图形的相似整章教案及练习
- 格式:doc
- 大小:1.42 MB
- 文档页数:6
图形的相似优秀教案【篇一:教案:图形的相似全章教案】【篇二:27.1图形的相似(第1课时)教学设计】课题:27.1图形的相似(第1课时)教学设计一、教学目标知识技能1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.过程与方法1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。
3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度价值观1.积极参与数学活动,对数学有好奇心和求知欲。
2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。
3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
4.敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:??(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:??(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4)(5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)c/ac/ab/师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)ab与a′b′的比是abab(板书:),bc与b′c′的比aⅱbaⅱbbcbccaca是(板书:),ca与c′a′的比是(板书:),这三bⅱcbⅱccⅱacⅱa个比相等吗?生:(齐答)相等.师:为什么相等?(稍停后指准图)△a′b′c′可以看成是△abc缩小得到的,假如ab是a′b′的2倍,那么可以想象,bc也是b′c′的2倍,ca也是c′a′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. d/da/ (师出示下图) a c/cb/师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′)师:(指图)这两个相似四边形的边有什么关系?生:abbccadaabbccada===.(生答师板书:===)aⅱbbⅱccⅱadⅱaaⅱbbⅱccⅱadⅱa师:(指式子)这四个比为什么相等?(稍停后指准图)四边形a′b′c′d′可以看成是四边形abcd放大得到的,假如ab是a′b′的一半,那么可以想象,bc也是b′c′的一半,cd也是c′d′的一半,da也是d′a′的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:??(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:??(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义.(师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形. 师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节a5 a/3 110bbc c/(1)两个等边三角形一定相似;()(2)两个正方形一定相似;()(3)两个矩形一定相似;()(4)两个菱形一定相似. ()(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:p35练习1.p38习题1.4.)教学反思:注意讲课节奏,对学困生要跟踪辅导注意少讲多练,提高课堂效率;注意调动学生的积极性,培养认真细致,勤奋钻研的品质。
图形的相似全章自制简易教案一、教学目标知识与技能:1. 理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 能够运用相似图形解决实际问题,提高空间想象能力。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的动手能力和思维能力。
2. 学会用数学语言描述图形之间的相似关系,提高数学表达能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心,激发学生学习图形的相似性的热情。
2. 培养学生的团队协作精神,学会与他人交流和分享。
二、教学内容第一课时:相似图形的概念1. 引入:通过观察生活中常见的图形,如卫星图片、动物图形等,引导学生发现图形的相似性。
2. 讲解:讲解相似图形的定义,强调对应边成比例、对应角相等的特征。
3. 例题:分析并解决一些判断相似图形的问题,让学生加深对相似图形的理解。
第二课时:相似图形的性质1. 引入:通过观察和操作,让学生发现相似图形的一些性质,如面积比、周长比等。
2. 讲解:讲解相似图形的性质,包括面积比、周长比、角度相等等。
3. 例题:解决一些有关相似图形性质的问题,让学生学会运用性质解决问题。
第三课时:相似图形的判定1. 引入:通过观察和操作,引导学生发现判定相似图形的方法。
2. 讲解:讲解判定相似图形的方法,如AA相似定理、AAA相似定理等。
3. 例题:解决一些有关判定相似图形的问题,让学生学会运用判定方法解决问题。
第四课时:相似图形在实际中的应用1. 引入:通过实际问题,引导学生思考如何运用相似图形解决问题。
2. 讲解:讲解相似图形在实际中的应用,如测量物体长度、计算物体体积等。
3. 例题:解决一些实际问题,让学生学会运用相似图形解决实际问题。
第五课时:总结与复习1. 回顾本章所学内容,让学生总结相似图形的概念、性质和判定方法。
2. 通过复习题,巩固学生对相似图形的理解和运用能力。
三、教学资源1. PPT课件:制作精美的PPT课件,配合生动的语言和图片,吸引学生的注意力。
新人教版九年级数学下册《第二十七章相似》全章教案本文已经没有格式错误和明显有问题的段落了,但是可以对每段话进行小幅度的改写,以增强文章的流畅性和可读性。
第一节课重点讲解了相似图形的概念和运用方法。
通过一些日常生活中的例子,让学生们理解了相似图形的形状和大小可以不同,但是它们的形状相同。
同时,老师还通过线段的长度比例的例子,让学生们理解了相似图形的比例关系。
在例题讲解中,老师通过选择题的形式,让学生们运用相似图形的特征,判断哪个图形与左边的图形相似。
同时,老师还给出了一道关于比例尺的例题,让学生们运用相似图形的知识,计算出实际距离。
第二节课重点讲解了相似多边形的主要特征和识别方法。
老师让学生们了解到相似多边形的对应角相等,对应边的比相等。
