钢的热处理基础知识
- 格式:ppt
- 大小:6.32 MB
- 文档页数:20
钢的热处理基本知识,很实用钢的热处理是将固态金属或合金在一定介质中加热、保温和冷却,以改变其组织,从而获得所需性能的工艺方法。
热处理和其他加工工艺(锻压、铸造、焊接、切削加工)不同,它的目的不是改变钢件的外形和尺寸,而是改变其内部组织和性能。
在机械零件或工模具的制造过程中,往往要经过各种冷、热加工,同时在各加工工序之间还经常要穿插多次热处理工艺。
按其作用可分为预先热处理和最终热处理,它们在零件的加工工艺路线中所处的位置如下:铸造或锻造→预先热处理→机械(粗)加工→最终热处理→机械(精)加工为使工件满足使用条件下的性能要求的热处理称为最终热处理,如淬火+回火等工序;为了消除前道工序造成的某些缺陷,或为随后的切削加工和最终热处理作好组织准备的热处理,称为预先热处理,如退火、正火工序。
钢的热处理的工艺过程包括加热、保温和冷却三个阶段,它可用温度—时间坐图形来表示,称为钢的热处理工艺曲线如图1所示。
图1 热处理工艺曲线一、热处理工艺的分类根据热处理的目的要求及加热和冷却方法的不同,一般可将钢的热处理工艺按如图2所示进行分类。
图2 钢的热处理分类二、常用热处理设备根据热处理的基本过程,热处理设备有加热设备、冷却设备和检验设备等。
(一)加热设备加热炉是热处理车间的主要设备,通常的分类方法为:按能源分为电阻炉、燃料炉;按工作温度分为高温炉(>1000℃)、中温炉(650~1000℃)、低温炉(<600℃);按工艺用途分为正火炉、退火炉、淬火炉、回火炉、渗碳炉等;按形状结构分为箱式炉、井式炉等。
常用的热处理加热炉有电阻炉和盐浴炉。
1.箱式电阻炉箱式电阻炉是由耐火砖砌成的炉膛及侧面和底面布置的电热元件组成通电后。
电能转化为热能,通过热传导、热对流、热辐射达到对工件的加热。
箱式电阻炉的选用,一般根据工件的大小和装炉量的多少。
中温箱式电阻炉应用最为广泛,常用于碳素钢、合金钢零件的退火、正火、淬火及渗碳等。
如图3所示为中温箱式电阻炉的结构示意图。
热处理定义:钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。
2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。
加热温度、保温时间和冷却方式是热处理最重要的三个基本工艺因素。
退火1、定义:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。
2、目的:降低硬度,均匀化学成分、改善切削加工性能和冷塑性变形性能、消除或减少内应力、为零件最终热处理准备合适的内部组织。
3、分类球化退火:为使工件中的碳化物球状化而进行的退火。
去应力退火:为去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余应力而进行退火。
正火1、定义:将钢材或钢件加热到一定温度,保温适当时间,使之完全奥氏体化,然后在空气中冷却,以得到珠光体组织的热处理工艺。
2、目的:改善切削性能,消除毛坯内应力,细化晶粒、提高硬度、获得比较均匀的组织和性能。
退火和正火的区别退火和正火属于预备热处理工艺,对于含碳量相同的工件,正火后的强度和硬度要高于的退火的。
例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理;含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。
一般用于锻件、铸件和焊接件。
退火一般安排在毛坯制造之后,粗加工之前进行。
渗碳1、定义:为提高工件表层的含碳量并在其中形成一定的碳含量梯度,在渗碳炉中将低碳钢在渗碳介质中加热、保温,使碳原子渗入工件表面,然后进行淬火的化学热处理工艺。
2、目的:使低碳钢的表面层含碳量增加到0.85~1.10%,然后再经淬火、低温回火处理以消除应力和稳定组织,使钢件表面层具有高硬度(HRc56~62),增加耐磨性及疲劳强度等。
钢的热处理
钢是最常见的金属材料,由于其优越的物理性能和加工性能,钢广泛应用于各行各业,因而需要进行热处理来提高其性能。
热处理是一种处理方法,它将钢通过加热、冷却、调质等物理方法,在获得所需性能的同时,改变钢的组织结构。
热处理的方法有很多,其中包括正火处理和退火处理等。
正火处理是指在高温下,将钢的组织结构变得更加紧密,使其力学性能和强度提高。
