首届中国大学生数学竞赛赛区赛试卷解答
- 格式:doc
- 大小:282.50 KB
- 文档页数:4
考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、(15分)求经过三平行直线1:L x y z ==,2:11L x y z -==+,3:11L x y z =+=-的圆柱面的方程. 二、(20分)设n n C ⨯是n n ⨯复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,121000100010001n n n a a F a a ---⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪⎪-⎝⎭.(1)假设111212122212n n n n nn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,若AF FA =,证明:121112111n n n n A a F a F a F a E ---=++++;(2)求n n C ⨯的子空间{}()|n n C F X C FX XF ⨯=∈=的维数.三、(15分)假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换.如果fg gf f -=,证明:f 的特征值都是0,且,f g 有公共特征向量.四、(10分)设{}()n f x 是定义在[],a b 上的无穷次可微的函数序列且逐点收敛,并在[],a b 上满足'()n f x M ≤.(1)证明{}()n f x 在[],a b 上一致收敛;(2)设()lim ()n n f x f x →∞=,问()f x 是否一定在[],a b 上处处可导,为什么? 五、(10分)设320sin sin n nta t dt t π=⎰, 证明11n na ∞=∑发散. 六、(15分) (,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f fx y x y∂∂+=∂∂,计算积分221x y I dxdy +≤⎛⎫=⎰⎰. 七、(15分))假设函数 ()f x 在 [0,1]上连续,在(0,1)内二阶可导,过点 (0,(0))A f ,与点 (1,(1))B f 的直线与曲线 ()y f x =相交于点 (,())C c f c ,其中 01c <<. 证明:在 (0,1)内至少存在一点 ξ,使()0f ξ''=。
首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效。
2、密封线左边请勿答题,密封线外不得有姓名及相关标记。
一、 填空题(每小题5分,共20分)(1)计算=--++⎰⎰dxdy yx x yy x D1)1ln()(_____________,其中区域D 由直线x + y = 1与两坐标轴所围三角形区域。
(2) 设f (x ) 是连续函数, 满足⎰--=2022)(3)(dx x f x x f ,则=)(x f _ __ __。
(3)曲面2222-+=y x z 平行平面 2x + 2y − z = 0 的切平面方程是_ __ _。
(4)设函数y = y (x )由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则22dxyd =_________________。
答案:1516,31032-x ,0522=--+z y x ,322)](1[)()](1[y f x y f y f '-''-'--。
二、(5 分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数。
解:原式=)}ln(ex p{lim 20ne e e x e nxx x x +++→ =}ln )ln({lim ex p{20xne e e e nx x x x -+++→ ………………….….…(2 分)其中大括号内的极限是型未定式,由 L ′Hospital 法则,有nxx x x x x x nx x x x e e e ne e e e x n e e e e ++++++=-+++→→ 2020)2(lim }ln )ln({lim e n n n e )21()21(+=+++=于是 原式=e n e )21(+ …….…. . …………………………….………………(5 分)三 、(15 分) 设函数 f (x) 连续, ⎰=1)()(dt xt f x g ,且A xx f x =→)(lim, A 为常数,求)(x g '并讨论)(x g '在x = 0处的连续性。
首届全国大学生数学竞赛决赛试卷参考答案(非数学类,2010)一、(20分,每小题5分)1)求极限121lim(1)sin n n k k k n n π-→∞=+∑. 2)计算2∑∑为下半球面z =a 为大于0的常数.3)现要设计一个容积为V 的一个圆柱体的容器.已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少?4)已知()f x 在11(,)42内满足331()sin cos f x x x'=+,求()f x .解 1)记 121(1)s i n n n k k k S n nπ-==+∑,则 122111()n n k k k S o n n n π-=⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭∑.11223111()n n k k k ko n n nππ--===++∑∑5236πππ→+=2) 将∑(或分片后)投影到相应坐标平面上化为二重积分逐块计算。
112yzD I axdydz a ∑==-⎰⎰⎰⎰ 其中yz D 为yoz 平面上的半圆222,0y z a z +≤≤。
利用极坐标,得2310223aI d rdr a ππθπ=-=-⎰⎰22211()[xyD I z a dxdy a dxdy a a ∑=+=-⎰⎰⎰⎰, 其中xy D 为xoy 平面上的圆域222x y a +≤。
利用极坐标,得()22232001226a I d a r rdr a a ππθ=-=⎰⎰。
因此,3122I I I a π=+=-。
3)设圆柱容器的高为h ,上下底的径为r ,则有22,Vr h V h rππ==或。
所需费用为222()222bV F r a r b rh a r rπππ=+=+显然,'22()4bV F r a r rπ=-。
那么,费用最少意味着 '()0F r =,也即32bV r a π=这时高与底的直径之比为322h V ar r bπ==。