通过一些实例,让学生们学会了如何识别相似多边形,并运用其性质进行计算。
总的来说,本章节的教学目标是让学生们掌握相似图形和相似多边形的概念和运用方法。
通过一些生动的例子和实例,让学生们更好地理解和掌握知识点。
在研究第26页的内容时,学生需要了解判别两个多边形是否相似的条件。
这些条件包括对应角是否相等,对应边的比是否相等,这两个条件缺一不可。
如果要说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或者举出合适的反例。
在解决这个问题时,依靠直觉观察是不可靠的。
课堂引入:1.对于图中的两个相似的四边形,它们的对应角和对应边的比是否相等。
2.相似多边形的特征是对应角相等,对应边的比相等。
如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比是相似多边形对应边的比。
4.当相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形。
例1(补充)(选择题):下列说法正确的是D。
因为任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似。
例(教材P26例题):要求相似多边形中的某些角的度数和某些线段的长,可以根据相似多边形的对应角相等,对应边的比相等来解题。
第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是()答案:B解析:略(2)下列各组数中成比例的是()A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得05203018010===z y x , 解得x=40,y=45,z=75. (二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
图形的相似全章自制简易教案一、教学目标:知识与技能:1. 理解相似图形的概念,识别相似图形。
2. 学会用比例尺表示图形间的相似关系。
3. 掌握相似图形的性质,能够运用相似性质解决实际问题。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
2. 学会利用图形相似解决实际问题,提高学生的解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和团队合作意识。
2. 让学生体验到数学与生活的紧密联系,增强学生应用数学的意识。
二、教学内容:第一课时:相似图形的概念1. 通过观察、操作,让学生初步理解相似图形的概念。
2. 学会用比例尺表示图形间的相似关系。
第二课时:相似图形的性质1. 探索相似图形的性质,了解相似图形的对应边成比例、对应角相等。
2. 学会运用相似性质解决实际问题。
第三课时:相似图形的应用1. 利用相似图形的性质解决实际问题,如计算图形面积、长度等。
2. 培养学生的应用能力和解决问题的能力。
三、教学策略:1. 采用情境教学法,引导学生从实际问题中发现数学问题,培养学生的应用意识。
2. 运用操作教学法,让学生通过观察、操作、思考、交流等活动,掌握相似图形的性质。
3. 采用问题驱动法,激发学生的思考,培养学生解决问题的能力。
四、教学评价:1. 课堂问答:通过提问了解学生对相似图形概念、性质的理解程度。
2. 作业批改:检查学生运用相似性质解决问题的能力。
3. 小组讨论:评价学生在团队合作中的表现,以及创新精神和解决问题能力。
五、教学资源:1. 教学课件:制作课件,展示相似图形的概念、性质和应用。
2. 练习题:设计相关练习题,巩固学生对相似图形的理解和应用。
3. 教学素材:准备一些实际问题,供学生解决。
教学进度安排:1. 第一课时:相似图形的概念2. 第二课时:相似图形的性质3. 第三课时:相似图形的应用六、教学内容:第四课时:相似图形的绘制1. 学习如何根据已知图形绘制出相似图形。
第四章图形的相似4.1 成比例线段教学目标:【知识与技能】结合实际情境了解线段比的概念,并会计算两条线段的比;了解比例线段的概念;理解并掌握比例的基本性质,并能进行简单应用。
【过程与方法】经历探索成比例线段的过程,并利用其解决一些简单的问题.【情感态度】通过现实情境,培养应用意识,了解数学、自然、社会的密切联系.【教学重点】理解线段的比和比例线段的概念,会求两条线段的比及判断线段是否成比例.【教学难点】掌握比例的基本性质,并能进行简单应用.教学设计:一、自主学习请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.二、群体议论引入线段的比:如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成ABCD =mn,其中AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABCD=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5 cm,A′B′=3 cm.AB∶A ′B ′=5∶3,就是线段AB 与线段A ′B ′的比. 这个比值刻画了这两个五边形的大小关系.想一想:两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.做一做:如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EH ,EF 的长度分别是多少?分别计算AB EH ,AB EF ,AB AD ,EHEF值.你发现了什么?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.上图中AB ,EH ,AD ,EF 是成比例线段,AB ,AD ,EH ,EF 也是成比例线段.议一议:如果a ,b ,c ,d 四个数成比例,即a b =c d,那么ad =bc 吗?反过来如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗?比例的基本性质:如果a b =cd,那么ad =bc .如果ad =bc (a ,b ,c ,d 都不等于零),那么a b =c d. 三、相机引导教材例1:如图,一块矩形绸布的长AB =a m ,AD =1 m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE AD=AD AB,那么a 的值应当是多少?四、拓展延伸请同学们完成《探究在线·高效课堂》“互动课堂”部分. 五、教学反思:4.2相似多边形教学目标:【知识与技能】了解相似多边形的概念和性质;能根据定义判断两个多边形相似;会用相似多边形的性质解决简单的几何问题。
