射频PCB注意
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
射频电路PCB设计处理技巧1.地线设计:射频信号的传输对地线的布局和设计要求较高。
尽量使用多层板设计,确保地线的良好连接。
地线应该是厚而宽的,并且应该避免地线上的任何断点或改变形状的地方。
减少地线的长度,以降低地线的阻抗。
对于高频信号,建议使用分割式地线,即将地线分为多段,以减少反射和传导电磁干扰。
2.信号线和电源线的隔离:信号线和电源线在PCB上布局时应尽量相隔一定距离,尤其是高频信号线和高功率电源线。
这样可以减少信号线受到电源线干扰的可能性。
如果无法避免信号线和电源线的交叉,可以采用屏蔽罩、地线隔离等方法来降低干扰。
3.分割信号层和电源层:在多层板设计中,应尽量将信号层和电源层分离。
这样可以避免电源线的干扰对信号的影响。
当然,分割信号层和电源层时需要注意地线的布置,在高频电路中,应将地线布置在相对靠近信号层的位置。
4.PCB阻抗匹配:射频信号的传输需要保持恒定的阻抗,以避免反射和能量损失。
在设计PCB时,可以通过合理选择布线宽度、地线间距等参数来匹配所需的阻抗。
同时,为了减少匹配阻抗带来的干扰,可以在射频电路上添加滤波电容或电感等组件。
5.规避时钟信号干扰:时钟信号在高频射频电路中很容易产生干扰。
为了规避时钟信号干扰,可以在设计PCB时将时钟线与其他信号线相隔离,尽量减少与时钟信号平行的信号线的长度。
同时,可以在时钟信号线旁边添加地线来降低干扰。
6.良好的电源和接地规划:良好的电源和接地规划对射频电路的性能和稳定性至关重要。
尽量减少电源和地线的共享,避免共地引起的干扰。
可以使用独立的电源线来供应射频电路。
此外,电源和地线的连接处应采用短而宽的线路,以降低阻抗。
7.屏蔽处理:在高频射频电路设计中,经常会遇到需要屏蔽的情况。
这时可以使用屏蔽罩或屏蔽板来将信号线隔离开来,避免干扰。
屏蔽罩可以是金属板,也可以是金属层布膜,关键是要保证良好的接地。
8.热管理:在射频电路中,发热问题可能会导致性能下降。
射频PCB板布局布线注意事项总结第一篇:射频PCB板布局布线注意事项总结射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。
不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。
当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波,所以这些对手机的EMC、EMI影响都很大,下面就对手机PCB板的在设计RF布局时必须满足的条件加以总结:1.1尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来。
简单地说,就是让高功率RF发射电路远离低功率RF接收电路。
手机功能比较多、元器件很多,但是PCB空间较小,同时考虑到布线的设计过程限定最高,所有的这一些对设计技巧的要求就比较高。
这时候可能需要设计四层到六层PCB了,让它们交替工作,而不是同时工作。
高功率电路有时还可包括RF缓冲器和压控制振荡器(VCO)。
确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜皮越多越好。
敏感的模拟信号应该尽可能远离高速数字信号和RF信号。
1.2 设计分区可以分解为物理分区和电气分区。
物理分区主要涉及元器件布局、朝向和屏蔽等问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。
1.2.5 要保证不增加噪声必须从以下几个方面考虑:首先,控制线的期望频宽范围可能从DC直到2MHz,而通过滤波来去掉这么宽频带的噪声几乎是不可能的;其次,VCO控制线通常是一个控制频率的反馈回路的一部分,它在很多地方都有可能引入噪声,因此必须非常小心处理VCO控制线。
要确保RF走线下层的地是实心的,而且所有的元器件都牢固地连到主地上,并与其它可能带来噪声的走线隔离开来。
此外,要确保VCO的电源已得到充分去耦,由于VCO的RF输出往往是一个相对较高的电平,VCO输出信号很容易干扰其它电路,因此必须对VCO加以特别注意。
