘-1加到第n 列,第2n -列乘-1加到第1n -列, 这样做下去直到第1列乘-1加到第2列,然后再计算就显得容易.解 12312341345121221n n n n D n n n -=--1111121111311111111n n n n -=--111111000201000nn n n -=---120001000120001nn n n n n +++-=--- 000001(1)00002n nn n n n---=- (1)(2)21(1)(1)2n n n n n ---=- (1)12(1)(1)2n n n n n --+=-.问题推广在例2中1,2,,n ,这n 个数我们可以看成有限个等差数列在循环,那么对于一般的等差数列也应该适应.计算行列式111111111111111111112(1)23234(1)(3)(2)a a d a d a n d a nd a d a d a d a nd a D a d a d a d a a d a n da a da n da n d+++-+++++=+++++-++-+-1111(1)2(1)(1)(1)a d d d d a d d d d n d a d d d n d d a n d n d d dd+-=+-+-- 12(1)000a ddd d d ndd ndn d nd -=---1(1)02(1)000d n da nnd ndd ndn dnd -+++-=---(1)(2)121(1)()()(1)n n n d n d a nd nn----=+++--(1)(2)1112((1))1()()(1)2n n n n a a n d nd n ---++-=--. 如果将例2中的数11a =,1d =代入(1)(2)1112((1)1()()(1)2n n n n a a n d nd n ---++-=--结论显然成立.3加边法利用行列式按行(列)展开的性质把n 阶行列式通过加行(列)变成与之相等的1n +阶行列式,然后计算.添加行列式的四种方法:设111212122212n n n n n nna a a a a a D a a a =.(1)首行首列111212122212n n n n n nna a a a a a D a a a =121112121222121000n n n n n nna a a a a a a a a a a a =.(2)首行末列111212122212nnnn n nna a aa a aDa a a=111213121222321230001n n n na a a aa a a aa a a a=.(3)末行首列111212122212nnnn n nna a aa a aDa a a=1111212212223313231000nnna a a aa a a aa a a a=.(4)末行末列111212122212nnnn n nna a aa a aDa a a=1112131212223231323330001a a a aa a a aa a a a=.例3计算123123123123(0)nnnnx a a a aa x a a aD a a x a a xa a a x a++=+≠+.解1212121212(1)(1)1nnnnn n na a ax a a aa x a aDa a aa a x a+⨯+++=+将第一行乘(1)-加到其余各行上去,得12(1)(1)11001001000100nn na a axxx+⨯+--=--将第2列,,第n列分别乘1x,全都加到第一列,得121(1)(1)100000000000nk n k n n a a a a x x x x=+⨯++=∑1111(1)n nnn n k k k k x a x x a x -===+=+∑∑.加边法是将原行列式中添加适当的行(列),构成一个新的行列式,并以此行列式为过渡来达到计算原行列式的目的.4降阶法n 阶行列式等于它的任意一行(列)各元素与其对应的代数余子式乘积的和.即1(1,2,,)nij ij j D a A i n ===∑ 或 1(1,2,,)nij ij i D a A j n ===∑.行列式按一行(列)展开将高阶转化为若干低阶行列式计算方法称为降阶法.这是一种计算行列式的常用方法.例4 计算1301301411210110D =. 解 130109110220011D -=-9111220110-=⨯-21421-==-.注意 对于一般的n 阶行列式若直接用降阶法计算量会大大加重.