第四章图形的相似4.1 成比例线段教学目标:【知识与技能】结合实际情境了解线段比的概念,并会计算两条线段的比;了解比例线段的概念;理解并掌握比例的基本性质,并能进行简单应用。
【过程与方法】经历探索成比例线段的过程,并利用其解决一些简单的问题.【情感态度】通过现实情境,培养应用意识,了解数学、自然、社会的密切联系.【教学重点】理解线段的比和比例线段的概念,会求两条线段的比及判断线段是否成比例.【教学难点】掌握比例的基本性质,并能进行简单应用.教学设计:一、自主学习请在下面图形中找出形状相同的图形?你发现这些形状相同的图形有什么不同?对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.二、群体议论引入线段的比:如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成ABCD =mn,其中AB,CD分别叫做这个线段比的前项和后项.如果把mn表示成比值k,那么ABCD=k,或AB=k·CD.两条线段的比实际上就是两个数的比.如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5 cm,A′B′=3 cm.AB∶A′B′=5∶3,就是线段AB与线段A′B′的比. 这个比值刻画了这两个五边形的大小关系.想一想:两条线段长度的比与所采用的长度单位有没有关系?通过上面的活动学生应该对这个问题有了一定的认识:两条线段长度的比与所采用的长度单位无关.但要采用同一个长度单位.做一做:如图,设小方格的边长为1,四边形ABCD 与四边形EFGH 的顶点都在格点上,那么AB ,AD ,EH ,EF 的长度分别是多少?分别计算AB EH ,AB EF ,AB AD ,EHEF值.你发现了什么?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a /b =c /d ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.上图中AB ,EH ,AD ,EF 是成比例线段,AB ,AD ,EH ,EF 也是成比例线段.议一议:如果a ,b ,c ,d 四个数成比例,即a b =c d,那么ad =bc 吗?反过来如果ad =bc ,那么a ,b ,c ,d 四个数成比例吗?比例的基本性质:如果a b =cd,那么ad =bc .如果ad =bc (a ,b ,c ,d 都不等于零),那么a b =c d. 三、相机引导教材例1:如图,一块矩形绸布的长AB =a m ,AD =1 m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AE AD=AD AB,那么a 的值应当是多少?四、拓展延伸请同学们完成《探究在线·高效课堂》“互动课堂”部分. 五、教学反思:4.2 相似多边形教学目标:【知识与技能】了解相似多边形的概念和性质;能根据定义判断两个多边形相似;会用相似多边形的性质解决简单的几何问题。
图形的相似全章教案含配套课时练习第二十七章“图形的相似”教材分析在教科书前面,已经研究图形的全等,也研究了一些图形的变换,如平移、轴对称、旋转等,本章将在前面的基础上进一步研究一种变换──相似。
研究相似变换的性质,相似三角形的判定等,并进一步研究一种特殊的相似变换──位似。
结合一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。
本章共安排三个小节和两个选学内容,教学时间大约需要13课时,具体安排如下(仅供参考):27.1 图形的相似2课时27.2 相似三角形6课时27.3 位似3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:仅供学习与交流,如有侵权请联系网站删除谢谢74(二)教科书内容在前面,我们已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的全等变换,“全等”是图形间的一种关系,具有这种关系的两个图形叠合在一起,能够完全重合,也就是它们的形状、大小完全相同。
“相似”也是指图形间的一种相互关系,但它与“全等”不同,这两个图形仅仅形状相同,大小不一定相同,其中一个图形可以看成是另一个图形按一定比例放大或缩小而成的,这种变换是相似变换。
当放大或缩小的比例为1时,这两个图形就是全等的,全等是相似的一种特殊情况。
从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章所研究的问题实际上是前面研究图形的全等和一些全等变换基础上的拓广和发展。
在后面,我们还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识。
在物理中,学习力学、光学等,也都要用到相似的知识。
因此这一章的内容也是今后学习所必须的基础知识。
另仅供学习与交流,如有侵权请联系网站删除谢谢74外,在实际生活中,在建筑设计、测量、绘图等许多方面,也都要用到相似的有关知识。
因此这一章内容对于学生今后从事各种实际工作也具有重要作用。
在这套教科书中,“相似”的内容安排在“圆”之后,主要是出于以下几点考虑:首先,在课程标准中,相似是作为图形的一种变换提出来的,而它又是在全等变换基础上的拓展,所以教科书是先安排的的平移、轴对称、旋转等变换,后安排相似变换,而研究圆的一些性质,又与旋转变换关系密切,因此把圆紧接着安排在了旋转之后。
人教版图形的相似教案人教版图形的相似教案篇一:人教版,新课标,九年级,第27章,图形的相似,教案第二十七章相似27.1 图形的相似(一)一、教学目标1( 理解并掌握两个图形相似的概念(2( 了解成比例线段的概念,会确定线段的比(二、重点、难点1( 重点:相似图形的概念与成比例线段的概念(2( 难点:成比例线段概念(3( 难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:?相似形一定(((要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);?相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;?两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形((2)对于成比例线段:?我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;?两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;?线段的比是一个没有单位的正数;?四条线段a,b,c,d成比例,记作段满足ac?或a:b=c:d;?