2021年二阶导数的应用---曲线的凹凸性与拐点
- 格式:doc
- 大小:120.00 KB
- 文档页数:5
2021年考研数学二真题一、选择题:(1~8小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项是符合题目要求的。
) (1)以下反常积分中收敛的是 (A)∫√x+∞2xx (B)∫xxx+∞2xx(C)∫1xxxx+∞2xx (D) ∫xx x+∞2xx 【答案】D 。
【解析】题干中给出4个反常积分,别离判定敛散性即可取得正确答案。
∫√x+2=2√x |2+∞=+∞;∫xxxx+∞2xx =∫xxx +∞2x (xxx )=12(xxx )2|2+∞=+∞;∫1xxxx+∞2xx =∫1xxx+∞2x (xxx )=ln (xxx )|2+∞=+∞; ∫xxx +∞2xx=−∫x +∞2xx −x=−xx−x|2+∞+∫x −x +∞2xx=2x−2−x−x |2+∞=3x −2,因此(D)是收敛的。
综上所述,此题正确答案是D 。
【考点】高等数学—一元函数积分学—反常积分 (2)函数x (x )=lim x →0(1+xxx x x )x 2x在(-∞,+∞)内(A)连续 (B)有可去中断点 (C)有跳跃中断点 (D)有无穷中断点 【答案】B【解析】这是“1∞”型极限,直接有x(x)=limx→0(1+xxx xx)x2x=x lim x→0x 2x(1+xxx xx−1)=e x limx→0xxxxx=x x(x≠0),x(x)在x=0处无概念,且limx→0x(x)=limx→0x x=1,因此x=0是x(x)的可去中断点,选B。
综上所述,此题正确答案是B。
【考点】高等数学—函数、极限、持续—两个重要极限(3)设函数x(x)={x αcos1xβ,x>0,0,x≤0(α>0,x>0).假设x′(x)在x=0处连续,则(A)α−β>1(B)0<α−β≤1(C)α−β>2(D)0<x−β≤2【答案】A【解析】易求出x′(x)={xx α−1cos1xβ+βxα−β−1sin1xβ,x>0,0,x≤0再有x+′(0)=limx→0+x(x)−x(0)x=limx→0+xα−1cos1xβ={0, α>1,不存在,α≤1,x−′(0)=0于是,x′(0)存在⟺α>1,现在x′(0)=0.当α>1时,limx→0xα−1cos1xβ=0,lim x→0βxα−β−1sin1xβ={0, α−β−1>0,不存在,α−β−1≤0,因此,x′(x)在x=0持续⟺α−β>1。
求曲线凹凸区间和拐点的步骤嘿,朋友们!今天咱来聊聊求曲线凹凸区间和拐点那些事儿。
你看啊,这曲线就像人生的道路,有起有伏。
那凹凸区间呢,就像是路上的坑坑洼洼或者小山坡。
而拐点呢,就好比是人生的转折点呀!
要找到这些凹凸区间和拐点,咱得一步步来。
先得求出函数的二阶导数,这二阶导数就像是个探测仪。
它能告诉我们曲线是向上凸还是向下凸。
比如说,二阶导数大于零,那曲线就是向下凸的,就好像一个碗口朝下的碗;要是二阶导数小于零呢,曲线就是向上凸的,像个反过来的碗。
这多形象啊!
然后呢,咱就根据二阶导数的正负情况来划分凹凸区间。
这就像是给曲线分块,每一块都有它独特的“性格”。
在这个过程中,可得细心点儿,别像马大哈似的。
万一弄错了,那可就闹笑话啦!就好比你走在路上,把上坡当成下坡,那不就栽跟头啦!