正火处理通常可以用于提高钢的强度、耐腐蚀性和耐磨损性能。
退火处理指将加热后的钢放置在一定的温度,然后慢慢冷却,直至钢内部的组织结构发生变化,使其柔韧性和可塑性提高。
退火处理可以用于提高钢的塑性和韧性,以及防止它易于疲劳断裂。
此外,调质处理也是一种常见的热处理方法,它可以改变钢内部的组织结构,从而改变钢的物理性能和化学成分。
以上就是热处理的基本内容,不同的热处理方法可以满足不同的需求,根据钢材的需求和性能,采取适当的热处理技术来改善钢材的性能,是提高钢材质量的重要手段。
为了使钢材的热处理质量更好,应严格控制热处理过程的参数,选择合适的热处理工艺,并加以监控,以确保热处理的质量。
钢的热处理是一项技术活动,也是一个复杂的系统工程,未来,热处理技术将会有更大的发展,同时,热处理技术也将会面临更大的挑战,以满足不断变化的市场需求。
常用热处理的基本知识一. 退火目的及工艺退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。
其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。
退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。
不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。
对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。
对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。
1. 完全退火完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。
它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。
低碳钢和过共析钢不宜采用完全退火。
低碳钢完全退火后硬度偏低,不利于切削加工。
过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。
2. 等温退火完全退火所需时间很长,特别是对于某些奥氏体比较稳定的合金钢,往往需要几十小时,为了缩短退火时间,可采用等温退火。
等温退火的加热温度与完全退火时基本相同,钢件在加热温度保温一定时间后,快冷至A r1以下某一温度等温,使奥氏体转变成珠光体,然后出炉空冷。
图5.26为高速钢的完全退火与等温退火的比较,可见等温退火所需时间比完全退火缩短很多。
A r1以下的等温温度,根据要求的组织和性能而定;等温温度越高,则珠光体组织越粗大,钢的硬度越低。
3. 球化退火球化退火是使钢中渗碳体球化,获得球状(或粒状)珠光体的一种热处理工艺。
主要用于共析和过共析钢,其主要目的在于降低硬度,改善切削加工性能;同时为后续淬火作好组织准备。
常用钢的处理热工艺,正火、退火、淬火、回火的基础知识摘要:常用钢的处理热工艺,正火、退火、淬火、回火的基础知识1.正火的基本概念正火是将亚共析钢加热到Ac3+30~50℃,共析钢加热到Ac1...常用钢的处理热工艺,正火、退火、淬火、回火的基础知识1. 正火的基本概念正火是将亚共析钢加热到Ac3+30~50℃,共析钢加热到Ac1+30~50℃,过共析钢加热到Ac cm+30~50℃保温后空冷的工艺。
正火比退火冷却速度大。
正火的目的:(1)对于低、中碳钢(≤0.6%C),目的与退火的相同。
(2)对于过共析钢,用于消除网状二次渗碳体,为球化退火作组织准备。
(3)普通件最终热处理。
要改善切削性能,低碳钢用正火,中碳钢用退火或正火,高碳钢用球化退火。
2. 退火的基本概念将钢件加热至高于或低于钢的临界温度,经适当保温后随炉或埋入导热性较差的介质中缓慢冷却,以获得接近平衡状态组织的热处理工艺。
退火的目的:(1)调整硬度,便于切削加工。
适合加工的硬度为170-250HB;(2)消除内应力,防止加工中变形;(3)细化晶粒,为最终热处理作组织准备。
退火的种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火、再结晶退火。
3. 淬火的基本概念将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上(30~50)℃,保温后在水或油中快速冷却的操作工艺称为淬火。