【实战经验分享】“攻城狮”在射频板(传输线、PCB叠层、电源退耦、过孔、电容、电感)设计主要注意细则今天,我们来详细学习射频板设计时主要注意细则与事项概述近几年来,由于蓝牙设备无线局域网(WLAN)和用电话的需求与增长,促使我们越来越关注射频板子的设计技巧射频板设计如同电磁干扰(EMI)问题一样,甚为头痛。
若想要一次成功,须事先仔细规划一、传输线、二、PCB叠层、三、电源退耦、四、过孔、五、电容、电感和注重细节才能奏效。
传输线注意事项1.根据50Ω特性阻抗所需的线宽和铺地间距,选择正确的传输线类型(微带线或带状线);2.通过阻抗计算工具确保阻抗线路按照50Ω特性阻抗设计,并确定线宽和铺地间距以及线路结构;3.为保持射频线路特性阻抗的连续性,射频布线宽度和线间距需保持一致,不发生突变。
4.(铺地间距与参考面厚度没有直接关系,带状线与微带线的基本区别为微带线在表层,带状线在内层,因此微带线与带状线不可能转化)5.为射频传输线提供一个干净,没有干扰的,同时没有任何射频信号线通过其下穿过的镜像地,以提供一个良好的射频信号信号回路;6.尽量缩短传输线的长度,长的传输线将带来衰减,不同的线路使用不同粗细的走线,如电源就尽可能粗些;7.避免射频传输线的直角,必须需要拐角时应进行直角补偿,见附图1;8.射频信号线上尽量不要出现分叉或者之脚,都会对射频阻抗产生影响;9.不要在射频传输线上平行布置任何线路,这样的线路会增加线与线之间的耦合;10.不要在射频传输线上设置测试点;PCB叠层注意事项射频板设计PCB叠层时,推荐使用四层板结构,层设置架构如下如图;【Top layer】射频IC和元件、射频传输线、天线、去耦电容和其他信号线,【Layer2】地平面【Layer3】电源平面【Bottomlayer】非射频元件和信号线完整的电源平面提供极低的电源阻抗和分布的去耦电容,同时射频信号线有一个完整的参考地,为射频信号提供完整恒定不变的参考,有利于射频传输线阻抗的连续性。
射频微波pcb射频微波PCB(印制电路板)在现代无线通信、雷达系统、卫星通信以及其他高频应用中扮演着至关重要的角色。
这些特殊的电路板被设计用于处理射频(RF)和微波信号,这些信号通常具有高频率和复杂的传输特性。
本文将深入探讨射频微波PCB 的设计原则、关键特性、材料选择、制造工艺以及其在各种应用中的重要性。
一、射频微波PCB设计原则设计射频微波PCB时,需要遵循一系列原则以确保信号完整性、最小化传输损耗、降低电磁干扰(EMI)和优化系统性能。
1. 布局与布线:合理的布局和布线是确保高频信号传输质量的基础。
信号线应尽可能短且直接,以减少传输损耗和信号延迟。
同时,应避免锐角和直角转弯,以减少反射和辐射。
2. 地层与电源层设计:地层和电源层的设计对于控制阻抗、减少噪声和提供稳定的参考平面至关重要。
地层通常用作回流路径,需要足够大以提供低阻抗的回流路径。
3. 阻抗匹配:在高频电路中,阻抗匹配是减少信号反射和最大功率传输的关键。
设计时需要精确控制传输线的特性阻抗,通常通过调整线宽、线间距和介质厚度来实现。
4. 串扰与隔离:高频信号容易产生串扰,即信号线之间的不期望耦合。
通过增加线间距、使用屏蔽结构或差分信号传输等技术可以有效减少串扰。
5. 散热设计:高频电路中的元件可能会产生大量热量,因此散热设计是确保电路可靠性和性能稳定的重要因素。
二、射频微波PCB的关键特性射频微波PCB具有一些独特的特性,这些特性对于高频应用至关重要。
1. 高频介电常数(Dk):介电常数是描述材料在电场中极化能力的物理量。
在高频下,材料的介电常数会发生变化,影响传输线的特性阻抗和信号传播速度。
2. 损耗角正切(Df):损耗角正切描述了材料在交变电场中的能量损耗。
低损耗角正切的材料可以减少信号传输过程中的能量损失。
3. 热稳定性:高频电路在工作时会产生热量,因此要求PCB材料具有良好的热稳定性,以保持电路性能的稳定。
4. 尺寸稳定性:尺寸稳定性指的是材料在温度变化或机械应力作用下保持其尺寸不变的能力。
射频PCB设计中的常见问题及解决方法(1) 缩短与地线层的连接距离所有对地线层的连接必须尽量短,接地过孔应放置在(或非常接近) 元件的焊盘处。
决不要让两个地信号共用一个接地过孔,这可能导致由于过孔连接阻抗在两个焊盘之间产生串扰。
2) RF 去耦去耦电容应该放置在尽可能靠近引脚的位置,每个需要去耦的引脚处都应采用电容去耦。
