土压力系数表(Ka Kp表)
- 格式:pdf
- 大小:68.27 KB
- 文档页数:1
主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。
被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。
上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。
由图可知P p >P o >P a 。
朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。
土体中产生的两组破裂面与水平面的夹角为245ϕ-︒。
朗肯主动土压力的计算根据土的极限平衡条件方程式σ1=σ3tg 2(45°+2ϕ)+2c ·tg(45°+2ϕ) σ3=σ1tg 2(45°-ϕ)-2c ·tg(45°-ϕ)当z=H 时p a =γHK a -2cK a在图中,压力为零的深度z 0,可由p a =0的条件代入式(6-3)求得a0K c 2z γ=(6-4)在z 0深度范围内p a 为负值,但土与墙之间不可能产生拉应力,说明在z 0深度范围内,填土对挡土墙不产生土压力。
主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。
被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。
上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。
由图可知P p >P o >P a 。
朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。
土体中产生的两组破裂面与水平面的夹角为245ϕ-︒。
朗肯主动土压力的计算根据土的极限平衡条件方程式σ1=σ3tg 2(45°+2ϕ)+2c ·tg(45°+2ϕ) σ3=σ1tg 2(45°-ϕ)-2c ·tg(45°-ϕ)a0K c 2z γ=(6-4)在z 0深度范围内p a 为负值,但土与墙之间不可能产生拉应力,说明在z 0深度范围内,填土对挡土墙不产生土压力。
墙背所受总主动土压力为P a ,其值为土压力分布图中的阴影部分面积,即γ+-γ=--γ=22c 2K cH 2K H 21)z H )(K c 2HK (21P a a 0a a a (6-5)2)填土为无粘性土(砂土)时根据极限平衡条件关系方程式,主动土压力为a a zK )245(ztg p 2γ=ϕ-︒γ= (6-6)上式说明主动土压力P a 沿墙高呈直线分布,即土压力为三角形分布,如图6-6所示。
土压力系数
主动土压力系数(ka):是计算主动土压力强度和总土压力的必备参数,其数值的大小和正确性是基坑支护设计的成败和是否经济可靠的重要因素。
主动土压力系数K a是计算主动土压力的基础。
工程实际中很多情况需采用主动土压力进行挡土墙的稳定和强度验算等。
主动土压力系数的取值直接影响主动土压力的计算结果,进而影响着挡土墙的稳定性、安全性和造价。
被动土压力系数(Kp):是计算被动土压力强度和总土压力的必备参数,其数值的大小和正确性是基坑支护设计的成败和是否经济可靠的重
要因素。
用朗肯土压力理论或库仑土压力理论计算被动土压力公式中的系数Kp。
它是墙后填土的内摩擦角φ、墙背倾角α、地面坡角β以及墙背与填土间的摩擦角δ的函数。
土压力系数表。
土主动被动土压力概念及计算公式土的主动土压力是指土体由于自身的重力和内摩擦力对支撑结构施加的侧向压力,是土与支撑结构之间产生的相互作用力。
被动土压力是指土体由于支撑结构对其施加的侧向位移产生的反作用力。
主动土压力和被动土压力是土与支撑结构之间相互依存的,主动土压力存在的同时,支撑结构会对土体产生位移,从而形成被动土压力。
主动土压力的计算公式:根据库仑公式,土体的主动土压力与土的内摩擦角和有效土的重度有关。
当土壤处于稳定的状态下,主动土压力的计算公式可以使用库仑公式:Ka = (1 - sinφ)/ (1 + sinφ)其中,Ka为土的主动土压力系数,φ为土的内摩擦角。
当土壤处于不稳定状态下,土壤会发生一定的位移,此时主动土压力的计算公式可以使用布埃克斯公式:Kp = (1 - sinφ) / (1 + sinφ) * (1 - δ)其中,Kp为土的主动土压力系数,φ为土的内摩擦角,δ为土的位移系数。
被动土压力的计算公式:被动土压力的计算与主动土压力相比更为复杂,常使用简化方法进行估算。
其中一种常用的方法是考虑土的剪切模量和侧方向支撑结构的刚度,通过应力均衡原理进行计算。
以挡土墙为例,假设墙体与土壤之间存在一个垂直面,墙体高度为H,墙体倾斜角度为β,土壤密度为γ,土壤的无侧限抗压强度为c,挡土墙的自重为G。
根据应力均衡原理可以得到被动土压力的计算公式:F = Kp * γ * H * H * tan²(β/2) / 2 + c * B * H其中,F为被动土压力大小,Kp为土的被动土压力系数,γ为土的容重,H为挡土墙的高度,β为挡土墙的倾斜角度,B为挡土墙的宽度。