若四条线bdac则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,?,bdac则有?,或其它七种表达形式)( bd三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m、cm、mm三种不同的长度单位,求得的a的值相等,使学生明确:b两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求图上距离图距?线段的比的题,要使学生对比例尺有进一步的认识:比例尺=,而求图上实际距离实距距离与实际距离的比就是求两条线段的比(四、课堂引入1((1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系,再如下图的两个画面,他们的形状、大小有什么关系((还可以再举几个例子)(2)教材P36引入((3)相似图形概念:把形状相同的图形说成是相似图形((强调:见前面)(4)让学生再举几个相似图形的例子((5)讲解例1(2(问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少,归纳:两条线段的比,就是两条线段长度的比(3(成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如ac,我们就说这四条线段是成比例线段,简称比例线段( ?(即ad=bc)bd【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作(4)若四条线段满足五、例题讲解 ac?或a:b=c:d;bdac?,则有ad=bc( bd例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按一定比例缩小得到的,因此图C与左图相似,故此题应选C.例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少,(1)如果a=125cm,b=75cm,那么长与宽的比是多少,(2)如果a=1250mm,b=750mm,那么长与宽的比是多少,解:略((a5?)b3小结:上面分别采用m、cm、mm三种不同的长度单位,求得的a的值是相等的,所b以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致(例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km,图上距离分析:根据比例尺=,可求出北京到上海的实际距离( 实际距离解: 略答:北京到上海的实际距离大约是1120 km(六、课堂练习1(教材P37的观察(2(下列说法正确的是( )A(小明上幼儿园时的照片和初中毕业时的照片相似.B(商店新买来的一副三角板是相似的.C(所有的课本都是相似的.D(国旗的五角星都是相似的.3(如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm; (大)长是_______cm,宽是_______cm;宽宽??( (2)(小)(大)长长(3)你由上述的计算,能得到什么结论吗,(答:相似的长方形的宽与长之比相等)4(在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少,5(AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少,七、课后练习1(观察下列图形,指出哪些是相似图形:(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )2(教材P37练习1、2(3(教材P40 练习1与习题1 (27.1 图形的相似(二)一、教学目标1(知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等(2(会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算(二、重点、难点1(重点:相似多边形的主要特征与识别(2(难点:运用相似多边形的特征进行相关的计算(3(难点的突破方法(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识((2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用((3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数)(三、例题的意图本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质(四、课堂引入1( 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形(2( 问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等(3(【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等(反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似((2)相似比:相似多边形对应边的比称为相似比(问题:相似比为1时,相似的两个图形有什么关系,结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形(五、例题讲解例1(补充)(选择题)下列说法正确的是( )A(所有的平行四边形都相似 B(所有的矩形都相似C(所有的菱形都相似 D(所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D(例2(教材P39例题)(分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式( 解:略例3(补充)已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长(分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题( 解:? 四边形ABCD与四边形A1B1C1D1相似,? AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1(? A1B1:B1C1:C1D1:D1A1=7:8:11:14,? AB:BC:CD:DA= 7:8:11:14(设AB=7m,则BC=8m,CD=11m,DA=14m(? 四边形ABCD的周长为40,? 