采用高品质的陶瓷电容,介电类型最好是“NPO”,“X7R”在大多数应用中也能较好工作。
理想的选择电容值应使其串联谐振等于信号频率。
例如434 MHz 时,SMD 贴装的100 p F 电容将良好工作,此频率时,电容的容抗约为4 Ω,过孔的感抗也在同样范围。
串联的电容和过孔对于信号频率形成一个陷波滤波器,使之能有效的去耦。
868 MHz 时,33 p F 电容是一个理想的选择。
除了RF 去耦的小值电容,一个大值电容也应放置在电源线路上去耦低频,可选择一个2. 2 μF陶瓷或10μF 的钽电容。
(3) 电源的星形布线星形布线是模拟电路设计中众所周知的技巧。
星形布线——上各模块具有各自的来自公共供电电源点的电源线路。
在这种情况下,星形布线意味着电路的数字部分和RF 部分应有各自的电源线路,这些电源线应在靠近IC 处分别去耦。
这是一个隔开来自数字部分和来自RF 部分电源噪声的有效方法。
如果将有严重噪声的模块置于同一上,可以将电感(磁珠) 或小阻值电阻(10 Ω) 串联在电源线和模块之间,并且必须采用至少10 μF 的钽电容作这些模块的电源去耦。
这样的模块如RS 232 驱动器或开关电源稳压器。
(4) 合理安排PCB 布局为减小来自噪声模块及周边模拟部分的干扰,各电路模块在板上的布局是重要的。
应总是将敏感的模块( RF部分和天线) 远离噪声模块(微控制器和RS 232 驱动器)以避免干扰。
(5) 屏蔽RF 信号对其他模拟部分的影响如上所述,RF 信号在发送时会对其他敏感模拟电路模块如ADC 造成干扰。
射频电路PCB设计布线规范1.地面平面布线规范:射频电路的地面平面应尽可能连续,尽量避免划分为多个独立的区域。
如果必须划分地面平面,应使用稳定的参考平面连接它们。
同时,避免地面平面上存在孔洞。
2.射频组件布局规范:高频组件(如射频放大器、射频滤波器等)应尽可能靠近射频天线或射频输入/输出端口。
此外,不同射频组件之间应保持一定的间距,以防止互相的干扰。
3.射频线宽规范:射频线的宽度应根据设计的频率和所使用的介质来确定。
通常,较高的频率需要更宽的线宽,以减小线路的损耗。
具体的线宽可以根据射频设计手册或仿真工具来计算。
4.射频线与地面的连接规范:射频线应尽可能与地面平面接触,以提供一个低阻抗的返回路径。
为了实现这一点,可以采用地面孔和连续的焊盘等设计。
此外,应避免射频线与其他信号线和电源线的交叉。
5.射频线的走线路径规范:射频线应尽量避免在长距离内平行走线,以减小串扰的可能性。
同时,应避免射频线与其他信号线和电源线的交叉,以减小互相的干扰。
6.射频线和射频组件的焊盘设计规范:射频线和射频组件的焊盘应尽可能保持积极的接触,以减小传输信号时的损耗。
可以使用大面积的焊盘和合适的焊料来提高焊接质量。
7.射频电路的屏蔽设计规范:对于敏感的射频电路,应采取屏蔽措施以减小干扰的影响。
可以使用金属屏蔽罩、屏蔽接地平面等方式来实现屏蔽设计。
8.射频电路的电感和电容布局规范:射频电路中的电感和电容元件的位置应遵循尽可能短的连接原则,以减小这些元件的串扰和互相干扰的可能性。
综上所述,射频电路PCB设计布线规范主要包括地面平面布线规范、射频组件布局规范、射频线宽规范、射频线和地面的连接规范、射频线的走线路径规范、射频线和射频组件的焊盘设计规范、射频电路的屏蔽设计规范、射频电路的电感和电容布局规范等。
遵循这些规范可以提高射频电路的性能和可靠性,减小电路的信号损耗和干扰问题。
射频多层板设计要点本文主要针对集成控制电路的射频多层板设计过程中应该的注意事项,以及相关设计技巧。
一、器件封装1、仔细核对封装引脚和尺寸2、最好将封装的3D信息添加进去,便于后期进行3D装配检查。
二、原理图设计1、射频器件供电(正负电)端口应串联电阻或电感或穿心电容,以便后期排除短路器件。
如果电流不大,优先串联电阻,因为后期可以方便通过万用表电阻测试档定位短路点。
2、输入输出端通过π衰形式预留调试位,链路中也尽可能多预留调试位。
3、电源端滤波设计此处待补充三、布局1、对于多通道射频电路尽可能保持电路对称。
2、确定主要射频器件、逻辑器件、电源模块等摆放位置。
3、提前规划好顶层、底层的隔条布局,使射频、逻辑控制、电源通过隔条或腔体隔墙相互分开;尽量将走线放在内层,使顶层和底层可以大面积通过隔条和底部腔体接地。