一般是为了获得马氏体组织,随后再配合适当的回火,以获得多种多样的使用性能。
碳钢的淬火温度主要由钢中的含C量根据Fe-Fe3C相图来确定,如图所示为淬火加热温度范围。
在对金属进行淬火处理时,需要将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却。
可根据淬火的冷却速度进行区分,常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。
常用的淬火方法包括单液淬火法、双液淬火法、分级淬火法、等温淬火法。
4. 回火的基本概念回火是指将淬火钢加热到A1以下的某温度保温适当时间后,置于空气或水中冷却的工艺。
1.3钢的热处理钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。
热处理的目的是提高工件的使用性能和寿命。
还可以作为消除毛坯〔如铸件、锻件等〕中缺陷,改善其工艺性能,为后续工序作组织准备。
钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下:钢在加热时的组织转变在Fe-Fe3C相图中,共析钢加热超过PSK线〔A1〕时,其组织完全转变为奥氏体。
亚共析钢和过共析钢必须加热到GS线〔A3〕和ES线〔Acm〕以上才能全部转变为奥氏体。
相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的。
加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。
加热和冷却速度越大,其偏离平衡临界点也越大。
为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm,任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。
1.奥氏体的形成共析钢加热到Ac1以上由珠光体全部转变为奥氏体第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。
亚共析钢和过共析钢的奥氏体形成过程与共析钢根本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。
所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。
2.奥氏体晶粒的长大及影响因素钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。
加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织那么粗大。
钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。
〔1〕奥氏体晶粒度晶粒度是表示晶粒大小的一种量度。
(2〕、影响奥氏体晶粒度的因素1〕加热温度和保温时间:加热温度高、保温时间长,A晶粒粗大。
热处理基础知识总结热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。
一、热处理1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。
3、固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺。
4、时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
5、固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型。
6、时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度。
7、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。
8、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
9、钢的碳氮共渗:碳氮共渗是向钢的表层同时渗入碳和氮的过程。
习惯上碳氮共渗又称为氰化,以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。
中温气体碳氮共渗的主要目的是提高钢的硬度,耐磨性和疲劳强度。