7m+8m+11m+14m=40(? m=1(? AB=7,则BC=8,CD=11,DA=14(六、课堂练习1(教材P40练习2、3(2(教材P41习题4(3((选择题)?ABC与?DEF相似,且相似比是A(2,则?DEF 与?ABC与的相似比是()( 32324 B( C( D( 32594((选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形(A(3个 B(4个 C(5个 D(6个5(已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少,篇二:人教版九年级数学相似教案相似形图形的相似教学目标通过一些相似的实例,让生观察相似图形的特点,感受形状相同的意义,理解相似图形的概念(能通过观察识别出相似的图形(能根据直觉在格点图中画出已知图形的相似图形(在获得知识的过程中培养学习的自信心(教学重点引导学生通过观察识别相似的图形,培养学生的观察分析及归纳能力(教学难点理解相似图形的概念(教学过程一、观察课本第42页图24.1.1、图24.1.2,每组图形中的两图之间有什么关系,二、归纳:每组图形中的两个图形形状相同,大小不同(具有相同形状的图形叫相似图形(师可结合实例说明:?相似图形强调图形形状相同,与它们的位置、颜色、大小无关(?相似图形不仅仅指平面图形,也包括立体图形相似的情况(?我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的(?若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形(三、你还见过哪些相似的图形,请举出一些例子与同学们交流(四、观察课本第43页图24.1.3中的三组图形,它们是否相似形,为什么,五、想一想:放大镜下的图形与原来的图形相似吗,放大镜下的角与原来图形中的角是什么关系,可让学生动手实验,然后讨论得出结论(六、观察课本第43页图24.1.4中的三组图形,它们是否相似形,为什么,让学生通过比较图24.1.3与图24.1.4,体会相似图形与不相似图形的“形状”特点(七、课本第43页“试一试”(让生各自独立完成作图,再展示评析(八、巩固:?课本第43页练习(?课本第44页习题24.1(对于第2题,学生的判断是对相似图形的一种直观认识,最好让学生充分交流彼此的看法(九、小结:你通过这节课的学习,有哪些收获,十、作业:略(相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
第24章图形的相似24.1 相似的图形教学目标:1、理解相似形的概念,了解相似形是两个图形之间的关系。
2、根据不同需要,能作出大小不一定相同的图形,培养学生的观察能力。
教学重点:让学生理解相似图形概念,会判断两个图形是否相似。
教学难点:正确理解“形状相同”的含义并画出相似图形。
教学过程:一、导入新课挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观察,并看课本第42页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗? (同学们思考、讨论、交换意见)国旗、国旗上的五角星。
画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等。
如图所示的是一些相似的图形。
想一想:放大镜下的图形和原图形相似吗?你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗?还有一些图形,看起来有点相像,但它们不是相似的图形。
为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这章要探索的内容。
三、课堂练习:课本第43页试一试,你能画出两个或更多的相似形吗?四、小结:形状相同而大小不一定相同的图形称为相似形,相似形在生活中经常碰到。
图形的相似整章教案及练习一、教学目标:1. 知识与技能:让学生理解相似图形的概念,掌握相似图形的性质和判定方法,学会运用相似图形解决实际问题。
2. 过程与方法:通过观察、操作、交流等活动,培养学生的空间观念和几何思维能力。
3. 情感态度与价值观:激发学生对几何学的兴趣,培养学生勇于探究、合作交流的良好学习习惯。
二、教学内容:1. 相似图形的定义:引导学生通过观察、操作,理解相似图形的概念,掌握相似图形的性质。
2. 相似图形的判定:教授相似图形的判定方法,让学生学会运用三组对应角相等和两组对应边成比例来判断两个图形是否相似。
3. 相似图形的性质:引导学生探究相似图形的性质,包括相似比、面积比和周长比。
4. 相似图形在实际问题中的应用:培养学生运用相似图形解决实际问题的能力。
三、教学重点与难点:1. 重点:相似图形的定义、判定方法和性质。
2. 难点:相似图形的判定和性质的应用。
四、教学策略与手段:1. 采用问题驱动、合作交流的教学方法,让学生在探究中学习,提高学生的动手操作能力和几何思维能力。
2. 利用多媒体课件、几何模型等教学手段,直观展示相似图形的特点,帮助学生更好地理解概念和性质。
五、教学过程:1. 导入新课:通过展示一组相似图形,引导学生观察、思考,引出相似图形的概念。
2. 探究相似图形:让学生分组讨论,探讨相似图形的性质和判定方法。
4. 练习与应用:布置适量练习题,让学生巩固所学知识,并学会运用相似图形解决实际问题。
6. 课后作业:布置针对性的课后作业,巩固所学知识。
六、相似图形的性质与应用:1. 性质回顾:引导学生回顾上一节课所学的相似图形的性质,包括相似比、面积比和周长比。
2. 性质拓展:介绍相似图形的其他性质,如对应边的比例关系和对应角的相等关系。
3. 应用实践:让学生通过实际问题,运用相似图形的性质解决问题,如计算未知图形的边长或面积。
七、相似图形的判定方法:1. 判定方法回顾:引导学生回顾上一节课所学的相似图形的判定方法,即三组对应角相等和两组对应边成比例。
第四章图形的相似教案【篇一:北师大版数学九年级第四章《图形的相似》学案】第一章图形的相似第一节成比例线段【学习目标】1、认识形状相同的图形;2、结合实例能识别出现实生活中形状相同,大小、位置不同的图形;3、了解线段的比和比例线段的概念,掌握两条线段的比的求法;4、理解并掌握比例的基本性质,能通过比例形式变形解决一些实际问题。
【相关知识链接】1、全等的图形:能够完全的两个图形叫做全等图形;2、分式的基本性质:分式的分子与分母乘(或除)以的整式,分式的值不变。
【学习引入】一、观察图片,体会相似图形1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?2 、小组讨论、交流.得到相似图形的概念,什么是相似图形?3 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?二、归纳总结:知识点1、相似的图形一般而言,形状相同,大小、位置不一定相同的图形就是相似图形,但是全等图形也是相似图形。