此条甚为重要。
4、将功能模块放在一起做好布局、放置好关键孔,最后再走线。
四、叠层设计1、射频布局在顶层或底层。
射频介质采用板芯,不得采用PP+铜皮的形式。
(PP+铜皮的附着力较差,射频电路调试多次焊接时易起翘)2、电源层布局在中间或靠近底层,最好能够通过地层与射频层、逻辑控制层分开。
3、叠层数量、板芯厚度、走线密度尽可能保持对称,以利于控制板翘。
五、盲孔通孔1、对于两次以上压合的多层板,应充分利用盲孔进行控制电路走线(此处盲孔实际可看作通孔,例如第一次压合1-4层,5-8层,第二次压合1-8层,则1-4层,5-8层的盲孔可视为通孔)。
2、接地孔应多采用通孔。
六、射频布局设计1、射频器件底部和接地引脚附件应大量通过通孔接地。
2、所有射频电路应尽可能增加隔墙,无论频率高低。
案例:60MHz的中频信号收发之间未放置隔条,出现自激。
3、射频盲孔背钻层可以多留几层抠铜。
例如,1-4的盲孔,5、6层对应位置也去铜。
待以后通过仿真来确定抠铜层数。
1、最外缘两圈引脚可以同时出线2、内圈每层出一圈的线,但可以从中心再引一圈线,本例中未从中心引线,造成了资源浪费。
射频PCB设计规则总结
1.RF线尽量走成135度弧线,不要走成90度直角
2.RF线尽量短而粗。
高频最好将其上下两层挖空,参考上上层和下下层
3.双工器接收走线必须走表层,而发射可以走内层。
若发射走内层,则上下两层要挖空。
若实在挖不了就别挖了,但是高频尽量能挖空。
高频有Band7,Band34,Band38,Band39,Band40,Band41,Band1也可以算是高频
4.Clk线一定要完整包地,远离RF线
5.布线时开关离射频座越近越好
6.保持差分线平行且等长。
7.保持时钟信号线(clk)尽量短且其上下左右都包地。
如果不能做到良好包地,请遵循3W原则,且在其周围放置足够多的地孔。
8.保证输入输出走线之间的良好隔离。
双工器上,ANT,RX和TX之间看是否满足Y型地隔离。
9.不同性质的线之间尽量用GND+VIA(地孔)隔开。
10.保证信号回路的相对独立。
11.保证地的完整性。
每个GND PIN需要可靠连接到主GND平面上。
12.Transceiver和PA IC需要用Shielding case隔离,避免de-sense产生。
13.RF信号线请按照要求做好阻抗控制。
TX(单端50欧)和RX(单端50欧或者差分100欧)。
14.IQ是差分信号,需要两两分开上下左右包地。
15.RF线切忌穿层太多。
切忌过孔太多。
在电子产品和设备中,电路板是一个不可缺少的部件,它起着电路系统的电气和机械等的连接作用。
如何将电路中的元器件按照一定的要求,在PCB上排列组合起来,是PCB设计师的主要任务之一。
布局设计不是简单的将元器件在PCB上排列起来,或者电路得以连通就行的。
实践证明一个良好的电路设计,必须有合理的元器件布局,才能使电路系统在实体组合后达到稳定、可靠的工作。
反之,如果元器件布局不合理,它将影响到电路板的工作性能,乃至不能工作。
尤其是在广泛采用集成器件的今天,如果集成电路仍用接线板的方式进行安装,那么,不仅电路的体积庞大,而且无法稳定的进行工作。
因此,在产品设计过程中,布局设计和电路设计前具有同样重要的地位。
下面就射频PCB设计注意事项做个简单的介绍。
一、布局注意事项1)结构设计要求在PCB布局之前需要弄清楚产品的结构。
结构需要在PCB板上体现出来(结构与PCB接触部分,即腔壳位置及形状)。
比如腔壳的外边厚度大小,中间隔腔的厚度大小,倒角半径大小和隔腔上的螺钉大小等等(换句话说,结构设计是根据完成后的PCB上所画的轮廓(结构部分)进行具体设计的(如果结构已批量开模具,就另当别论了))(螺钉类型有M2\M2.5\M3\M4等)。
一般情况,外边腔厚度为4mm;内腔宽度为3mm(点胶工艺的为2mm);倒角半径2.5mm。
以PCB板的左下角为原点,隔腔在PCB上的位置需在格点0.5的整数倍上,最少需要做到格点为0.1的整数倍上。
这样有利于结构加工,误差控制比较精确。
当然,这需要根据具体产品的类型来设计。
如下图所示:(PCB设计完成后的结构轮廓图)2)布局要求优先对射频链路进行布局,然后对其它电路进行布局。