首届全国大学生数学竞赛赛区赛试卷(数学类,2009)一、求经过三平行直线1:L x y z ==,2:11L x y z −==+,3:11L x y z =+=−的圆柱面的方程.二、设n n C ×是n n ×复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,121000100010001n n n a a F a a −−−⎛⎞⎜⎟−⎜⎟⎜⎟=−⎜⎟⎜⎟⎜⎟−⎝⎠#########. (1)假设111212122212n n n n nn a a a a a a A a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠""""""",若AF FA =,证明: 121112111n n n n A a F a F a F a E −−−=++++".(2)求n n C ×的子空间{}()|n n C F X C FX XF ×=∈=的维数.三、假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换.如果fg gf f −=,证明:f 的特征值都是0,且,f g 有公共特征向量.四、设{}()n f x 是定义在[],a b 上的无穷次可微的函数序列且逐点收敛,并在[],a b 上满足'()n f x M ≤.(1)证明{}()n f x 在[],a b 上一致收敛;(2)记()lim ()n n f x f x →∞=,问()f x 是否一定在[],a b 上处处可导,为什么?五、设320sin d sin n nt a t t t π=∫, 证明11n n a ∞=∑发散. 六、(,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f f x y x y ∂∂+=∂∂,计算积分221d d x y I x y +≤⎛⎞=∫∫. 七、假设函数 ()f x 在 [0,1]上连续,在(0,1)内二阶可导,过点 (0,(0))A f ,与点 (1,(1))B f 的直线与曲线 ()y f x =相交于点 (,())C c f c ,其中 01c <<. 证明:在 (0,1)内至少存在一点 ξ,使 ()0f ξ′′=.。
专业:线年级:封所在院校: 密身份证号: 姓名:首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.题 号 一 二 三 四 五 六 七 八 总分满 分 20 5 15 15 10 10 15 10 100 得 分注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2、密封线左边请勿答题,密封线外不得有姓名及相关标记.一、 填空题(每小题5分,共20分).(1)计算 dxdy yx x y y x D∫∫−−⎟⎠⎞⎜⎝⎛++11ln )(=_____________,其中区域D 由直线1=+y x 与两坐标轴所围三角形区域.(2)设 ()f x 是连续函数,满足 220()3()2f x x f x dx =−−∫,则()f x =___________________. (3) 曲面2222x z y =+− 平行平面 220x y z +−= 的切平面方程是________________________.(4)设函数 ()y y x =由方程 ()ln 29f y y xee =确定,其中f 具有二阶导数,且 1f ′≠,则22d ydx =____________________.答案:1615 ,21033x −, 2250x y z +−−=,223[1()]()[1()]f y f y x f y ′′′−−−′−.得 分评阅人二、(5分)求极限 20lim()ex x nx x x e e e n→+++ ,其中 n 是给定的正整数.解:原式20lim exp{ln()}x x nxx e e e e x n→+++=20(ln()ln )exp{lim}x x nx x e e e e n x →+++−= ………………….….…(2分) 其中大括号内的极限是型未定式,由 L Hospital ′法则,有 20(ln()ln )lim x x nx x e e e e n x →+++− 20(2)limx x nx x x nxx e e e ne e e e →+++=+++ (12)1(2e n n e n ++++==于是 原式=1()2n e e+ . ……………………………………..…………..…(5分)三、(15分)设函数 ()f x 连续,1()()g x f xt dt =∫,且()limx f x A x→= ,A 为常数,求 ()g x ′并讨论()g x ′ 在0x =处的连续性.解:由题设,知 (0)0f =,(0)0g =. …………….…………...…(2分)令u xt =,得0()()xf u dug x x=∫ (0)x ≠,……………………………………..……(5分)从而 02()()()x xf x f u dug x x−′=∫ (0)x ≠…………………………………….……(8分)由导数定义有20()()(0)limlim22xx x f u du f x Ag x x →→′===∫ ……………………………………….……(11分) 由于 022000()()()()lim ()limlim lim (0)22xxx x x x xf x f u duf u du f x A Ag x A g xx x →→→→−′′==−=−==∫∫, 从而知 ()g x ′ 在 0x =处连续. …………………………………………….……….(15分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:四、(15分)已知平面区域 {(,)|0,0}D x y x y ππ=≤≤≤≤ ,L 为D 的正向边界,试证:(1)sin sin sin sin yx y xLLxedy ye dx xe dy ye dx −−−=−∫∫; (2)sin sin 252yx Lxedy ye dx π−−≥∫ . 证法一:由于区域D 为一正方形,可以直接用对坐标曲线积分的计算法计算.(1) 左边0sin sin sin sin 00()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ , ...…(4分)右边0sin sin sin sin 0()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ ,……..…(8分)所以 sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫. ……………………………(10分) (2) 由于 sin sin 22sin xx ee x −+≥+ , …….…………………….…...(12分)sin sin sin sin 205()2yxx x Lxedy yedx e e dx πππ−−−=+≥∫∫ . ……..…….…(15分)证法二:(1)根据 Green 公式,将曲线积分化为区域D 上的二重积分sin sin sin sin ()y x y x LDxe dy ye dx e e d δ−−−=+∫∫∫ ……………………………...… (4分) sin sin sin sin ()yx y x LDxedy ye dx e e d δ−−−=+∫∫∫ ………………………………(8分)因为 关于 y x = 对称,所以sin sin sin sin ()()yx y x DDee d e e d δδ−−+=+∫∫∫∫ ,故sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫ . ………………….