因此必须先利用行列式的性质将行列式的某一行(列)化为只含有一个非零元素,然后再按此行(列)展开,如此进行下去,直到二阶.5递推法递推法是根据行列式的结构利用n 阶行列式的性质,把给定的行列式n D 用与n D 有相同形式的1n D -阶行列式表示出来,然后将1n D -阶行列式再用与1n D -有相同形式的2n D -阶行列式表示出来,这样一直做下去直到n D 被有相同形式2D 的表示出来,这样n D 可被易计算的2D 表示出来,故可达到计算n D 的目的.例50001000101n D αβαβαβαβαβαβ++=++证明11,n n n D αβαβ++-=-其中αβ≠分析 此行列式的特点是除主对角线及其上下两条对角线的元素外其余的元素都为零,这种行列式称“三条线”行列式,从行列式的左上方往右下方看即知n D 与1n D -具有相同的结构.因此可考虑用递推法证明.证明 把行列式n D 按第一行展开,得12()n n n D D D αβαβ--=+-于是有递推关系式12()n n n D D D αβαβ--=+-或 112()n n n n D D D D αβα----=- 类似有1223()n n n n D D D D αβα-----=-3221()D D D D αβα-=-. 由于1()D αβ=+ 22()D αβαβ=+-因而221()()n nn n D D αβαβαβααββ--⎡⎤-=+--+=⎣⎦.若 0α= 时 n n D β= 若 0α≠ 时 11()n nn nn D D βααα--=+利用计算递推,得1212112()()()()()n n n n nn n nn n D D D D βββββααααααααα-----=+=++==+++21()()n βββααα=++++=1111()11n n n nβαβαβααβα+++--=-- 所以 11()n n n D αβαβαβ++-=≠-.若αβ=时,从 21()()1n n D n βββααα=++++=+得到(1)n n D n α=+故 11(1)n n n n D n αβαβαβααβ++⎧-≠⎪-=⎨⎪+=⎩当 当 .6析因法基本方法:如果行列式D 中有一些元素是变量x 的多项式,那么将行列式D 当作一个多项式()f x 然后对行列式施行某些变换,求出()f x 互素的一次因式,使得()f x 与这些因式的乘积()g x 只相差一个常数因子c ,根据多项式相等的定义,比较()f x 与()g x 的某一项的系数,求出c 值,便可求得()D cg x =.例6 计算行列式221123122323152319x D x -=-分析 这是一个关于x 的4次多项式,在复数范围内此多项式可分解成4个一次因式的乘积解 令()f x =221123122323152319x D x -=-则()f x 是关于x 的4次多项式,由行列式的性质当1,2x x =±=±时()0f x ≡.因此()f x 有四个一次因式(1),(1),(2),(2)x x x x -+-+.()g x (1)(1)(2)(2)x x x x =-⋅+⋅-⋅+于是 ()f x (1)(1)(2)(a x x x x =⋅-⋅+⋅-⋅+.比较D 中4x 的系数,得3a =-()D f x ==3(1)(1)(2)(2)x x x x -⋅-⋅+⋅-⋅+.注意 找一次因式时因该先观察,若行列式是关于x 的n 次多项式就相应的找n 个一次因式(重因式按重因式个数计算)而不要意味的看行列式的阶数n 相应的找n 个一次因式.7利用方阵特征值在线形变换的研究中,矩阵的特征多项式非常重要,由矩阵的特征多项式,再根据根与系数的关系式可知矩阵全体特征值的积为相应行列式的值.因此,我们可以用这个办法来计算行列式.例8 计算如下行列式的值123123123123n n n n n a a a a a a a a M a a a a a a a a λλλλ++=++.解n b bM bb=+123123123123n nn na a a a a a a a a a a a aa a a 因为行列式b bbb的特征值为,,,b b b ,行列式123123123123n nn na a a a a a a a a a a a a a a a 的特征值为1,0,,0ni i a =∑.所以n M 的特征值为1,,,ni i b a b b =+∑.由行列式的特征值与行列式的关系式知11()nn n i i M b a b -==+∑.8对称法这是解决具有对称关系的数学问题的常用方法.