自动控制原理部分题解
- 格式:ppt
- 大小:522.00 KB
- 文档页数:25
自动控制原理试题库20套和答案详解一、填空(每空1分,共18分)1.自动控制系统的数学模型有、、共4种。
2.连续控制系统稳定的充分必要条件是。
离散控制系统稳定的充分必要条件是。
3.某统控制系统的微分方程为:dc(t)+0.5C(t)=2r(t)。
则该系统的闭环传递函数dtΦσ;调节时间ts(Δ。
4.某单位反馈系统G(s)= 100(s?5),则该系统是阶2s(0.1s?2)(0.02s?4)5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC6.相位滞后校正装置又称为调节器,其校正作用是。
7.采样器的作用是,某离散控制系统(1?e?10T)G(Z)?(单位反馈T=0.1)当输入r(t)=t时.该系统稳态误差(Z?1)2(Z?e?10T)为。
二. 1.R(s) 求:C(S)(10分)R(S)2.求图示系统输出C(Z)的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)Kf=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差ess.(2)若使系统ξ=0.707,kf应取何值?单位斜坡输入下ess.=?五.已知某系统L(ω)曲线,(12分)(1)写出系统开环传递函数G(s)(2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax=?六、已知控制系统开环频率特性曲线如图示。
P为开环右极点个数。
г为积分环节个数。
判别系统闭环后的稳定性。
(1)(2)(3)七、已知控制系统的传递函数为G0(s)?校正装置的传递函数G0(S)。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为型系统。
6.比例环节的频率特性为。
7. 微分环节的相角为8.二阶系统的谐振峰值与有关。
9.高阶系统的超调量跟10.在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。
第一章绪论1-1试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1)优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2)缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56() d y t dy t du ty t u t dt dt dt++=+(2)()2() y t u t=+(3)()()2()4() dy t du tt y t u t dt dt+=+(4)()2()()sin dy ty t u t t dtω+=(5)22()()()2()3() d y t dy ty t y t u t dt dt++=(6)2()()2() dy ty t u t dt+=(7)()()2()35()du ty t u t u t dtdt=++⎰解答:(1)线性定常(2)非线性定常(3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
控制的目的是保持水位为一定的高度。
《自动控制原理》复习参考资料一、基本知识 11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
18、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。
9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。
10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。
18 、应用频域分析法,穿越频率越大,则对应时域指标 ts越小,即快速性越好19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。
20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。
一、 单项选择题〔每小题1分,共20分1. 系统和输入已知,求输出并对动态特性进行研究,称为〔 CA.系统综合B.系统辨识C.系统分析D.系统设计2. 惯性环节和积分环节的频率特性在〔 A 上相等。
A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为〔 CA.比较元件B.给定元件C.反馈元件D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为〔 AA.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个〔 BA.比例环节B.微分环节C.积分环节D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为〔 C A.1 B.2 C.5 D.107. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是〔 B A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn ,则可以〔 BA.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为〔 A A.45°B.-45°C.90°D.-90°10.最小相位系统的开环增益越大,其〔 DA.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 〔 AA.稳定B.临界稳定C.不稳定D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s k s G ,当k =〔 C 时,闭环系统临界稳定。