…… (10分) (2) 由 22022(2)!nttn t e e t n ∞−=+=≥+∑ sin sin sin sin sin sin 25()()2y x y x x xL D Dxe dy ye dx e e d e e d δδπ−−−−=+=+≥∫∫∫∫∫ . …….……….……(15分)得 分评阅人五、(10分)已知 21x xy xe e =+ ,2x x y xe e −=+ ,23x x x y xe e e −=+−是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解:根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知:2x e 与 xe −是相应齐次方程两个线性无关的解,且 xxe 是非齐次的一个特解.因此可以用下述两种解法 ………………………………………………………….…...……(6分)解法一: 故此方程式 2()y y y f x ′′′−−= ………………….……..……..……(8分)将xy xe = 代入上式,得()()()2222x x x x x x x x x x f x xe xe xe e xe e xe xe e xe ′′′=−−=+−−−=− ,因此所求方程为22x xy y y e xe ′′′−−=− . ……………………………………… …(10分)解法二:故 212x x xy xe c e c e −=++ ,是所求方程的通解,……………………(8分) 由2122x x x x y e xe c e c e −′=++− ,21224x x x xy e xe c e c e −′′=+++ ,消去 12,c c 得所求方程为 22x xy y y e xe ′′′−−=−. ……………………………………………………....…(10分)六、(10分)设抛物线 22ln y ax bx c =++过原点,当 01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线 1x =所围图形的面积为 13. 试确定,,,a b c 使此图形绕 x 轴旋转一周而成的旋转体的体积V 最小.解: 因抛物线过原点,故 1c =由题设有 1201()323a b ax bx dx +=+=∫.即 2(1)3b a =− ,………..………….…(2分) 而 122220111()[]523V ax bx dx a ab b ππ=+=++∫ 221114[(1)(1)]5339a a a a π=+−+⋅−. …………………….…………….…(5分)令 2128[(1)]053327dv a a a da π=+−−−=, 得 54a =− ,代入 b 的表达式 得 32b =. 所以0y ≥, ……………..…………(8分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:又因 25242284|[]05327135a d v da ππ=−=−+=> 及实际情况,当53,,142a b c =−== 时,体积最小. ………….……….…(10分)七、(15分)已知 ()n u x 满足1()()n x n nu x u x x e −′=+(n 为正整数), 且(1)n e u n=,求函数项级数1()n n u x ∞=∑之和.解:先解一阶常系数微分方程,求出()n u x 的表达式,然后再求1()n n u x ∞=∑ 的和.由已知条件可知 1()()n xn n u x u x x e −′−= 是关于 ()n u x 的一个一阶常系数线性微分方程,故其通解为1()()()ndx dx n x x n xu x e x e e dx c e c n−−∫∫=+=+∫ , ……………..…..(6分)由条件 (1)n e u n =,得0c =,故()n xn x e u x n=,从而 111()n x n xn n n n x e x u x e n n∞∞∞=====∑∑∑. …………….……..……...…(8分) 1()nn x s x n ∞==∑,其收敛域为 [1,1)−,当 (1,1)x ∈−时,有111()1n n s x x x∞−=′==−∑ ,………………………..…………………….….(10分) 故 01()ln(1)1xs x dt x t==−−−∫ . ………………..…………………(12分) 当1x =−时,11()ln 2n n u x e∞−==−∑. …………………………...…(13分)于是,当 11x −≤<时,有1()ln(1)xn n u x ex ∞==−−∑. ……….…..…(15分)得 分评阅人八、(10分)求1x →− 时,与20n n x ∞=∑等价的无穷大量.解:2221t n t n x dt x x dt ∞+∞+∞=≤≤+∑∫∫, ………………….…………….….….…(3分)221lnt t xx dt edt −+∞+∞=∫∫………………….…….………….....….(7分)=∼……………………….…...(10分)得 分评阅人第二届中国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2010)一(本题共5小题,每小题5分,共25分)、计算下列各题(要求写出重要步骤). (1) 设2(1)(1)(1)nn 2x a a a =+⋅++ ,其中1<|a |,求.n n x ∞→lim 解 将n x 恒等变形221(1)(1)(1)(1)1nn x a a a a a =−+⋅++− 2221(1)(1)(1)1n a a a a=−⋅++− 4421(1)(1)(1)1na a a a =−⋅++− 1211n a a+−=−,由于,可知1<|a |2lim 0nn a →∞=,从而ax n n −=∞→11lim . (2) 求lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211.解 lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211=11lim 1xx x e x −→∞⎡⎤⎛⎞+⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎢⎥⎜⎟⎜⎟⎝⎠⎢⎥⎣⎦⎝⎠=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=22111exp lim ()12x x x x xx ο→∞⎛⎞⎡⎤⎛⎞−+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=21−e .(3) 设,求0s >0sx n n I e x dx +∞−=∫(1,2,n )= .