例9 计算n 阶行列式00010011n D αβαβαβαβαβαβ++=++.解 按第1行展开,得12()n n n D D D αβαβ--=+-即 112()n n n n D D D D αβα----=- 由此递推,即得 1n n n D D αβ--=因为n D 中α于β对称,又有 1n n n D D βα--=αβ≠当 时,从上式两边消去1n D -,得11n n n D αβαβ++-=- αβ=当 时,112()(1)n n n n n n n D D D n βββββββ---=+=++==+.与例题5作比较可看出对于同一个行列式的计算有多种方法.因此我们在选择方法时因该遵守简单原则,这样不但可以减少计算量,而且还可以保证答案的正确性.9数学归纳法数学归纳法有两种一种是不完全归纳法,另一种是完全归纳法,通常用不完全归纳法寻找行列式的猜想,再用数学归纳法证明猜想的正确性. 基本方法1) 先计算1,2,3n =时行列式的值. 2) 观察1,2,3D D D 的值猜想出n D 的值. 3)用数学归纳法证明.例10 计算行列式0001001n a b ab a b ab D ab++=+.解:因为 221a b D a b a b -=+=-33222a b D a ab b a b-=++=-所以,猜想 11n n n a b D a b++-=- . (1)证明 当1n =时,(1)式显然成立.设1n k ≤-时,(1)式显然成立,则n k =时(1)00000()1k k a bab a b ab D a b ab -++=++ (1)000001k a b ab ab ababa b -++-+12()k k a b D abD --=+-11()k k k k a b a b a b ab a b a b ----=+---11k k a b a b++-=-∴当n k =时(1)式也成立,从而得证.即 11n n n a b D a b++-=-.注意 一般而言,对于给定的一个行列式,要猜想一个之比较困难,所以一般情况下是先给定其值,然后再证明.11范德蒙行列式范德蒙行列式1232222123111111231111nn n i j j i nn n n n nx x x x D x x x x x x x x x x ≤<≤----==-∏因此可将给定行列式化为范德蒙行的形式然后直接计算.例11 计算1n -阶行列式1n D -131313222222223333336n n n n n n n n n nn n n n ---------=----.解 用加边法将行列式化为范德蒙行列式131311321111102222222033333360n n n n n n n D n n n n n n n n -------=-------132132132111112222233333n n nn nn n n n n n ---=1221221221111112222!133331n n n n n n n n n n n------= 221(2)(3)212212211111112222!(1)133331n n n n n n n n n nn n n ---+-+++----=- (1)(2)(1)(2)12211(1)!()(1)(!)n n n n n i j nk n i j k -----≤<≤==--=-∏∏12利用拉普拉斯定理拉普拉斯定理的四种特殊情形01)nn nn mm mnmmA ABC B =⋅; 2)nn nm nn mm mmA C AB B =⋅;3)(1)nnmn nn mm mm mnA AB BC =-⋅ ; 4)(1)0nm nn mn nn mmmmC A A B B =-⋅.故可将已知行列式选取适当地行列,化成上述四种特殊情形计算. 例12 计算n 阶行列式n a a a ab D b bλαββββαβββββα=. 解 n D =0000aaaabλαββββααββααβ----(1)(2)0000n aaaab n λαββββαβαβ-+-=--00(1)00(2)0n b n αβλααβαβαβ---=⋅+--[]2(2)(1)()n n ab n λαλβαβ-=+---⋅-.n 阶行列式的计算,证明方法较多,不同的题目用到不同的计算方法,同样的题目有时也可以用到不同方法,至于选择哪一种要视具体题目而定.但是更重要的是同一道题不仅仅局限于某一种计算方法,而是要用多种方法综合起来才能完成.。