找到这些区间后,再看看二阶导数等于零或者不存在的点,这些点就有可能是拐点。
但可别以为这些点一定就是拐点哦,还得像侦探一样仔细考察考察它们两边的凹凸性是不是不一样。
你说这是不是挺有趣的?就跟玩游戏似的,一步步探索,一点点发现。
咱再举个例子吧,就像解方程似的。
把一个具体的函数拿过来,按照步骤一步步操作,看着曲线的凹凸变化,感受着数学的奇妙。
总之啊,求曲线凹凸区间和拐点虽然有点小麻烦,但只要咱有耐心,一步一步来,肯定能搞得清清楚楚。
这不仅能让我们更深入地理解函数,还能让我们感受到数学的魅力呢!所以啊,大家别怕麻烦,大胆去尝试,去探索,相信你们一定能掌握这个有趣的知识!。
二阶导数的应用曲线的凹凸性与拐点之袁州冬雪创作讲授方针与要求通过学习,使学生掌握操纵二阶导数的符号断定函数在某一区间上凹凸性的方法,为更好地描画函数图形打好基础,同时,懂得拐点的定义和意义.讲授重点与难点讲授重点:操纵函数的二阶导数断定曲线的凹凸性与拐点.讲授难点:懂得拐点的定义和意义.讲授方法与建议证明曲线凹凸性断定定理时,除了操纵“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果操纵“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生贯通不到思想,摸不着头脑.在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性其实不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关.讲授过程设计1. 问题提出与定义函数的单调性对于描画函数图形有很大作用,但仅仅由单调性还不克不及准确描画出函数的图形.比方,如果在区间上,,则我们知道在区间上单调增,但作图(拜见图1)的时候,我们不克不及断定它增加的方式(是弧,还是弧),即不克不及断定曲线的凹凸性,所以研究曲线的凹凸性对于掌控函数的性态、作图等是很有需要的!在图1中,对于上凸的曲线弧,取其上任意两点,无妨取作割线,我们总会发现不管两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式.来描绘同理,对于上凹的曲线弧,总可用不等式来描绘.由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上持续,如果对I上任意两点,,恒有则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有则称在I上的图形是(向上)凸的,或简称为凸弧.如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点.2. 凹凸性断定定理的引入曲线凹凸性的定义自然能辨别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来讲断定起来也不容易.因此,我们就想可否用其它方法来断定曲线的凹凸性.函数的单调性能由的符号确定,而对于凹凸性它束手无策,所以我们猜测凹凸性是否和有关?颠末分析,并操纵泰勒公式,可证实我们的猜测是正确的,函数图形的凹凸性的确和的符号有关,于是得到了断定曲线凹凸性的定理.在上持续, 在内具有二阶持续导数,那末:(1)若在内>0,则在上的图形是凹的;(2)若在内<0,则在上的图形是凸的.3. 辨别凹凸性和拐点举例例1. 断定曲线y x3的凹凸性.解y3x 2,y6x.由y0, 得x0因为当x<0时,y<0, 所以曲线在(,0]内为凸的;因为当x>0时,y>0, 所以曲线在[0,)内为凹的.例2. 求曲线y2x 33x 22x14的拐点.解y6x 26x12,.令y0, 得因为当时,y0;当时,y0,所以点(,??是曲线的拐点例??求函数的凹凸区间和拐点.解:函数的定义域为,,且,令,得.列表:()0+0-0+有拐点有拐点由表可知,当时,曲线有拐点和,表中暗示曲线是凹的,⌒暗示曲线是凸的.函数的图像如图(3)所示.4. 确定曲线y f(x)的凹凸区间和拐点的步调:(1)确定函数y f(x)的定义域;(2)求出在二阶导数f`(x);(3)求使二阶导数为零的点和使二阶导数不存在的点;(4)断定或列表断定, 确定出曲线凹凸区间和拐点;注: 根据详细情况(1)(3)步有时省略.5 学生黑板操练操练 1.断定下列曲线的凹凸性及拐点.(1),(2),(3).6.小结1 在讲授函数单调性时要注意借助几何图形停止直观说明,使导数符号与曲线形态特征相连系,加深对辨别法的懂得.2 对于函数凹凸性、拐点,要注意借助几何图形停止直观说明,使导数符号与曲线形态特征相连系,加深对辨别法的懂得.作业 P75:1,2,3。
导数的应用于曲线的凹凸性导数是微积分中的一个重要概念,用于描述一个函数的变化率。
在数学中,凹凸性是一个函数的重要特征,它描述了函数的曲线在不同区间的凹凸情况。
导数可以帮助我们判断一个函数在某个区间的凹凸性质,从而深入理解函数的性质和行为。
在微积分中,我们首先要了解什么是凹凸性。
一个函数的凹凸性可以通过它的二阶导数来判断。
一个函数的二阶导数正数表示函数是凹的,负数则表示函数是凸的。
凹函数的曲线呈现下凹状,而凸函数的曲线则呈现上凸状。