注意:形状相同的图形的对应线段的条数相同,对应线段长的比值相等,因此可以看做的把其中一个图形放大或者缩小一点的倍数得到另外一个。
知识点2、两条线段的比如果选用同一个长度单位量得两条线段ab,cd的长度分别是m,n,那么这abm=,其中,线段cdnmabab,cd分别叫做这个线段比的前项和后项。
如果把表示成比值k,那么=k,ncd两条线段的比就是它们的长度之比,即ab:cd=m:n,或写成注意:1、求两条线段的比的时候两条线段的长度单位要统一,当长度单位不统一时,要先化成同一单位长度;2、两条线段的比是一个没有单位的正实数,与所选线段的单位无关,只要选取相同的长度单位即可。
★知识点3、成比例线段对于四条线段a,b,c,d,如果a与b的比等于c与d的比,即么这四条线段是成比例线段,简称比例线段。
注意:1、如果ac=,那bdab=,那么b叫做a和c的比例中项; bc2、在比例式a:b=c:d中,d叫做a,b,c的第四比例项;3、成比例线段是有顺序的,即a,b,c,d是成比例线段,则是a:b=c:d 知识点4、比例的性质1、比例的基本性质:如果ac=,那么ad=bc; bdac= bd如果ad=bc(a,b,c,d都不等于0),那么2、等比性质:如果a+c+...+maacm= ==...=(b+d+...+n≠0),那么b+d+...+nbbdn3、合比性质:如果【例题解析】aca+bc+d=,那么= bdbd例1、观察下列图形,指出是相似图形.例2、线段ab被点m分成例3、如果abmbam2= ,==,则mbambm3x-y4y=,求的值。
图形的相似整章教案及练习教案章节:一、相似图形的概念及性质教学目标:1. 理解相似图形的概念及其性质。
2. 学会判断两个图形是否相似。
3. 掌握相似图形的对应边成比例、对应角相等的性质。
教学重点:1. 相似图形的概念及性质。
2. 判断两个图形是否相似的方法。
教学难点:1. 相似图形的性质在实际问题中的应用。
教学准备:1. 教学课件或黑板。
2. 实物图形示例。
教学过程:1. 引入新课:通过展示一些实物图形,引导学生观察并思考这些图形的特征,引出相似图形的概念。
2. 讲解相似图形的概念:解释相似图形的定义,即在形状上相同但大小不同的图形。
3. 讲解相似图形的性质:a. 对应边成比例:相似图形的对应边长之比相等。
b. 对应角相等:相似图形的对应角度数相等。
4. 举例说明相似图形的性质:通过展示一些相似图形,引导学生观察并验证对应边成比例、对应角相等的性质。
5. 练习:给出一些图形,让学生判断它们是否相似,并说明理由。
教学反思:本节课通过展示实物图形,引导学生观察并思考相似图形的特征,引出相似图形的概念,并讲解相似图形的性质。
通过举例说明和练习,帮助学生理解和掌握相似图形的性质。
在教学过程中,要注意引导学生积极参与,培养学生的观察能力和逻辑思维能力。
教案章节:二、相似图形的面积和周长教学目标:1. 理解相似图形的面积和周长的关系。
2. 学会计算相似图形的面积和周长。
3. 掌握相似图形面积和周长的比例性质。
教学重点:1. 相似图形的面积和周长的关系。
2. 计算相似图形面积和周长的方法。
教学难点:1. 相似图形面积和周长的比例性质在实际问题中的应用。
教学准备:1. 教学课件或黑板。
2. 实物图形示例。
教学过程:1. 复习相似图形的概念及性质:回顾上一节课学习的相似图形的概念及其性质。
2. 引入面积和周长的概念:解释相似图形的面积和周长的定义。
3. 讲解相似图形面积和周长的关系:a. 相似图形面积的比等于对应边长之比的平方。
图形的相似一、线段的比1、比例线段的概念:在四条线α、b 、c 、d 中,如果其中两条线段的比例等于另外两条线段的比,即)::(d c b a dcb a ==或,那么这四条线段α、b 、c 、d 叫做成比例线段,简称比例线段。
2、线段的比例中项:在比例式cbb a =(或c b b a ::=)中,b 叫做α和c 的 。
3、比例的性质①基本性质:。
bd bc ad d cb a 内项之积等于外项之积:)0(≠=⇒= ②合比性质:ddc b b ad c b a ±=±⇒=。
③等比性质:)0(≠+++=++++++⇒===n d b ba n db mc a n md c b a 4. 黄金分割如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC例1:已知a,b,c,d 是成比例线段,其中a=3cm ,b=2cm,c=6cm,求线段d 的长.例2:.,2bba b a +=求已知例3:数,写出一个比例式三个数,请你再添一个,,已知2211、已知正数a 、b 、c ,且k ba ca cbc b a =+=+=+ ,则下列四个点中在正比例函数y=kx 图象上的点的坐标是( )_ 图1_ B_ C_ AA. (1,21 ) B. (1,2) C. (1,- 21) D.(1,-1) 2、① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。
② 若 b a =32 则 b b a +=__________ ③ 若 b a b a -+22=59 则 a :b=__________④ 已知: 2a =3b =5c且3a+2b-c=14 ,则 a+b+c 的值为_____3、已知75===f e d c b a 则f d b e c a 7272+-+-=_________, db ca --22 =___________。
图形的相似整章教案及练习一、教学目标1. 让学生理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 培养学生运用相似图形解决实际问题的能力。
3. 提高学生对图形变换的理解,为学习更高阶的数学知识打下基础。
二、教学内容1. 相似图形的定义和性质2. 相似图形的判定方法3. 相似图形的应用4. 图形变换与相似图形5. 实际问题中的相似图形应用三、教学重点与难点1. 重点:相似图形的概念、性质、判定方法和应用。
2. 难点:相似图形的判定和实际问题中的运用。
四、教学方法1. 采用直观演示、实例分析、小组讨论、练习巩固的教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 引导学生运用数学语言描述相似图形,培养学生的逻辑思维能力。
五、教学安排1. 课时:本章共需10课时。
2. 教学计划:课时1-2:介绍相似图形的定义和性质课时3-4:讲解相似图形的判定方法课时5-6:学习相似图形的应用课时7-8:探讨图形变换与相似图形的关系课时9-10:解决实际问题,巩固相似图形的应用六、教学评价1. 课堂练习:每课时安排适量练习,巩固所学知识。
2. 课后作业:布置相关作业,检验学生掌握情况。
3. 单元测试:进行一次单元测试,评估学生对本章知识的掌握程度。