行列式加减法计算公式全文共四篇示例,供读者参考第一篇示例:行列式是线性代数中的一个重要概念,它是一个方阵所对应的一个数。
行列式的加减法是对两个行列式进行运算,得到一个新的行列式的过程。
在实际问题中,行列式的加减法计算公式有很多应用,可以帮助我们解决复杂的线性代数问题。
在本文中,我们将详细介绍行列式的加减法计算公式及其应用。
一、行列式的定义二、行列式的加法计算公式1. 行列式的加法性质:两个行列式相加,等于这两个行列式的每一个元素相加。
对于两个3阶方阵A=[1 2 3; 4 5 6; 7 8 9]和B=[-1 -2 -3; -4 -5 -6; -7 -8 -9],则有|A+B|=|1+(-1) 2+(-2) 3+(-3)||4+(-4) 5+(-5) 6+(-6)||7+(-7) 8+(-8) 9+(-9)|=|-1 0 0||-1 0 0||0 0 0|=02. 行列式的减法计算公式:利用行列式的减法性质,可以通过每一个元素相减,得到新的行列式的值。
行列式的加减法计算公式在解决线性代数问题中有着广泛的应用。
其中包括以下几个方面:1. 解线性方程组:通过解线性方程组,可以利用行列式的加减法计算公式快速求解未知数的值,简化计算步骤。
2. 求逆矩阵:通过行列式的加减法计算公式,可以求解方阵的逆矩阵,从而用于矩阵的运算。
行列式的加减法计算公式是线性代数中的重要内容,通过掌握行列式的加减法计算公式,可以帮助我们解决复杂的线性代数问题,提高计算效率。
希望本文对读者有所帮助,欢迎阅读。
第二篇示例:行列式是线性代数中的一个重要概念,在矩阵运算中占有非常重要的地位。
行列式的定义是一个数学函数,它将一个方阵映射到一个实数上。
同时,行列式也是线性代数中用于解不定方程组、判断矩阵是否可逆、计算面积和体积等问题的工具之一。
在行列式的运算中,加减法是其中一项重要的操作。
下面就让我们来学习一下行列式的加减法计算公式。
首先,我们先来回顾一下行列式的定义和性质。
行列式的若干计算技巧与方法内容摘要1•行列式的性质2.行列式计算的几种常见技巧和方法定义法2.12.2利用行列式的性质2.3降阶法2.4升阶法(加边法)2.5数学归纳法2.6递推法3•行列式计算的几种特殊技巧和方法3.1拆行(列)法3.2构造法3.3特征值法4.几类特殊行列式的计算技巧和方法4.1三角形行列式4.2“爪”字型行列式4.3“么”字型行列式4.4“两线”型行列式4.5“三对角”型行列式4.6范德蒙德行列式5.行列式的计算方法的综合运用5.1降阶法和递推法5.2逐行相加减和套用范德蒙德行列式5.3构造法和套用范德蒙德行列式标准实用=0.1.2行列式的性质性质1 行列互换,行列式不变•即an a 12 a 1nana 21a n1a 21a 22 a 2na 12a 22a n2a n1a n2a nna 1na 2na nn性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式•即a 11 a 12 a 1 na11a12a1nka i1ka i2 ka ink a i1ai2aina n1a n2a nnan1an2ann性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的 和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列) 一样•即a 12 Ka ina iiMa n1b 2 C 2K b n C n M M a n2Ka nna 11 a 12K a1n M MM M b 1 b 2K b n M MM Ma n1 a n2Ka nna 11 a 12K a1n M M M Mq C2 K C n M MM M a n1 a n2Ka nn性质4 如果行列式中有两行 那么行列式为零•即a 11 a 12 a 1 na 11 a 12 a 1 na i1a i2a ina i 1 a i2a inkka i1 ka i2 ka ina i1 a i2 a ina n1 a n2a nna n1a n2a nn(或列)对应元素相同或成比例,标准实用性质5 把一行的倍数加到另一行,行列式不变.