射频链路布局注意事项根据原理图的先后顺序(输入到输出,包括每个元件的先后位置和元件与元件之间的间距都有讲究的。
有的元件与元件之间距离不宜过大,比如π网。
)进行布局,布局成“一”字形或者“L”形。
具体如下图所示:在实际的射频链路布局中,因受产品的空间限制,不可能完全实现“一”字型布局,这就迫使我们将布局成“U”形。
PCB设计流程
元器件的布局
PCB布线注意事项
随着通信技术的发展,手持无线射频电路技术运用越来越广,如:无线寻呼机、手机、无线PDA等,其中的射频电路的性能指标直接影响整个产品的质量。
这些掌上产品的一个最大特点就是小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。
电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此,如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。
同一电路,不同的PCB设计结构,其性能指标会相差很大。
本讨论采用Protel99SE软件进行掌上产品的射频电路PCB设计时,如果最大限度地实现电路的性能指标,以达到电磁兼容要求。
板材的选择
印刷电路板的基材包括有机类与无机类两大类。
基材中最重要的性能是介电常数εr、耗散因子(或称介质损耗)tanδ、热膨胀系数CET和吸湿率。
其中εr影响电路阻抗及信号传输速率。
对于高频电路,介电常数公差是首要考虑的更关键因素,应选择介电常数公差小的基材。
PCB设计流程
由于Protel99SE软件的使用与Protel98等软件不同,因此,首先简要讨论采用Protel99SE 软件进行PCB设计的流程。
①由于Protel99SE采用的是工程(PROJECT)数据库模式管理,在Windows99下是隐含的,所以应先键立1个数据库文件用于管理所设计的电路原理图与PCB版图。
②原理图的设计。
为了可以实现网络连接,在进行原理设计之间,所用到的元器件都必须在元器件库中存在,否则,应在SCHLIB中做出所需的元器件并存入库文件中。
然后,只需从元器件库中调用所需的元器件,并根据所设计的电路图进行连接即可。
③原理图设计完成后,可形成一个网络表以备进行PCB设计时使用。
④PCB的设计。
a.PCB外形及尺寸的确定。
根据所设计的PCB在产品的位置、空间的大小、形状以及与其它部件的配合来确定PCB的外形与尺寸。
在MECHANICALLAYER层用PLACETRACK命令画出PCB的外形。
b.根据SMT的要求,在PCB上制作定位孔、视眼、参考点等。
c.元器件的制作。
假如需要使用一些元器件库中不存在的特殊元器件,则在布局之前需先进行元器件的制作。
在Protel99SE中制作元器件的过程比较简单,选择“DESIGN”菜单中的“MAKELIBRARY”命令后就进入了元器件制作窗口,再选择“TOOL”菜单中的“NEWCOMPONENT”命令就可以进行元器件的设计。
这时只需根据实际元器件的形状、大小等在TOPLAYER层以PLACEPAD等命令在一定的位置画出相应的焊盘并编辑成所需的焊盘(包括焊盘形状、大小、内径尺寸及角度等,另外还应标出焊盘相应的引脚名),然后以PLACETRACK命令在TOPOVERLAYER层中画出元器件的最大外形,取一个元器件名存入元器件库中即可。
d.元器件制作完成后,进行布局及布线,这两部分在下面具体进行讨论。
e.以上过程完成后必须进行检查。
这一方面包括电路原理的检查,另一方面还必须检查相互间的匹配及装配问题。
电路原理的检查可以人工检查,也可以采用网络自动检查(原理图形成的网络与PCB形成的网络进行比较即可)。
f.检查无误后,对文件进行存档、输出。
在Protel99SE中必须使用“FILE”选项中的“EXPORT”命令,把文件存放到指定的路径与文件中(“IMPORT”命令则是把某一文件调入到Protel99SE 中)。
注:在Protel99SE中“FILE”选项中的“SA VECOPYAS…”命令执行后,所选取的文件名在Windows98中是不可见的,所以在资源管理器中是看不到该文件的。
这与Protel98中的“SA VEAS…”功能不完全一样。
元器件的布局
由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。