A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有〔 CA.0B.1C.2D.314.单位反馈系统开环传递函数为()ss s s G ++=652,当输入为单位阶跃时,则其位置误差为〔 CA.2B.0.2C.0.5D.0.0515.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种〔 D A.反馈校正B.相位超前校正C.相位滞后—超前校正D.相位滞后校正16.稳态误差e ss 与误差信号E <s >的函数关系为〔 BA.)(lim 0s E e s ss →=B.)(lim 0s sE e s ss →= C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→= 17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是〔 AA.减小增益B.超前校正C.滞后校正D.滞后-超前18.相位超前校正装置的奈氏曲线为〔 BA.圆B.上半圆C.下半圆D.45°弧线19.开环传递函数为G <s >H <s >=)3(3+s s K ,则实轴上的根轨迹为〔 C A.<-3,∞> B.<0,∞> C.<-∞,-3> D.<-3,0>20.在直流电动机调速系统中,霍尔传感器是用作〔 B 反馈的传感器。
一.名词解释1、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。
2、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。
3、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。
4、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。
5、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。
6、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。
7、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。
8、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。
9、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()()C z G z R z =。
10、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣11、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统12、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。
课程名称: 自动控制理论 (A/B 卷 闭卷)一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。
2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。
3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=n ω ,阻尼比=ξ ,该系统的特征方程为 ,该系统的单位阶跃响应曲线为 。
5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。
6、根轨迹起始于 极点 ,终止于 零点或无穷远 。
7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 。
8、PI 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。
二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提高系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。
3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( )A 、稳定;B 、单位阶跃响应曲线为单调指数上升;C 、临界稳定;D 、右半平面闭环极点数2=Z 。
4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节。
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自动控制原理习题详解(上册)第一章习题解答1-2日常生活中反馈无处不在。
人的眼、耳、鼻和各种感觉、触觉器官都是起反馈作用的器官。
试以驾车行驶和伸手取物过程为例,说明人的眼、脑在其中所起的反馈和控制作用。
答:在驾车行驶和伸手取物过程的过程中,人眼和人脑的作用分别如同控制系统中的测量反馈装置和控制器。
在车辆在行驶过程中,司机需要观察道路和行人情况的变化,经大脑处理后,不断对驾驶动作进行调整,才能安全地到达目的地。
同样,人在取物的过程中,需要根据观察到的人手和所取物体间相对位置的变化,调整手的动作姿势,最终拿到物体。
可以想象蒙上双眼取物的困难程度,即使物体的方位已知。
1-3水箱水位控制系统的原理图如图1-12所示,图中浮子杠杆机构的设计使得水位达到设定高度时,电位器中间抽头的电压输出为零。
描述图1-12所示水位调节系统的工作原理,指出系统中的被控对象、输出量、执行机构、测量装置、给定装置等。
图1-12水箱水位控制系统原理图答:当实际水位和设定水位不相等时,电位器滑动端的电压不为零,假设实际水位比设定水位低,则电位器滑动端的电压大于零,误差信号大于零(e>0),经功率放大器放大后驱动电动机M旋转,使进水阀门开度加大,当进水量大于出水量时(Q^>Q2),水位开始上升,误差信号逐渐减小,直至实际水位与设定水位相等时,误差信号等于零,电机停止转动,此时,因为阀门开度仍较大,进水量大于出水量,水位会继续上升,导致实际水位比设定水位高,误差信号小于零,使电机反方向旋转,减小进水阀开度。
这样,经反复几次调整后,进水阀开度将被调整在一适当的位置,进水量等于出水量,水位维持在设定值上。
在图1-12所示水位控制系统中,被控对象是水箱,系统输出量水位高,执行机构是功率放大装置、电机和进水阀门,测量装置浮子杠杆机构,给定和比较装置由电位器来完成。
1-4工作台位置液压控制系统如图1-13所示,该系统可以使工作台按照给定电位器设定的规律运动。
自动控制原理一、简答题:(合计20分, 共4个小题,每题5分)1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面说明该系统会有什么样的表现?并解释原因。
2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲线在穿越频率处的斜率为多少?为什么?3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。