解 因为时,0s >lim 0sx n x e x −→+∞=,所以,100011n sx n sx sx n n n n I x de x e e dx I s s +∞+∞+∞−−−s −⎡⎤=−=−−=⎢⎥⎣⎦∫∫ 由此得到,12011!n n n n n n n n n n I I I I s s s s s−−!+−==⋅===(4) 设函数f ( t )有二阶连续的导数,r =1(,)(g x y f r=,求2222.g g x y ∂∂+∂∂ 解 因为,r x r yx r y r∂∂==∂∂,所以 31()g x f x r r ∂′=−∂,2222265121(().g x x y f f x r r r r ∂−′′′=+∂ 利用对称性,2222431111()()g g f f x y r r r r∂∂′′′+=+∂∂(5) 求直线10:0x y l z −=⎧⎨=⎩与直线221:42x y z l 31−−−==−−的距离.解 直线的对称式方程为1l 1:110x y zl ==. 记两直线的方向向量分别为,,两直线上的定点分别为和,.1(10)l = a P ==,1,12P 2(4,2,1)l =−−(2,1,3)1(0,0,0)P 2(2,1,3)P 12(1,1,6)l l ×=−−.由向量的性质可知,两直线的距离1212()a l l d l l ⋅×====×二(本题共15分)、 设函数在)(x f )(+∞−∞,上具有二阶导数,并且()0,f x ′′>lim ()0x f x α→+∞′=>,lim x ()f x 0β→−∞′=<,且存在一点,使得.0x 0)(0<x f 证明:方程0)(=x f 在恰有两个实根.)(+∞−∞,证1. 由lim ()0x f x α→−∞′=>必有一个充分大的,使得0x a >()0f a ′>.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f a f a x a x a ′>+−>当x →+∞时,()()()f f a x a ′+∞+−→+∞. 故存在,使得a b > ……………… (6分)()()()()0f b f a f a b a ′>+−>同样,由lim ()0x f x β→−∞′=<,必有0c x <,使得()0f c ′<.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f c f c x c x c ′>+−<当x →−∞时,()()()f f c x c ′−∞+−→+∞. 故存在d ,使得c < …………………… (10分)()()()()0f d f c f c d c ′>+−>在0[,]x b 和利用零点定理,0[,]d x 10(,)x x b ∃∈,2(,)0x d x ∈使得 ……………………… (12分) 1()2)0==(f x f x 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.用反证法. 假设方程0)(=x f 在)(+∞−∞,]232x ,x 内有三个实根,不妨设为,且. 对在区间[和[]上分别应用洛尔定理,则各至少存在一点(321x ,x ,x 321x x x <<1ξ)(x f 1x ξ<1,x 2x 1x <)和(2ξ322x ξx <<),使得=)(1ξf'(ξη00=)2ξ<)(2ξf'1η<. 再将在区间[上使用洛尔定理,则至少存在一点,使. 此与条件矛盾. 从而方程)(x 0)(=ηf'f"]2ξ′′1,ξ()0f x >)(=x f 在)+∞,(−∞不能多于两个根. ……………………(15分)证2. 先证方程至少有两个实根.0)(=x f 由lim ()0x f x α→+∞′=>,必有一个充分大的,使得0x a >()0f a ′>.因在)(x f )(+∞−∞,上具有二阶导数,故()f x ′及()f x ′′在)(+∞−∞,均连续. 由拉格朗日中值定理,对于a x > 有()[()()()]f x f a f a x a ′−+−=()()()()]f x f a f a x a ′−−−=()()()()f x a f a x a ξ′′−−−=[()()]()f f a x a ξ′′−− =()()()f a x a ηξ′′−−.其中x ηa ,x ξa <<<<. 注意到()0f η′′>(因为()0f x ′′>),则()()()()()f x f a f a x a x a ′>+−>又因 故存在,使得()0,f a ′>a b > ()()()()0f b f a f a b a ′>+−> …………………(6分)又已知,由连续函数的中间值定理,至少存在一点 使得0)(0<x f )(101b x x x <<0)(1=x f . 即方程在0)(=x f )(0+∞,x 上至少有一个根 ………………(7分)1x 同理可证方程在0)x (=f )(0x ,−∞上至少有一个根2x . ………………(12分) 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.(以下同证1).……(15分)三(本题共15分)、设函数()y f x =由参数方程22()x t t y t ψ⎧=+⎨=⎩(t >−1)所确定. 且2234(1)d y dx t =+,其中()t ψ具有二阶导数,曲线)(t y ψ=与21t ∫2u y e d −=+32u e在处相切. 求函数1=t (t )ψ.解 因为()22dy t dx t ψ′=+,()22231(22)()2()(1)()()224(1)22d y t t t t t t dx t t t ψψψψ′′′′′′+−+−=⋅=+++, ………………(3分)由题设2234(1)d y dx t =+,故3(1)()()34(1)4(1)t t t t t ψψ′′′+−=++,从而,即 2(1)()()3(1)t t t t ψψ′′′+−=+1()()3(1).1t t tt ψψ′′′−=++ 设()u t ψ′=,则有13(1)1u u t′−=++t , 11111113(1)(1)3(1)(1)(1)(3).dt dt t t u e t e dt C t t t dt C t t C −−++⎡⎤∫∫⎡⎤=++=++++=+⎢⎥⎣⎦⎣⎦∫∫1+ …………(9分)由曲线)(t y ψ=与22132t u y edu e−=+∫在1=t 处相切知3(1)2e ψ=,2(1)eψ′=. ………………(11分)所以12(1)t ue ψ=′==,知311−=eC . ∫∫++++=+++=++=21213112123))3(3()3)(1()(C t C t C t dt C t C t dt C t t t ψ,由e23)1(=ψ,知,于是22=C 3211()(3)2(1)2t t t t t e e ψ=++−+>−.…(15分)四(本题共15分)、设10,nn n k a S =>=k a ∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤,且(n )时,级数n S →∞→∞1nn na S α+∞=∑发散. 证明 令11(),[,]n n f x x x S S α−−=∈. 