4. 学生表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
七、教学资源1. 多媒体课件:展示相似图形的图片、例子等。
2. 教学卡片:用于小组讨论和课堂活动。
3. 练习题库:提供丰富的练习题,供课堂练习和课后作业使用。
4. 实际问题案例:用于引导学生运用相似图形解决实际问题。
八、教学过程1. 引入:通过展示一组相似图形,引导学生思考相似图形的特征。
2. 讲解:详细讲解相似图形的定义、性质和判定方法。
3. 演示:利用多媒体课件展示相似图形的变换过程。
4. 练习:安排课堂练习,让学生巩固所学知识。
5. 应用:分析实际问题,引导学生运用相似图形解决问题。
图形的相似一、教学目标:1. 理解相似图形的概念,掌握相似图形的性质和判定方法。
2. 能够运用相似图形解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 相似图形的定义和性质2. 相似图形的判定方法3. 相似图形的应用三、教学重点与难点:1. 重点:相似图形的概念、性质和判定方法。
2. 难点:相似图形的应用和解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究相似图形的性质和判定方法。
2. 利用几何画板软件,动态展示相似图形的变换过程,增强学生的直观感受。
3. 通过小组合作讨论,培养学生的团队合作能力和解决问题的能力。
五、教学过程:1. 导入新课:引导学生回顾之前学过的图形变换知识,为新课的学习做好铺垫。
2. 讲解相似图形的定义和性质:通过示例和几何画板软件,讲解相似图形的概念,引导学生探究相似图形的性质。
3. 讲解相似图形的判定方法:引导学生通过观察和分析,总结出相似图形的判定方法。
5. 课堂小结:总结本节课所学内容,强调相似图形的重要性质和判定方法。
6. 布置作业:设计课后作业,让学生进一步巩固所学知识。
7. 课后反思:教师对本节课的教学效果进行反思,为的教学做好准备。
六、教学目标:1. 学会运用相似性质解决实际问题,提高学生的数学应用能力。
2. 培养学生的逻辑思维能力和团队合作能力。
七、教学内容:1. 相似图形的性质在实际问题中的应用。
2. 相似图形在工程、艺术等领域的应用案例。
八、教学重点与难点:1. 重点:相似图形的性质在实际问题中的应用。
2. 难点:如何将实际问题转化为相似图形问题,并运用相似性质解决。
九、教学方法:1. 采用案例分析法,引导学生了解相似图形在实际问题中的应用。
2. 利用几何画板软件,展示相似图形的变换过程,增强学生的直观感受。
3. 通过小组合作讨论,培养学生的团队合作能力和解决问题的能力。
十、教学过程:1. 导入新课:以一个实际问题为例,引导学生思考如何运用相似图形的性质解决问题。
教学目标教学重点教学难点教学方法教学内容创设情境,导入新课新课教学课型新授课时1执教周永红总课时课题10.1图上距离与实际距离1、结2、理解并掌握比例的性质;3、通过实际问题的研究,发展从数学的角度提出问题,分析问题和解决问题的能力了解线段的比和成比例的线段应用比例性质解决问题,提高学生应用数学的能力应用比例性质解决问题,提高学生应用数学的能力探索、合作、交流教师导学过程学生活动过程在我们生活中常常可见形状相同的图形会帮助我们更好的认识图我们将进入相似图形的世探索这类图形的特性,形世界,从今天开始,界。
观察P82地图,这两幅地图,比例尺分别为 1 : 8000000,16000000(1)分另恠两幅地图中量出南京市与徐州市、南京市与连云港市之间的图上距离(2 )在这两幅地图中,南京市与徐州市的图上距离的比是多少?南京市与连云港市的图上距离的比是多少?这两个比值之间有怎样的数量关系?探究学习1 •线段成比例:在不同的比例尺的两副江苏省地图中,设南京市与徐州市的图上距离的分别为a、b,它们的比为a : b或-表示图上距离的比;南京市与连云ba、港市的图上距离的比分别为c、d,则c : d或—d表示图上距离的比,这两个比值之间有什么关系?a c结论:a : b = c : d 或一一(b 工0,)b d观察与交流,认识相似图形学生测量,计算,思考其关系学生初步感知两个比值的关系。
对照例子了解线段成比例的概念,注意成比例线段时的四个线段应当是有序的。
课题课型新授课时4 执教周永红总课时探索三角形相似的条件(2)课AB 题 BC新授 课时6执 周永红 总课AB B C C AAB AC BC又••A'B'A'C'B'C' , AB ” =A 'B 'B "C 〃二 =B ' C ' ,C ” A = C ' A ',△ AB “ C “A 'B 'C ',例4.如图为三个并列的边长相同的正___________ 方形,试说明:/1 + / 2+ / 3=90 °课堂小判定两个三角形相似的方法有几个, 怎结 样使用,请举例说明?作业△ ABC s\ A ' B ' C概括总结:判定方法三:如果一个三角 形的三条边与另一个三角形的三条边 对应成比例,那么这两个三角形相似; 几何语言:•••在△ ABC 和厶A ' B 'AB AC BCC 中,A'B' A'C' B'C'•••△ ABC A ' B ' C '1、典型例题:例1.根据下列条件,判断△ ABC 与厶ABC 是否相似,并说明理由。
图形的相似一、线段的比1、比例线段的概念:在四条线α、b 、c 、d 中,如果其中两条线段的比例等于另外两条线段的比,即)::(d c b a dcb a ==或,那么这四条线段α、b 、c 、d 叫做成比例线段,简称比例线段。
2、线段的比例中项:在比例式cbb a =(或c b b a ::=)中,b 叫做α和c 的 。
3、比例的性质①基本性质:。
bd bc ad d cb a 内项之积等于外项之积:)0(≠=⇒= ②合比性质:ddc b b ad c b a ±=±⇒=。
③等比性质:)0(≠+++=++++++⇒===n d b ba n db mc a n md c b a 4. 黄金分割如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC例1:已知a,b,c,d 是成比例线段,其中a=3cm ,b=2cm,c=6cm,求线段d 的长.例2:.,2bba b a +=求已知例3:数,写出一个比例式三个数,请你再添一个,,已知2211、已知正数a 、b 、c ,且k ba ca cbc b a =+=+=+ ,则下列四个点中在正比例函数y=kx 图象上的点的坐标是( )_图1_ B_ C_ AA. (1,21 ) B. (1,2) C. (1,- 21) D.(1,-1) 2、① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km 。