需要注意的是,土压力的计算还需要考虑土壤的附加应力、水对土壤的影响、土体的性质等因素,并且不同的土体和结构类型都有相应的计算方法和参数。
因此,在实际工程中,需要根据具体情况进行合理的土压力计算和设计。
[ 指南] 土体主动、主动土压力概念及计算公式主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。
a被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。
上述三种土压力的移动情况和它们在相同条件下的数值比较,p可用图6-2 来表示。
由图可知P,P,P。
poa朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin)1857 年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中, 首先作出以下基本假定。
(1) 挡土墙是刚性的墙背垂直;(2) 挡土墙的墙后填土表面水平;(3) 挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过Z 值,ZXZ当土墙挤压土体使Z增大到使土体达到被动极限平衡状态时,如图6-4的应力园O, Z x3z变为小主应力,Z变为大主应力,即为朗肯被动土压力(p) 。
土体中产生的两组破裂面与xp,45:, 水平面的夹角为。
2 朗肯主动土压力的计算根据土的极限平衡条件方程式,,2 Z =Z tg(45?+)+2c?tg(45?+) 1322,,2 Z =Z tg(45?-)-2c?tg(45?-) 3122土体处于主动极限平衡状态时,Z = Z = Y Z, Z = Z =p,代入上式得1z3xa1) 填土为粘性土时填土为粘性土时的朗肯主动土压力计算公式为,,2,ap= γztg(45?-)-2c?tg(45?-)= γzK-2c (6-3) aa22由公式(6-3) ,可知,主动土压力p 沿深度Z 呈直线分布,如图6-5 所示。
顶管法管道穿越交通量不大的四级公路或农村等级公路时,可以采用开槽法,即把路面挖开,其施工方法和一般地段相同。
只是特别要注意一定要做好垫层,夯实回填土,以防止路面下沉。
管道穿越Ⅰ、Ⅱ、Ⅲ级公路和铁路,以及不允许开槽的地段时,可以采取顶管法。
由我公司承建的杭州天然气城市管网建设施工中由于设计管线横穿一条重要铁路,为防止使用定向转穿越会对铁路路基产生下沉的风险,而采用了顶管穿越法。
管道穿越铁路时,一般要加套管。
套管多采用钢管或钢筋混凝土管,顶钢套管时,应在管前方焊上防腐层保护钢圈。
顶好套管后随即牵引工作管,牵引时防止损伤工作管防腐层。
顶管法的基本操作程序如下:先在铁路一侧挖工作坑,在工作坑内按管道设计位置,根据管子外径尺寸在地层内挖土洞,边挖土边用千斤顶等顶进设备把管节逐节顶入土洞内。
反复操作,直至顶到予计长度为止。
大口径管可采用普通顶管法(人工出土),小口径管可以采用不出土挤压法。
一、顶进设施及顶进设备顶进设施是指施工时现场的临时性设施,包括工作坑、后背、导轨、基础等。
顶进设备主要有千斤顶、顶铁、刃脚。
1、工作坑①工作坑宽度BB=D+(2.5~3.0)米式中D—管节外径②长度LL=l+(3~3.5)米式中l—管节长度,钢筋砼管为2米左右。
③高度HH=D+h1+h2(米) 式中h1—基础厚;h2—管子与基础间间隙;h3—地面到管顶。
为了方便管节接口处理,要求接口底部有一定操作空间,称为接口操作井,操作井设在顶管进口以外最少1.5米处。
在工作坑内还应设置管道轴线基桩、临时水准点,做为测量标志。
2、后座墙后座墙位于顶管工作坑内顶进方向的对面,是顶进管节的千斤顶的支撑面。
后座墙的最低强度应在设计顶力的作用下不被破坏,并能充分发挥千斤顶的顶进效率。
后座墙表面平直,垂直于顶进管线的轴线,保证顶进方向。
后座墙有原土后座墙和人工后座墙。
原土后座墙主要由原状土承力。
原状土应有足够的厚度、高度,一般厚度不小于7米,以保证稳定性。
[指南]土体主动、主动土压力概念及计算公式主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。
a被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。
上述三种土压力的移动情况和它们在相同条件下的数值比较,p可用图6-2来表示。
由图可知P,P,P。
poa朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直;(2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。
土体中产生的两组破裂面与xp,45:,水平面的夹角为。
2朗肯主动土压力的计算根据土的极限平衡条件方程式,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa1)填土为粘性土时填土为粘性土时的朗肯主动土压力计算公式为,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。