将()f x 在区间上用拉格朗日中值定理,1[,n n S S −])存在1(,n n S S ξ−∈11()()()()n n n n f S f S f S S ξ−−′−=−即 ………………(5分) 111(1)n n S S ααααξ−−−−−=−n a (1)当1α>时,11111(1)(1)nnn na a S S S n αααααξ−−−−=−≥−α. 显然11111n n S S αα−−−⎧⎫−⎨⎬⎩⎭的前n 项和有界,从而收敛,所以级数1nn na S α+∞=∑收敛. ……………(8分) (2)当1α=时,因为,单调递增,所以0n a >n S 1111n pn pn p nk nk k n k n kn p n pn S S a S a S S S S +++=+=+p+++−≥==−∑∑因为对任意n ,当n S →+∞p ∈12n n p S S +<,从而112n pk k n ka S +=+≥∑. 所以级数1nnn a S α+∞=∑发散. ………………(12分) 当1α<时,n n n a a S S α≥n. 由1n n n a S +∞=∑发散及比较判别法,1n n na S α+∞=∑发散.………(15分)五(本题共15分)、设l 是过原点,方向为(,(其中)的直线,均匀椭球,)αβγ2221αβγ++=2222221x y z a b c ++≤(其中0 < c < b < a ,密度为1)绕l 旋转.(1) 求其转动惯量;(2) 求其转动惯量关于方向(,的最大值和最小值. ,)αβγ解 (1) 设旋转轴l 的方向向量为,椭球内任意一点P(x,y,z )的径向量为,则点P 到旋转轴l 的距离的平方为(,,)αβγ=l r ()222222222(1)(1)(1)222d x y z xy yz xz αβγαββγα=−⋅=−+−+−−−−r r l γ 由积分区域的对称性可知(222)0xy yz xz dxdydz αββγαγΩ++=∫∫∫,其中222222(,,)1x y z x y z a b c ⎧⎫⎪⎪⎪⎪Ω=++≤⎨⎬⎪⎪⎪⎪⎩⎭………………(2分)而22222223222214115aay z x b c a a ax a bc x dxdydz x dx dydz x bc dx a ππ+≤−Ω−−⎛⎞⎟⎜⎟==⋅−=⎜⎟⎜⎟⎝⎠∫∫∫∫∫∫∫ (或2132222220004sin cos sin 15a bc x dxdydz d d a r abcr dr πππθϕϕθϕΩ=⋅=∫∫∫∫∫∫) 32415ab c y dxdydz πΩ=∫∫∫,32415abc z dxdydz πΩ=∫∫∫……………(5分)由转到惯量的定义()222224(1)(1)(1)15l abc J d dxdydz a b c παβγΩ==−+−+−∫∫∫22c ……………(6分)(2) 考虑目标函数 在约束 下的条件极值. 222222(,,)(1)(1)(1)V a b αβγαβγ=−+−+−2221αβγ++=设拉格朗日函数为222222222(,,,)(1)(1)(1)(1)L a b c αβγλαβγλαβγ=−+−+−+++−…………………(8分)令,,,22()0L a ααλ=−=22()0L b ββλ=−=22()0L c γγλ=−=22210L λαβγ=++−=解得极值点为,, .……(12分) 21(1,0,0,)Q a ±22(0,1,0,)Q b ±23(0,0,1,)Q ±c 比较可知,绕z 轴(短轴)的转动惯量最大,为()22max 415abc J a π=+b ;绕x 轴(长轴)的转动惯量最小,为(22min 415abc J b π=)c +. ………(15分)六(本题共15分)、设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422(C)xydx x dyx yϕ++∫v1的值为常数. (1) 设为正向闭曲线. 证明: L 22(2)x y −+=422()0Lxydx x dyx y ϕ+=+∫v ;(2) 求函数()x ϕ;(3) 设C 是围绕原点的光滑简单正向闭曲线,求422(C)xydx x dyx y ϕ++∫v.解 (1) 设422()Lxydx x dyI x yϕ+=+∫v,闭曲线L 由,1,i L i 2=组成. 设0L 为不经过原点的光滑曲线,使得01L L −∪(其中1L −为1L 的反向曲线)和02L L ∪分别组成围绕原点的分段光滑闭曲线,C i 1,2i =. 由曲线积分的性质和题设条件12214242422()2()2(LL L L L L L)xydx x dy xydx x dy xydx x dyx y x y x y ϕϕ−++=+=+−−++∫∫∫∫∫∫∫v ϕ++12422()0C C xydx x dyI I x y ϕ+=+=−=+∫∫v v……………(5分) (2) 设4242((,),(,)2)xy x P x y Q x y x y x ϕ==++y .令Q P x y ∂∂=∂∂,即 4235422422()()4()22()(2)x x y x x x xy x y x y ϕϕ′+−−=++,解得2()x x ϕ=− ……………………(10分)(3) 设D 为正向闭曲线所围区域,由(1)42:a C x y +=1242422()2aCCxydx x dy xydx x dyx y x y ϕ+−=++∫∫v v…………………(12分) 利用Green 公式和对称性,2422()24aaC C Dxydx x dyxydx x dy x dxdy x y (ϕ+=−=−=+∫∫∫∫v v )0…………………(15分)第三届全国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2011)一、(本题共4小题,每题6分,共24分)计算题1. 220(1)(1ln(1))lim .xx x e x x →+--+解:因为 22(1)(1ln(1))xx e x x+--+=2ln(1)2(1ln(1)),x xe e x x+--+220ln(1)lim ,x e x e x →+= ………………………………………………3分 22ln(1)ln(1)222001lim lim x x xxx x e e e e x x ++-→→--==202ln(1)2lim x x x e x→+- =22220011ln(1)12lim 2lim ,2x x x x x e e e x x→→-+-+==- ………………5分 所以220(1)(1ln(1))lim xx x e x x→+--+=0. ………………………………6分 2. 设2cos cos cos ,222n n a θθθ=⋅⋅⋅ 求lim .n n a →∞解:若0,θ=则lim 1.n n a →∞= ……………………1分若0θ≠,则当n 充分大,使得2||nk >时,2cos cos cos 222n n a θθθ=⋅⋅⋅ =21cos cos cos sin 2222sin 2n n nθθθθθ⋅⋅⋅⋅⋅=21111cos cos cos sin 22222sin 2n n n θθθθθ--⋅⋅⋅⋅⋅ . ………………………4分=222211cos cos cos sin 22222sin 2n n nθθθθθ--⋅⋅⋅⋅⋅ =sin 2sin 2n n θθ这时, lim n n a →∞=lim n →∞sin sin 2sin 2nnθθθθ=. ………………………6分3. 