而对于射频电路PCB设计而言,电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。
因此,在进行射频电路PCB设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间相互干扰、如何减小电路本身对其它电路的干扰以及电路本身的抗干扰能力。
根据经验,对于射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此,在进行PCB设计时,合理布局显得尤为重要。
布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;
布局中应注意:
*首先确定与其它PCB板或系统的接口元器件在PCB板上的位置,必须注意接口元器件间的配合问题(如元器件的方向等)。
*因为掌上用品的体积都很小,元器件间排列很紧凑,因此对于体积较大的元器件,必须优先考虑,确定出相应位置,并考虑相互间的配合问题。
*认真分析电路结构,对电路进行分块处理(如高频放大电路、混频电路及解调电路等),尽可能将强电信号和弱电信号分开,将数字信号电路和模拟信号电路分开,完成同一功能的电路应尽量安排在一定的范围之内,从而减小信号环路面积;各部分电路的滤波网络必须就近连接,这样不仅可以减小辐射,而且可以减少被干扰的几率,根据电路的抗干扰能力。
*根据单元电路在使用中对电磁兼容性敏感程度不同进行分组。
对于电路中易受干扰部分的元器件在布局时还应尽量避开干扰源(比如来自数据处理板上CPU的干扰等)。
布线
在基本完成元器件的布局后,就可开始布线了。
布线的基本原则为:在组装密度许可情况下后,尽量选用低密度布线设计,并且信号走线尽量粗细一致,有利于阻抗匹配。
对于射频电路,信号线的走向、宽度、线间距的不合理设计,可能造成信号信号传输线之间的交叉干扰;另外,系统电源自身还存在噪声干扰,所以在设计射频电路PCB时一定要综合考虑,合理布线。
布线时,所有走线应远离PCB板的边框(2mm左右),以免PCB板制作时造成断线或有断线的隐患。
电源线要尽中能宽,以减少环路电阻,同时,使电源线、地线的走向和数据传递的方向一致,以提高抗干扰能力;所布信号线应尽可能短,并尽量减少过孔数目;各元器件间的连线越短越好,以减少分布参数和相互间的电磁干扰;对于不相容的信号线应量相互远离,而且尽量避免平行走线,而在正向两面的信号线应用互垂直;布线时在需要拐角的地址方应以135°角为宜,避免拐直角。
布线时与焊盘直接相连的线条不宜太宽,走线应尽量离开不相连的元器件,以免短路;过孔不定画在元器件上,且应尽量远离不相连的元器件,以免在生产中出现虚焊、连焊、短路等现象。
在射频电路PCB设计中,电源线和地线的正确布线显得尤其重要,合理的设计是克服电磁干扰的最重要的手段。
PCB上相当多的干扰源是通过电源和地线产生的,其中地线引起的噪声干扰最大。
地线容易形成电磁干扰的主要原因于地线存在阻抗。
当有电流流过地线时,就会在地线上产生电压,从而产生地线环路电流,形成地线的环路干扰。
当多个电路共用一段地线时,就会形成公共阻抗耦合,从而产生所谓的地线噪声。
因此,在对射频电路PCB的地线进行布线时应该做到:
*首先,对电路进行分块处理,射频电路基本上可分成高频放大、混频、解调、本振等部分,要为各个电路模块提供一个公共电位参考点即各模块电路各自的地线,这样信号就可以在不同的电路模块之间传输。
然后,汇总于射频电路PCB接入地线的地方,即汇总于总地线。
由于只存在一个参考点,因此没有公共阻抗耦合存在,从而也就没有相互干扰问题。
*数字区与模拟区尽可能地线进行隔离,并且数字地与模拟地要分离,最后接于电源地。
*在各部分电路内部的地线也要注意单点接地原则,尽量减小信号环路面积,并与相应的滤波电路的地址就近相接。
*在空间允许的情况下,各模块之间最好能以地线进行隔离,防止相互之间的信号耦合效应。
射频电路PCB设计的关键在于如何减少辐射能力以及如何提高抗干扰能力,合理的布局与布线是设计射频电路PCB的保证。
文中所述方法有利于提高射频电路PCB设计的可靠性,解决好电磁干扰问题,进而达到电磁兼容的目的
原创文章:"/public/art/artinfo/id/80004190"
【请保留版权,谢谢!】文章出自电子元件技术网。