② 若 b a =32 则 b b a +=__________ ③ 若 b a b a -+22=59 则 a :b=__________④ 已知: 2a =3b =5c且3a+2b-c=14 ,则 a+b+c 的值为_____3、已知75===f e d c b a 则 f d b e c a 7272+-+-=_________, db c a --22 =___________。
4、已知x :y :z=3:4:5,则zy x zy x -+++ =________。
二、相似三角形的判定与性质 1、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2、相似三角形的判定方法1. 若DE∥BC(A 型和X 型)则______________.2. 两个角对应相等的两个三角形__________.3. 两边对应成_________且夹角相等的两个三角形相似.4. 三边对应成比例的两个三角形___________.性质:⎪⎪⎩⎪⎪⎨⎧比的平方、对应面积比等于相似比、对应周长比等于相似、对应边成比例、对应角相等4321判定⎪⎪⎩⎪⎪⎨⎧+两边对应成比例、直角三角形、三边对应成比例夹角相等、两边对应成比例,且、两角对应相等4321 (1)相似比:相似三角形对应边的比叫做相似比。
当相似比等于1时,这两个三角形不仅形状相同,而且大小也 相同,这样的三角形我们就称为全等三角形。
全等三角形是相似三角形的特例。
填空:(1)相似三角形的判定:1,2,3,4(2)相似三角形的性质:1,2,3,4答案:(1)①两角对应相等,两三角形相似。
②两边对应成比例,且夹角相等,两三角形相似。
③三边对应成比例,两三角形相似。
④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边一条直角边对应成比例,那么这两个三角形相似(2)①相似三角形的对就角相等。
②相似三角形的对应线段(边、高、中线、角平分线)成比例。
③相似三角形的周长比等于相似比, ④面积比等于相似比的平方。
例1:下列判断中正确的是:( )A .两个矩形一定相似B .两个平行四边形一定相似C .两个正方形一定相似D .两个菱形一定相似例2:如果两个相似三角形对应中线的比为8:9,则它们的相似比和面积比分别为( )A.8:9, 8:9B.9:8, 81:64C.8:9, 64:81D.8:9, 3:22 例3:如果两个相似多边形最大边分别为5cm 和2cm ,它们的周长差是60cm ,那么它们的周长分别为 ;它们的面积之比为 .例4:如图,已知△ABC ∽△DEF,AB=3,BC=4,CA=2,EF=6,求线段DE,DF 的长。
A DEB C F 例5:如图,已知△ABC ∽△BC=b cm,∠A=45o ,∠C=40o(1)求∠AED 和∠ADE 的大小. (2)求DE 的长.1、在△ABC 中,若∠A=∠C=13∠B,则∠A= ,∠B= ,这个三角形是 .2、已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )C D B ABDCF E D CB A A. 6个 B. 5个 C. 4 个 D. 3个3、已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )5、如右图所示,D 是△ABC 的边AC 上的点,过D 作直线DE ,与AB 交于点E ,若△ADE•与△ABC 相似,则这样的直线DE 最多可作_______条.6、小明家的园子里有一三角形的花圃,将它的大小按1:100画在纸上,如图18-4。
现量得所画图 形中BC 边长为3.5cm ,高AD 为2cm ,求花圃的面积。
8、如图,已知△ABC 中CE ⊥AB 于E,BF ⊥AC 于F,求证:△AFE ∽△ABC9、已知,如图,CD 是Rt ABC ∆斜边上的中线,DE AB ⊥交BC 于F ,交AC 的延长线于E ,说明:⑴ ADE ∆∽FDB ∆.构造相似模型,解决实际问题 1、测量旗杆的高度AFE⑴利用阳光下的影子 测量原理:因为阳光BC//AE ,所以∠CBD=∠E. 因为∠D=∠ABE=90O所以△ABE ∽△CDB,则BDBE CD AB =. 测量数据:人高AB 、人影BE 、物影BD⑵利用标杆 测量原理:因为CD//AB,所以∠FHD=∠FGA,∠FDH=∠A 因此△AGF ∽△DHF则FHFGDH AG = 所以AB=AG+EF.其中,EC=FH,BE=FG测量数据:眼与地面的距离EF ,人与 标杆的距离EC ,人与物体的距离BE.⑶利用镜子的反射测量原理:因为∠ACB=∠ECD,∠B=∠D=90O所以△ABC ∽△EDC 从而.CD BC DE AB =测量数据:眼部到地面的距离DE 、人与平面镜的距离CD 、平面镜与物体的距离BC位似图形1、位似图形概念:位似比:2、位似图形的性质:位似图形上任意一组对应点到位似中心的距离之比等于位似比如果两个图形不仅相似,而且每组对应点 所在的直线都经过同一点,并且对应边平行(或在同一直线上)那么这样的两个图形叫做位似图形, 这个点叫做位似中心强调:同时满足下面三个条件的两个图形才叫做位似图形.三条件缺一不可. 1.两图形相似. 2.每组对应点所在直线都经过同一点. 3. 对应边互相平行(或在同一直线上)1、有同一三角形地块的甲、乙两地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一地块的三角形的面积之比是()物 影 人 影阳光E D BA G E CB C物与杆的距离人与杆 的距离E的距离 物B CD FA 、 25:1B 、 5:1C 、1:25D 、1:5 2、如图,线段AB ∶BC = 1∶2,那么AC ∶BC 等于( ) A 、1∶3 B 、2∶3 C 、3∶1 D 、3∶2 3、如图,若点D 为△ABC 中AB 边上的一点, 且∠ABC =∠ACD ,AD =3cm ,AB =4cm , 则AC 的长为( ) A .12cm B .32cm C .3cm D .2cm4、下列说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60 o 的两个直角三角形相似,其中正确的说法是( )A .②④B .①③C .①②④D .②③④5、已知5922=-+b a b a ,则ba=____.6、电视节目主持人在主持节目时,站在舞台的黄金 分割点处最自然得体,若舞台AB 长为20m ,试计算 主持人应走到离A 点至少 m 处?,如果他向B 点再走 m ,也处在比较得体的位置? (结果精确到0.1m )1、小玲用下面的方法来测量学校教学大楼AB 的高度:如图10,在水平地面上放一面镜子,镜子与教学大楼的距离EA=21米。
当她与镜子的距离CE=2.4米时,她刚好能从镜子中看到教学大楼的顶端B 。
已知她的眼睛距离地面的高度DC=1.6米。
请你帮助小玲计算出教学大楼的高度AB 是多少米(注意:根据光的反射定律:反射角等于入射角)。
. .。