低温气体碳氮共渗以渗氮为主,其主要目的是提高钢的耐磨性和抗咬合性。
10、调质处理(quenching and tempering):一般习惯将淬火加高温回火相结合的热处理称为调质处理。
调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。
调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。
它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。
热处理的基本知识:四把火:退火、正火、淬火、回火1、退火:加热到一定的温度,保温适当的时间,缓慢冷却(炉冷),获得接近平衡状态的组织。
(1):完全退火:用于细化晶粒,改善切削加工性能,一般用于预处理。
T:对于亚共析钢:Ac3+30~50℃, 炉冷;得到的组织:P+F 对于过共析钢:Ac1+20~30℃, 炉冷; 得到的组织:P+Fe3C (2):去应力退火:消除应力的退火工艺。
加热温度低于Ac12、正火:加热到Ac或Acm以上一定的温度,保温适当的时间,冷却(空冷),获得含有珠光体组织的工艺。
3、淬火:将钢加热到相变点以上,快速冷却(水冷、油冷),获得马氏体组织,使钢材强化的热处理工艺。
对于碳素钢:水冷(20#,45#,T10);对于合金钢:油冷(40Cr,GCr15,65Mn)对于亚共析钢:Ac3+30~50℃, 水冷或油冷;得到的组织:M+A’对于过亚共析钢:Ac1+40~60℃, 水冷或油冷;得到的组织:M+A’+Fe3C 淬火之后必须进行回火,以消除应力,改变组织,满足不同强韧性要求。
(1):对于工具钢、模具、量具:淬火+低温回火,目的是提高强度,降低脆性。
低温回火:温度在180~250℃左右,保温时间为1~2小时左右,空冷。
组织:M回+Fe3C;(2):弹簧钢:65Mn ,5CrMoMo。
工艺:淬火+中温回火中温回火:温度在350~500℃,空冷。
回火后的组织为回火屈氏体(T')组织,由于回火温度的升高,使硬度略有降低,并使淬火钢中的内应力大大减少,并且具有高的弹性极限,有较好的塑性及韧性。
(3)淬火+高温回火(调质处理):提高材料的综合机械性能,具有良好的强韧性。
高温回火:加热温度在500~650℃之间,空冷。
回火后的组织为回火索氏体S'。
调质处理可适用于主轴、连杆。
重要件。
热处理的工序,一般为:铸件(锻件)——预备热处理——机加工——最终热处理——磨削加工预备热处理:退火、正火(含碳量小于0.4%)最终热处理:淬火+回火表面处理:表面淬火(感应叫热表面淬火):许多机器零件在扭转、弯曲等交变载荷下工作,有时表面要受磨擦,承受交变或脉冲动接触压力,有时还承受冲击,例如:传动轴、传动齿轮。
1、退火是指把钢加热到某一温度,经保温后缓慢冷却(随炉冷却或在导热能力差的介质中冷却),以获得接近平衡组织的工艺方法。
目的:降低硬度以便于切削加工;提高塑性以利于塑性加工成形;细化晶粒以提高力学性能;消除应力以防止变形和开裂。
2、正火是指把钢加热到A3线(对亚共析钢)或Acm线(对过共析钢)以上30-50度,保温后,在静止空气中冷却的处理工艺。
3、淬火是指把钢加热到组织转变温度(A3或A1)以上30-50度,保温后快速冷却的处理工艺。
其目的在于获得马氏体组织,使钢具有高硬度和高耐磨性。
淬火是强化钢材的重要方法。
4、回火是把淬火后的钢加热到A1线以下某一温度,保温后冷却至室温的处理工艺。
这是淬火工件必须进行的一个工序,它决定了该工件在使用状态时的组织和性能,也可以说是决定了工件的使用性能和寿命。
回火的目的是为了消除淬火时因冷却过快而产生的内应力,降低淬火工件的脆性,稳定工件尺寸和使工件具有符合符合工作条件的性能。
A1:共析钢平衡状态下A化温度 Ac1:实际加热时共析钢的A化温度,高于A1温度A3:亚共析钢平衡转变A化温度 Ac3:实际加热时亚共析钢的A化温度,高于A3温度Acm:过共析钢平衡转变A化温度Accm::实际加热时过共析钢的A化温度,高于A3温度回火编辑词条回火是工件淬硬后加热到AC1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。
目录1 基本介绍2 主要目的3 主要分类4 钢的回火5 注意事项6 同名电影展开1 基本介绍编辑本段中文名称:回火英文名称:tempering定义:将淬火后的钢,在AC1以下加热、保温后冷却下来的热处理工艺。