那么,如何通过导数判断一个函数的凹凸性呢?我们先来看看一阶导数的应用。
一阶导数表示了函数在某一点的变化率,可以通过它来判断函数在该点的增减性。
如果一个函数在某点的一阶导数为正,说明函数在该点是递增的;如果一阶导数为负,则函数在该点是递减的。
如果一个函数的一阶导数在某个区间内递增,那么该函数在该区间内是凹的;如果一阶导数在某个区间内递减,那么该函数在该区间内是凸的。
举个例子,我们来考虑函数f(x)=x^2。
首先,求一阶导数f'(x)。
根据求导法则,我们可以得到f'(x)=2x。
根据一阶导数的正负性,我们可以得知函数f(x)=x^2在整个实数轴上是递增的,即一阶导数f'(x)大于零。
然后,我们来考察函数f(x)=x^2的二阶导数f''(x)。
根据求导法则,我们可以得到f''(x)=2。
因为f''(x)为正数,说明函数f(x)=x^2是凹的。
在整个实数轴上,函数f(x)=x^2的曲线呈现出下凹的形状。
通过这个例子,我们可以看出一阶导数和二阶导数在判断函数的凹凸性时的应用。
一阶导数帮助我们判断函数在某个区间内的增减性,从而判断该区间内函数的凹凸性;而二阶导数则直接判断函数的凹凸性。
接下来,让我们来看一些其他函数的凹凸性质。
1. 函数f(x)=x^3在整个实数轴上是凹的。
我们可以通过一阶导数和二阶导数的方法来判断。
二阶导数的应用曲线的凹凸性与
拐点
欧阳光明(2021.03.07)
教学目标与要求
通过学习,使学生掌握利用二阶导数的符号判定函数在某一区
间上凹凸性的方法,为更好地描绘函数图形打好基础,同时,理解
拐点的定义和意义。
教学重点与难点
教学重点:利用函数的二阶导数判断曲线的凹凸性与拐点。
教学难点:理解拐点的定义和意义。
教学方法与建议证明曲线凹凸性判定定理时,除了利用“拉格朗日中值定理”证明外,还可用“泰勒定理”来证明;如果利用“拉格朗日中值定理”证明,则要配合函数图形来分析讲解如何想到需要两次使用“拉格朗日中值定理”的思路,切忌脱离图形,机械证明,让学生领悟不到思想,摸不着头脑。
在讲函数的凹凸性和曲线拐点的定义时,要强调凹凸性并不是曲线的固有性质,而是函数的性质,与所选的坐标系有关;而拐点是曲线的固有性质,与所选的坐标系无关。
教学过程设计
1. 问题提出与定义
函数的单调性对于描绘函数
图形有很大作用,但仅仅由单
调性还不能准确描绘出函数的
图形。
比如,如果在区间
上,,则我们知道
在区间上单调增,但作图
(参见图1)的时候,我们不
能判断它增加的方式(是弧,还是弧),即不能判断曲线的凹凸性,所以研究曲线的凹凸性对于把握函数的性态、作图等是很有必要的!
在图1中,对于上凸的曲线弧,取其上任意两点,不妨取
作割线,我们总会发现不论两点的位置,割线段总位于弧段的下方,这种位置关系可以用不等式
来描述。
同理,对于上凹的曲线弧
,总可用不等式来描述。
由此,我们想到对曲线的凹凸性做如下定义:凹凸性定义设在区间I上连续,如果对I上任意两点,,恒有
则称在I上的图形是(向上)凹的,简称为凹弧;如果恒有
则称在I上的图形是(向上)凸的,或简称为凸弧。
如果沿曲线从左向右走,则图形是(向上)凸的曲线的几何意义相当于右转弯,图形是(向上)凹的曲线相当于左转弯,而有切线的凹凸弧的分界点正是曲线转向的点,我们把这样的点称为拐点。
2. 凹凸性判定定理的引入
曲线凹凸性的定义自然能判别曲线的凹凸性,但实际使用起来需要取两个点,且两个不等式对于一些表达式较复杂的函数来说判断起来也不容易。
因此,我们就想能否用其它方法来判定曲线的凹凸性。
函数的单调性能由的符号确定,而对于凹凸性它束手无策,所以我们猜想凹凸性是否和有关?
经过分析,并利用泰勒公式,可证实我们的猜想是正确的,函数图形的凹凸性的确和的符号有关,于是得到了判断曲线凹凸性的定理。
定理 4.3设在上连续, 在内具有二阶连续导数,那么:
(1)若在内>0,则在上的图形是凹的;
(2)若在内<0,则在上的图形是凸的。
3. 判别凹凸性和拐点举例
例1. 判断曲线y x3的凹凸性.
解y3x 2,y6x.由y0, 得x0
因为当x<0时,y<0, 所以曲线在(,0]内为凸的;
因为当x>0时,y>0, 所以曲线在[0,)内为凹的.
例2. 求曲线y2x 33x 22x14的拐点.
解y6x 26x12,.令y0, 得
因为当时,y0;当时,y0,所以点(,
??是曲线的拐点
例??求函数的凹凸区间和拐点.
解:函数的定义域为,
,
且,
令,得.
列表:
()0
+0-0+
有拐点有拐点
由表可知,当时,曲线有拐点
和,表中表示曲线是凹的,⌒表示曲线
是凸的.函数的图像如图(3)所示.
4. 确定曲线y f(x)的凹凸区间和拐点的步骤:
(1)确定函数y f(x)的定义域;(2)求出在二阶导数
f`(x);
(3)求使二阶导数为零的点和使二阶导数不存在的点;
(4)判断或列表判断, 确定出曲线凹凸区间和拐点;
注: 根据具体情况(1)(3)步有时省略.
5 学生黑板练习
练习 1.判定下列曲线的凹凸性及拐点.
(1),(2),(3)。
6.小结
1 在讲授函数单调性时要注意借助几何图形进行直观说明,使导数符号与曲线形态特征相结合,加深对判别法的理解。
2 对于函数凹凸性、拐点,要注意借助几何图形进行直观说明,使导数符号与曲线形态特征相结合,加深对判别法的理解。
作业 P75:1,2,3。