4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一个开环极点对系统根轨迹走向的影响。
二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。
求m 、k 和μ的值。
(合计20分)F)t图(a) 图(b)三、已知一控制系统的结构图如下,(合计20分, 共2个小题,每题10分)1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调节时间s t 和峰值时间p t ;2) 当()21(),()4sin3r t t n t t =⋅=时,求系统的稳态误差。
四、已知最小相位系统的开环对数幅频特性渐近线如图所示,c ω位于两个交接频率的几何中心。
1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。
2) 计算超调量%σ和调节时间s t 。
(合计20分, 共2个小题,每题10分) [1%0.160.4(1)sin σγ=+-,s t =五、某火炮指挥系统结构如下图所示,()(0.21)(0.51)KG s s s s =++系统最大输出速度为2 r/min ,输出位置的容许误差小于2,求:1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕量; 2) 前向通路中串联超前校正网络0.41()0.081c s G s s +=+,试计算相位裕量。
(合计20分, 共2个小题,每题10分)(rad/s)自动控制原理模拟试题3答案答案一、 简答题1. 如果二阶控制系统阻尼比小,会影响时域指标中的超调量和频域指标中的相位裕量。
1、 已知系统方框图如图1所示,试计算传递函数)()(11s R s C ,)()(12s R s C ,)()(21s R s C 及)()(22s R s C 。
解: 计算传递函数)()(11s R s C 时,在方框图中需设0)(2=s R ,画出如图A-1(a)所示的)(1s R 为输入、)(1s C 为输出的方框图。
由图A-1(a)求得传递函数)()(11s R s C 为)()()()(1)()()(4321111s G s G s G s G s G s R s C -= 计算传递函数)()(12s R s C 时,在方框图中需设0)(2=s R ,画出如图A-1(b)所示的)(1s R 为输入、)(2s C 为输出的方框图。
图 1 第1题题图图A- 1(a )图A- 1(b )由图A-1(b)求得传递函数)()(12s R s C 为 )()()()(1)()()()()(432132112s G s G s G s G s G s G s G s R s C --= 计算传递函数)()(21s R s C 时,在方框图中需设0)(1=s R ,画出如图A-1(c)所示的)(2s R 为输入、)(1s C 为输出的方框图。
由图A-1(c)求得传递函数)()(21s R s C 为 )()()()(1)()()()()(432143121s G s G s G s G s G s G s G s R s C --= 计算传递函数)()(22s R s C 时,在方框图中需设0)(1=s R ,画出如图A-1(d)所示的)(2s R 为输入、)(2s C 为输出的方框图。
由图A-1(d)求得传递函数)()(22s R s C 为)()()()(1)()()(4321322s G s G s G s G s G s R s C -=2、设已知描述某控制系统的运动方程组如下)()()()(11t n t c t r t x +-=)()(112t x K t x =)()()(523t x t x t x -=图A- 1 (b)图A- 1(c )图A-1(d ))()(34t x dtt dx T = )()()(2245t n K t x t x -=dtt dc dt t c d t x K )()()(2250+= 式中 )(t r :系统控制信号输入(输入变量))(),(21t n t n :系统扰动信号(输出变量))(t c :系统的被控制信号(输出变量))()(51t x t x :中间变量210K K K :常值增益T :时间常数 试绘出系统的方框图,并由方框图求取闭环传递函数)()(s R s C 、)()(1s N s C 、)()(2s N s C解:(1)绘制系统方框图对题中运动方程组取拉氏变换,设初始条件为零,得:)()()()(11s N s C s R s X +-=)()(112s X K s X =)()()(523s X s X s X -=)()(34s X s TsX =)()()(2245s N K s X s X -=)()()(250s sC s C s s X K +=根据以上各式,按照变量之间传递关系,绘出系统结构如下图A-2-1所示(2)求取闭环传递函数)()(s R s C 、)()(1s N s C 、)()(2s N s C求取闭环传递函数)()(s R s C 时,令0)(1=s N 以及0)(2=s N ,由图A-2得 102310201201)1(1111111)()(K K s s T Ts K K s s K TsTs K s s K Ts Ts K s R s C 由于扰动信号)(1t n 与控制信号)(t r 在系统中作用点相同,所以1023101)1()()()()(K K s s T Ts K K s R s C s N s C 求取闭环传递函数)()(2s N s C 时,需令0)(1=s N 及0)(=s R ,图A-2-1改画成图A-2-2 (a),图(a )可等效画成图A-2-2(b ),由图A-2-1 (b)得:图A- 2- 1图A- 2-210232010022)1()1(1)1()1(1111)1()1(111)()(K K s s T Ts Ts K K K Ts s s K Tss s K Ts K s N s C ++++-=-⋅⋅+⋅---+⋅---=3、求取题图所示电路传递函数)()(12s U s U解答:首先计算传递函数)()(13s U s U ,此时将2LR 电路看做与电容C 并联的负载,应用复阻抗法写出传递函数)()(13s U s U 为 )(||1)(||1)()(21213R Ls CsR R Ls Cs s U s U +++= 式中:Cs1、Ls 分别为电容C 及电感线圈L 的复阻抗; )(||12R Ls Cs +表示复阻抗Cs1与复阻抗)(2R Ls +的并联值。