求sgn(1)Dxy dxdy -⎰⎰,其中{(,)|02,02}D x y x y =≤≤≤≤解:设 11{(,)|0,02}2D x y x y =≤≤≤≤ 211{(,)|2,0}2D x y x y x =≤≤≤≤311{(,)|2,2}2D x y x y x =≤≤≤≤. ……………………………2分12212112ln 2D D dxdxdy x ⋃=+=+⎰⎰⎰,332ln 2D dxdy =-⎰⎰. ………………………4分 323sgn(1)24ln 2DD D D xy dxdy dxdy dxdy ⋃-=-=-⎰⎰⎰⎰⎰⎰. ………………………6分4. 求幂级数221212n nn n x ∞-=-∑的和函数,并求级数211212n n n ∞-=-∑的和. 解:令22121()2n nn n S x x ∞-=-=∑,则其的定义区间为(.(x ∀∈, 12122221110021()22222n xxn n n n n n n n x x x xS t dt t dt x --∞∞∞-===⎛⎫-====⎪-⎝⎭∑∑∑⎰⎰. …………………2分 于是,22222()2(2)x x S x x x '+⎛⎫== ⎪--⎝⎭,(x ∈. (4)分 222111212110229n n n n n n n S -∞∞-==--===∑∑. ………………………………6分二、(本题2两问,每问8分,共16分)设0{}n n a ∞=为数列,,a λ为有限数,求证: 1. 如果lim n n a a →∞=,则12limnn a a a a n→∞+++= ;2. 如果存在正整数p ,使得lim()n p n n a a λ+→∞-=,则 limn n a n pλ→∞=.证明:1. 由lim n n a a →∞=,0M ∃>使得||n a M ≤,且10,N ε∀>∃∈ ,当n > N 1 时,||2n a a ε-<. ……………………………………4分因为21N N ∃>,当n > N 2 时,1(||)2N M a n ε+<.于是,111(||)()22n a a N M a n N a n n n εεε+++--≤+< ,所以, 12limnn a a a a n→∞+++= . …………………………………………8分2.对于0,1,,1i p =- ,令()(1)i n n p i np i A a a +++=-,易知(){}i n A 为{}n p n a a +-的子列.由lim()n p n n a a λ+→∞-=,知()lim i nn A λ→∞=,从而()()()12lim i i i nn A A A nλ→∞+++= .而()()()12(1)i i i n n p i p i A A A a a ++++++=- .所以,(1)limn p i p in a a nλ+++→∞-=.由lim0p i n a n+→∞=.知(1)limn p in a nλ++→∞=. ………………………………………12分从而(1)(1)limlim (1)(1)n p in p i n n a a nn p i n p i n pλ++++→∞→∞=⋅=++++ ,,,m n p i ∀∈∃∈ ,(01)i p ≤≤-,使得m np i =+,且当m →∞时,n →∞.所以,lim m m a m pλ→∞=. …………………………………………………………16分三、(15分)设函数()f x 在闭区间-[1,1]上具有连续的三阶导数,且10f -=(),11f =(),00f '=().求证:在开区间()-1,1内至少存在一点0x ,使得03f x '''=() 证. 由马克劳林公式,得 311(0)23f x f f x f x η'''''=++2()(0)()!!,η介于0与x 之间,[]1,1x ∈-…3分 在上式中分别取1x =和1x =-, 得111111(0),0123f f f f ηη'''''==++<<()(0)()!!. ………………………5分 221101(0)(0),1023f f f f ηη'''''=-=+--<<()()!!. ………………………7分 两式相减,得 12()6f f ηη''''''+=(). ………………………10分 由于()f x ''在闭区间[1,1]-上连续,因此()f x '''在闭区间[21,ηη]上有最大值M 最小值m ,从而121()())2m f f M ηη''''''≤+≤( …………………………………13分 再由连续函数的介值定理,至少存在一点0x ,ηη∈⊂-21[](1,1),使得0121()32f x f f ηη'''''''''=+=()(()). ………………………15分四、(15分)在平面上, 有一条从点)0,(a 向右的射线,线密度为ρ. 在点),0(h 处(其中h > 0)有一质量为m 的质点. 求射线对该质点的引力.解:在x 轴的x 处取一小段dx , 其质量是dx ρ,到质点的距离为22x h +, 这一小段与质点的引力是22Gm dxdF h xρ=+(其中G 为引力常数). …………………5分 这个引力在水平方向的分量为2232()x Gm xdxdF h x ρ=+. 从而 222/1222/32222/322)()()(2)(a h Gm x h Gm x h x d Gm x h xdx Gm F aa ax +=+-=+=+=⎰⎰+∞∞+-+∞ρρρρ……10分而dF 在竖直方向的分量为2232()y Gm hdxdF h x ρ=+, 故 ⎪⎭⎫⎝⎛-===+=⎰⎰⎰+∞h a h Gm tdt h Gm t h dt h Gm x h hdxGm F hahaay arctan sin 1cos sec sec )(2/arctan2/arctan33222/322ρρρρππ 所求引力向量为(,)x y F F =F . …………………………15分五、(15分)设z = z (x,y ) 是由方程11(,)0F z z x y+-=确定的隐函数,且具有连续的二阶偏导数.求证:220z z xy x y ∂∂+=∂∂ 和 2223322()0z z z x xy x y y x x y y ∂∂∂+++=∂∂∂∂ 解:对方程两边求导,1221()0z z F F x x x ∂∂-+=∂∂,1221()0z z F F y y y∂∂++=∂∂. ……5分 由此解得,22121211,()()z z x y x F F y F F ∂∂-==∂∂++ 所以,220z z xy x y∂∂+=∂∂ …………………………10分 将上式再求导,222222z z z xy x y x x x ∂∂∂+=-∂∂∂∂,222222z z z x y y x y y y ∂∂∂+=-∂∂∂∂ 相加得到,2223322()0z z z x xy x y y x x y y∂∂∂+++=∂∂∂∂ …………………………15分六、(15分)设函数)(x f 连续,c b a ,,为常数,∑是单位球面 1222=++z y x . 