应用学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)回火是将淬火钢加热到奥氏体转变温度以下,保温1到2小时后冷却的工艺。
回火往往是与淬火相伴,并且是热处理的最后一道工序。
经过回火,钢的组织趋于稳定,淬火钢的脆性降低,韧性与塑性提高,消除或者减少淬火应力,稳定钢的形状与尺寸,防止淬火零件变形和开裂,高温回火还可以改善切削加工性能。
钢热处理知识点总结钢热处理包括退火、正火、淬火、回火等工艺,每种工艺都有其特定的用途和处理目的。
在进行钢热处理时,需要注意控制加热温度、保持时间、冷却速度和回火温度等参数,以确保钢材达到预期的性能要求。
下面将对钢热处理的几种常用工艺进行介绍和总结。
1. 退火退火是指将钢材加热到一定温度,然后保持一段时间后逐渐冷却到室温的热处理工艺。
退火的目的是消除加工硬化组织,降低硬度,改善加工性能和机械性能。
根据加热温度和冷却速度的不同,退火可分为全退火、球化退火、等温退火等。
全退火是指将钢材加热到临界温度以上(即A3以上),保温一定时间后,通过控制冷却速度,使其逐渐冷却到室温。
全退火可以降低硬度,提高塑性,改善机械性能和加工性能。
球化退火是将冷作硬化的钢材加热到一定温度(通常在A1以上),然后以较慢的速度冷却到适当的温度,保持一段时间后再冷却到室温。
球化退火能够使碳化物分解成球状的形态,降低硬度,提高韧性和塑性。
等温退火是将钢材加热到临界温度以上,然后快速冷却到适当的温度,保持一段时间后再冷却到室温。
等温退火主要用于淬火后的马氏体组织调质,提高韧性和强度。
2. 正火正火是将低碳钢在较低的温度下加热保温,然后冷却的热处理工艺。
正火的目的是降低硬度,提高韧性和强度,改善加工性能。
正火温度通常在A1以下,冷却速度较慢。
正火后的钢材组织为粗珠光体组织,具有较高的韧性和塑性。
3. 淬火淬火是将钢材加热到临界温度以上,然后迅速冷却到介质温度以下的热处理工艺。
淬火的目的是在快速冷却的条件下形成马氏体组织,提高钢材的硬度和强度。
淬火可分为油淬、水淬和气淬等,根据不同的冷却介质和速度,可以得到不同的组织和性能。
油淬是将加热到临界温度以上的钢材迅速浸入预热的油中冷却,以降低冷却速度,得到较高的硬度。
水淬是将加热的钢材迅速浸入水中冷却,冷却速度较快,能够得到更高的硬度。
气淬是将加热的钢材放置在气氛中进行冷却,通常用于合金钢的淬火。
钢的热处理1、钢的热处理工艺主要有几种退火、淬火、正火、回火、外表热处理2、什么是同素异构转变、多形性转变同素异构转变:纯金属在温度和压力变化时,由某一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。
多形性转变:在固溶体中发生的由一种晶体结构转变为另一种晶体结构的过程称为多形性转变。
3、奥氏体及其结构特点奥氏体是碳在γ-Fe中的间隙固溶体,具有面心立方结构。
奥氏体的面心立方结构使其具有高的塑性和低的屈服强度,在相变过程中容易发生塑性变形,产生大量位错或出现孪晶,从而造成相变硬化和随后的再结晶、高温下经历的反常细化以及低温下马氏体相变的一系列特点。
4、共析碳钢在加热转变时,奥氏体优先形核位置及原因奥氏体的形核1〕球状珠光体中:优先在F/Fe3C界面形核2〕片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核奥氏体在F/Fe3C界面形核原因:(1) 易获得形成A所需浓度起伏,结构起伏和能量起伏.(2) 在相界面形核使界面能和应变能的增加减少。
△G = -△Gv + △Gs + △Ge△Gv—体积自由能差,△Gs —外表能,△Ge —弹性应变能5、珠光体向奥氏体转变的三阶段,并说明为什么铁素体完全转变为奥氏体后仍然有一局部碳化物没有溶解?〔1〕奥氏体的形核;〔2〕奥氏体的长大;〔3〕剩余碳化物的溶解和奥氏体成分的均匀化;奥氏体长大的是通过γ/α界面和γ/Fe3C界面分别向铁素体和渗碳体迁移来实现的。
由于γ/α界面向铁素体的迁移远比γ/Fe3C界面向Fe3C的迁移来的快,因此当铁素体已完全转变为奥氏体后仍然有一局部渗碳体没有溶解。
6、晶粒度概念奥氏体本质晶粒度:根据标准试验方法,在930±10°C保温足够时间后测得的奥氏体晶粒大小。
奥氏体起始晶粒度:在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚相互接触时的晶粒大小奥氏体实际晶粒度:在某一加热条件下所得的实际奥氏体晶粒大小。