即a11 a12 a1n a11 a12 a1 na ii ca ki a i2 ca k2 a in Ca kn a i1 a i2 a ina ki a k2 a kn a k1 a k2 a kna n1 a n2 a nn a n1 a n2 a nn性质6 对换行列式中两行的位置,行列式反号•即a11 a12 a1n a11 a12 a1 na i1 a i2 a in a k1 a k2 a kna k1 a k2 a kn =-a i1 a i2 a ina n1 a n2 a nn a n1 a n2 a nn性质7 行列式一行(或列)元素全为零,则行列式为零•即a1 ,n-1 a1 na11 a120 0 0 0 0a n1 a n2 a n,n-1 a nn2、行列式的几种常见计算技巧和方法2.1定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.标准实用主对角线下方的元素与第一行元素对应相同, 故用第一行的 1例1计算行列式解析:这是一个四级行列式,在展开式中应该有4! 24项,但由于出现很多的零,所以不等于零的项数就大大减少•具体的说,展开式中的项的一般形式是a 1j 1 a 2 j 2 a 3j 3 a 4 j 4•显然,女口果j 14,那么31j 10,从而这个项就等于零.因此只须考虑 j 1 4的项,同理只须考虑j 2 3, j 3 2, j 41的这些项,这就是说,行列式中不为零的项只有a 14a 23a 32a 41,而43216,所以此项取正号•故2.2利用行列式的性质43211 &14&23&32&41 24.即把已知行列式通过行列式的性质化为上三角形或下三角形 •该方法适用于低阶行列式.2.2.1化三角形法上、下三角形行列式的形式及其值分别如下:a 11 a 12a 13 a 1na 110 0 0 a 22a 23a 2na 21a 220 00 a 33 a 3na 11 a 22a nn,a 31 a 32a 33a nna n1 a n2 a n3a nn例2计算行列式D na 1 a 1b 1 a 2 a n a 1a 2a nb n解析:观察行列式的特点,a 2 a n a 11a 22a nn•倍加到下面各行便可使主对角线下方的元素全部变为零•即:化为上三角形.解:将该行列式第一行的倍分别加到第2,3 •••(n 1)行上去,可得2.2.2连加法D n 1这类行列式的特征是行列式某行(或列)a ib iMa2加上其余各行a nb n(或列)后,使该行(或列)均相等或出现较多零,从而简化行列式的计算•这类计算行列式的方法称为连加法.例3计算行列式D n 解: x1mX1 x2mX2X nX nX n mni 1 nX i m X2 i 1X i m X2 m ni 1 X i m X2X1D nX nX n1 X2 X n 1 X2 X n n 1 X2 m X n n 0 m 0 X i m X i m1 i 11 X2 X n m 0 0 mX nnn 1m X i mi 12.2.3滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,解:从最后一行开始每行减去上一行,有1 2 3 n 1 n1 2 3 n 1 n11 1 1 12 0 0 0 2 D n1 1 1 1 12 2 00 21 11111 1 1111 2 3 1 0 0 2n 21 1 01 1 1 1 02.2.4逐行相加减n 行的和全相同,但却为零•用连加法明显不行,这是我们可以解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:这种方法叫滚动消去法. 122 1例4计算行列式D n 3 23 n 1 n2 n 2 n 11 n 3 n2 n 2n 2 21n n 12n对于有些行列式,虽然前a 1a 1 0a 2 a 2 例5计算行列式D0 0 a s0 0 01110 0 0 0 0a n a n1 1尝试用逐行相加减的方法.2.3降阶法将高阶行列式化为低阶行列式再求解.2.3.1按某一行(或列)展开例6 解行列式D n解:按最后一行展开,得2.3.2按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D中任意选定了k 1 k n -1个行.由这k行兀素所组成的一切k级子式与它们的代数余子式的乘积的和等于行列式 D.即D M 1A1 M2A2 M n A n,其中A i是子式M i对应的代数余子式.a ia2a3a n2n n 1 a1a2a n 1n 1 a1a2an .a n a n 2 a2 a1n 1 n 2D n a1x a2x a n 1XB nnC nn2.4升阶法算行列式的方法叫做升阶法或加边法•升阶法的最大特点就是要找每行或每列相同的因子 升阶之后,就可以利用行列式的性质把绝大多数元素化为 其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一 般行列的位置.