记第一型曲面积分⎰⎰∑++=dS cz by ax f I )(. 求证:⎰-++=11222)(2du u c b a f I π解:由∑的面积为π4可见:当 c b a ,,都为零时,等式成立. …………………2分 当它们不全为零时, 可知:原点到平面 0=+++d cz by ax 的距离是222||cb a d ++. …………………………5分设平面222:cb a cz by ax u P u ++++=,其中u 固定. 则 ||u 是原点到平面u P 的距离,从而11≤≤-u . …………………………8分两平面 u P 和du u P +截单位球 ∑ 的截下的部分上, 被积函数取值为()u c b af222++. …………………………10分这部分摊开可以看成一个细长条. 这个细长条的长是212u -π, 宽是21udu -,它的面积是du π2, 故我们得证. …………………………15分第四届全国大学生数学竞赛预赛试题 (非数学类)参考答案及评分标准一、(本题共5小题,每小题各6分,共30分)解答下列各题(要求写出重要步骤).(1) 求极限21lim(!)n n n →∞;(2) 求通过直线232:55430x y z L x y z 0+−+=⎧⎨+−+=⎩的两个相互垂直的平面1π和2π,使其中一个平面过点;(4,3,1)−(3) 已知函数,且(,)ax byz u x y e+=20,ux y∂=∂∂ 确定常数a 和,使函数满足方程 b (,)z z x y =20z z zz x y x y∂∂∂−−+=∂∂∂∂; (4) 设函数连续可微, , 且()u u x =(2)1u =3(2)()Lx y udx x u udy +++∫在右半平面上与路径无关,求; ()u x(5) 求极限 1limx xx +.解(1) 因为 2211ln(!)(!)n nn n e= ……………………………………(1分)而211ln1ln 2ln ln(!)12n n n n ⎛⎞≤+++⎜n ⎝⎠"⎟,且 ln lim 0n nn →∞= ………………………(3分) 所以 1ln1ln 2ln lim012n n n n →∞⎛⎞+++=⎜⎟⎝⎠", 即 21lim ln(!)0n n n →∞=, 故 21lim(!)n n n →∞=1 ……………………………………(2分)(2)过直线L 的平面束为(232)(5543)x y z x y z 0λμ+−+++−+=即 (25)(5)(34)(23)x y z 0λμλμλμλμ+++−+++= ,…………………………(2分) 若平面1π过点(4,代入得,3,1)−0λμ+=,即μλ=−,从而1π的方程为, ……………………………………(2分) 3410x y z +−+=若平面束中的平面2π与1π垂直,则3(25)4(5)1(34)0λμλμλμ⋅++⋅++⋅+=解得3λμ=−,从而平面2π的方程为253x y z 0−−+= ,………………………………(2分) (3)(),y ax by z u e au x x x +∂∂⎡⎤=++⎢⎥∂∂⎣⎦(),ax by zu e bu x y y y +⎡⎤∂∂=++ ………………(2分) ⎢⎥∂∂⎣⎦2(,).ax by z u ue b a abu x y x y x y +⎡⎤∂∂∂=++⎢⎥∂∂∂∂⎣⎦ ……………………………………(2分) 2z z z z x y x y ∂∂∂−−+=∂∂∂∂(1)(1)(1)(,)ax by u ue b a ab a b u x y x y +,⎡⎤∂∂−+−+−−+⎢⎥∂∂⎣⎦若使20,z z zz x y x y∂∂∂−−+=∂∂∂∂ 只有 (1)(1)(1)(,u ub a ab a b u x y x y∂∂−+−+−−+∂∂)=0, 即 1a b ==. ………………(2分) (4)由()()u y x y u x u x )2(][3+∂∂=+∂∂得()u u u x =+'43, 即241u x u du dx =−…… .(2分) 方程通解为 ()()()Cu u C udu u C du eu ex uu+=+=+=∫∫−2ln 2ln 244 . …………………(3分)由得1)2(=u 0=C , 故 3/12⎟⎠⎞⎜⎝⎛=x u . ……………………………………(1分)(5)因为当x >1时,1x x+≤ ………………………………(3分)≤=0()x →→∞, …………………(2分)所以 1x xx +=0。
首届中国大学生数学竞赛赛区赛试卷(非数学类 2009)一、 填空题(1)计算()ln 1d y x y x y ⎛⎞++⎜⎟∫∫=_____________,其中区域D 由直线1=+y x 与两坐标轴所围三角形区域.(2)设 ()f x 是连续函数,且满足220()3()d 2f x x f x x =−−∫, 则()f x =___________________.(3) 曲面2222x z y =+− 平行平面 220x y z +−= 的切平面方程是________________________.(4)设函数 ()y y x =由方程 ()ln 29f y y xe e =确定,其中 f 具有二阶导数,且 1f ′≠,则22d d y x=____________________. 二、求极限 20lim()e x x nx x x e e e n→+++" ,其中 n 是给定的正整数. 三、设函数 ()f x 连续,10()()d g x f xt t =∫,且 0()lim x f x A x→=,A 为常数,求 ()g x ′并讨论()g x ′在0x =处的连续性.四、已知平面区域 {(,)|0,0}D x y x y ππ=≤≤≤≤ ,L 为D 的正向边界,试证:(1)sin sin sin sin d d d d y x y x L Lxey ye x xe y ye x −−−=−∫∫v v ; (2)sin sin 25d d 2y x L xe y ye x π−−≥∫v . 五、已知21x x y xe e =+ ,2x x y xe e −=+ ,23x x x y xe e e −=+−是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、设抛物线 22ln y ax bx c =++过原点,当 01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线 1x =所围图形的面积为13. 试确定,,,a b c 使此图形绕 x 轴旋转一周而成的旋转体的体积V 最小.七、已知 ()n u x 满足 1()()n x n n u x u x x e −′=+(1,2,n ="), 且(1)n e u n=,求函数项级数 1()n n u x ∞=∑之和. 八、求1x −→ 时,与20n n x ∞=∑等价的无穷大量.。
山东省大学生数学竞赛(专科)试卷及标准答案
(非数学类,2010)
考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.