例7解行列式D nA nn 0C nn B nnA nn ?B nn .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得D nn 1 ab就是把n阶行列式增加一行一列变成 n+1 阶行列式,再通过性质化简算出结果,这种计,那么0,这样就达到简化计算的效果.(n 1) 110 1 00 0 1 D0 0 0 0 0n 11 n 1 .2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法0 1 11 0 1例8 解行列式D=1 1 01 1 11 1 11 1 1 1 1 1 0 1 1 01阶行列式,即1 1 1 0 0 1 0 1 0D1 1 1 1 1 1 0 1 1 0再将第一行的1倍加到其他各行,得:1 1 1 1 1 0 1 0 1D=1 1 0 0 0 0 1 0 0 1从第二列开始,每列乘以1加到第一列,得:1 1 0 0 0 01 0 0 1解:使行列式D 变成n去证明•对于高阶行列式的证明问题,数学归纳法是常用的方法.cos 1 0 0 01 2 cos 1 0 0例9计算行列式D n 0 1 2 cos0 00 0 0 2 cos 10 0 0 1 2 cos解:用数学归纳法证明当n 1 时,D i coscos 1 2当n2 时,D2i 2cos 2C0S 1 C0S2猜想,D n cosn由上可知,当n 1,n 2时,结论成立•假设当n k时,结论成立•即:D k cosk .现证当n k 1时,结论也成立cos 1 0 0 01 2 cos 1 0 0当n k 1时,D k 1 0 1 2cos0 00 0 0 2 cos 10 0 0 1 2 cos 将D k i按最后一行展开,得cos 1 0 01 2cos 1 0D k 1k 1 k 11 ?2cos 0 1 2cos 00 0 0 2coscos k1时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即:D n cosn2.6递推法 技巧分析:若n 阶行列式D 满足关系式aD n bD n 1 cD n 2 0.则作特征方程ax 2 bx c 0.① 若0,则特征方程有两个不等根,则 D n Ax ; 1 Bx ; 1 ② 若0,则特征方程有重根 X 1 X 2,则D n A nB x ; 1在①②中,A ,B 均为待定系数,可令 n 1, n 2求出.因为D k所以cos2cos2cos2 cos D kcoskcos k cos cosk cos sin k sin ,2 cos D k D k 12 cos cosk cosk cos sin k sincosk cossin k sin这就证明了当9 5 °°°°°4 95 °°°°° 4 9 5 °°°例1° 计算行列式D n°°°° 4 9 5°°°°° 49解:按第一列展开,得D n 9D n 1 2°D n 2 •即D n9 D n i 2° D n2 °.作特征方程2x 9x 2°°.解得X i 4, X2 5.则D n A?4n1 B?5n1.当n 1 时,9 A B ;当n 2 时,61 4A 5B .解得A 16,B 25 ,所以D n 5n 14n1.3、行列式的几种特殊计算技巧和方法3.1拆行(列)法3.1.1概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值•拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和.3.1.2例题解析1 a1a2 0 0 01 1 a2a3 0 0例11 计算行列式D n 0 1 1 a30 00 0 0 1 a n 1 a n0 0 0 1 1 a解:把第一列的元素看成两项的和进行拆列,得1 a1 a2 0 0 01 0 1 82 a3 0 0D n 0 0 1 1 a30 00 0 0 0 1 a n 1 a n0 0 0 0 1 1 a n3232 1 33333n 113n3n31 0 3232133333n 3n3n上面第一个行列式的值为所以D n 1 31 1 321a3a33n11 31 D n 1 .这个式子在对于任何n n都成立, 因此有D n 1 aQ na11 32D n 2 a1 a〔a2ii1 3j.j 13.2构造法3.2.1概念及计算方法有些行列式通过直接求解比较麻烦, 3n3nn 13132 3n这时可同时构造一个容易求解的行列式,从而求出原行列式的值.322例题解析1 1 1X1 X2 X n2 2 2 例12 求行列式D nX1 X2 X nn 2 n 2 n 2治X2 X nn n nX1 X2 X n 值.构造n 1阶的范德蒙德行列式,得1 1 1 1X1 X2 X n X2 2 2 2X1 X2 X n Xf Xn 2 n 2 n 2 n 2X1 X2 X n Xn 1 n 1 n 1 n 1X1 X2 X n Xn n n nX1 X2 X n X将f x按第n 1列展开,得f x A,n 1 A;n 1其中,x 的系数为A n,n 1 又根据范德蒙德行列式的结果知f x x X-! 由上式可求得x n 1的系数为n 1X A n,n 1X n1A n 1,n 1xn n 1 ——1 D n D n解:虽然D n不是范德蒙德行列式, 但可以考虑构造n 1阶的范德蒙德行列式来间接求出D n的X x2X X n X i X j .1 j i nx1x2x n x i x j.1 j i n故有D n X i X2 X n X i X j .1 j i n3.3特征值法3.3.1概念及计算方法设1,2,n是n级矩阵A的全部特征值,则有公式A 1 2 n .故只要能求出矩阵A的全部特征值,那么就可以计算出A的行列式.3.3.2例题解析例13 若1, 2, n是n级矩阵A的全部特征值,证明:A可逆当且仅当它的特征值全不为零.证明:因为A 1 2 n,贝UA 可逆A 0 1 2 n 0 i 0 i 1,2 n .即A可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1三角形行列式4.1.1概念a 11a 2i a 22 a 3i a 32a 33a n1a n2 a n3 a nn故称为"三角形”行列式.4.1.2计算方法由行列式的定义可知,4.2.2计算方法方法可归纳为:“爪”字对角消竖横.a i1a i2 a i3 a i na 22a 23 a 2n 形如a 33a 3na nna iia i2a i3a i na ii0 0 a 22a 23 a 2na 2ia 220 0 0 a 33 a 3na ii a 22 a nn,a 3i a 32a 33a nna ni a n2 a n3a nna ii a 22a nn .这样的行列式,形状像个三角形,4.2 “爪”字型行列式 4.2.1 概念形如a 。
引言 (1)一、行列式的定义及性质 (2)(一)行列式的定义及相关公式 (2)(二)n级行列式的性质: (4)二、行列式的计算 (6)(一)行列式的基本计算方法 (6)1、定义法: (6)2、三角形法: (7)3、降阶法: (12)4、换元法: (14)5、递推法: (15)6、数学归纳法: (16)7、目标行列式法: (18)(二)行列式的辅助计算方法 (19)1、加边法: (19)2、析因子法: (21)3、连加法: (21)4、拆项法: (22)5、乘积法: (23)结束语 (24)参考文献: (26)行列式的计算方法摘要行列式是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。
行列式产生于解线性方程组中,并且也是最早应用于解线性方程组中,并且在其他学科分支都有广泛的应用,可以说它是数学、物理学以及工科许多课程的重要学习工具.行列式也为解决实际问题带来了许多方便。
本文针对行列式这一数学工具,进行系统讨论,从不同的角度理解了行列式的定义,重点证明了行列式性质,介绍一些展开定理,总结了行列式的几种计算方法,如定义法、三角形法、降阶法、换元法、递推法、数学归纳法及目标行列式法.辅助方法有:加边法、析因子法、乘积法、连加法、拆项法等,并结合例题说明行列式计算的技巧性和灵活性。
关键词行列式,计算方法,线性方程组。
The Calculation of DeterminantLiuHui(College of Mathematics and Physics Bohai University Liaoning Jinzhou 121000 China)Abstract The determinant is the extremely important constituent in the linear algebra theory, it is a basic concept of higher mathematics。