一、填空(每小题5分,共20分).
(1)计算)
cos 1(cos 1lim 0x x x x --+→= .
(2)设()f x 在2x =连续,且2
()3
lim
2
x f x x →--存在,则(2)f = . (3)若tx x x
t
t f 2)1
1(lim )(+=∞→,则=')(t f .
(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .
(1)
2
1. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2
ln ln 2.
二、(5分)计算
dxdy x y D
⎰⎰
-2,其中
1010≤≤≤≤y x D ,:.
解:
dxdy x y D
⎰⎰
-2=
dxdy y x x y D )(2
1:2
-⎰⎰<+
⎰⎰
≥-2
2:2
)(x y D dxdy x y -------- 2分 =dy y x dx x )(2
210
-⎰⎰+dy x y dx x
)(1
210
2⎰⎰- -------------4分
=
30
11
-------------5分.
三、(10分)设)](sin[2x f y =,其中f 具有二阶
导数,求22dx
y
d .
线
封
密
注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.
解:
)],(cos[)(222x f x f x dx
dy
'=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(22222222222
2x f x f x x f x f x x f x f dx
y
d '-''+'=-----7分 =)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.
四、(15分)已知3
1
23ln 0
=
-⋅⎰
dx e e a x x ,求a 的值. 解:
)23(232123ln 0
ln 0
x a
x a x
x
e d e dx e e ---=-⋅⎰⎰
---------3分
令t e x =-23,所以
dt t dx e e a
a x x ⎰⎰
--
=-⋅231
ln 0
2123---------6分
=a t 231
2
33
221-⋅-------------7分
=]1)23([31
3--⋅-a ,-----------9分
由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =3
1
,-----------12分
即3)23(a -=0-----------13分 亦即023=-a -------------14分
所以2
3
=a -------------15分.
五、(10分)求微分方程0=-+'x e y y x 满足条件e y
x ==1
的特解.
x
e y x y x
=+'1-----------2分
这是一阶线性非齐次方程,代入公式得
⎥⎦
⎤⎢⎣⎡+⎰⋅⎰=⎰-
C dx e
x e e y dx
x x
dx x 11----------4分 =⎥⎦
⎤⎢⎣⎡+⋅⎰-C dx e x e e
x x x
ln ln ----------5分 年级:
专业:
线
=
[]
⎰+C dx e x x 1
-----------6分 =)(1C e x
x
+.---------------7分 所以原方程的通解是)(1C e x
y x
+=.----------8分 再由条件e y
x ==1
,有C e e +=,即0=C ,-----------9分
因此,所求的特解是x
e y x
=.----------10分.
六(10分)、若函数()f x 在(,)a b 内具有二阶导
数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在
13(,)x x 内至少有一点ξ,使()0f ξ'=。
证:由于)(x f 在),(b a 内具有二阶导数,所以)(x f 在],[21x x 上连续, 在),(21x x 内可导,再根据题意)()(21x f x f =,
由罗尔定理知至少存在一点∈1ξ),(21x x ,使)(1ξf '=0;--------3分
同理,在23[,]x x 上对函数)(x f 使用罗尔定理得至少存在一点),(322x x ∈ξ,使)(2ξf '=0;---------6分
对于函数)(x f ',由已知条件知)(x f '在[1ξ,2ξ]上连续,在(1ξ,2ξ)内可导,且)(1ξf '=)(2ξf '=0,由罗尔定理知至少存在一点∈ξ(1ξ,2ξ),使0)(=''ξf ,而1ξ,2ξ)),(31x x ⊂,故结论得证----------10分.
七、(15分)已知曲线,
x e y =x y sin =和直线0=x ,1=x 围成平面图形D .
(1)求平面图形D 的面积A ;
(2)求D 绕x 轴旋转所成立体的体积.
解:(1)1
0(sin )x A e x dx =-⎰-----------2分
10(cos )x e x =+-----------4分
cos12e =+------------5分
(2)因为⎰=b
a x dx x f V )(2π,-----------6分
所以dx x e V x x )sin (1
22⎰-=π-----------9分
=1
20
111sin 2224x e x x π⎡⎤
-+⎢⎥⎣⎦------------11分
线
封
密
=⎥⎦⎤
⎢⎣⎡+--2sin 4121)1(212e π-----------13分
=⎥⎦
⎤
⎢⎣⎡-+1)2sin 21(212e π .--------------15分.
八、(15分)设),,(z y x f u =有连续的一阶偏导数,又函数
)(x y y =及)(x z z =分别由下列两式确定:
2=-xy e 和dt t t e =0
sin ,求du
dx
. 解:
dx
dz
z f dx dy y f x f dx du ⋅∂∂+⋅∂∂+∂∂=, (1)---------4分 由2=-xy e xy 两边对x 求导,得
)()(dx dy
x y dx dy x
y e xy +-+=0,--------------7分 即 x
y
dx dy -= ---------------9分 又由dt t
t
e z x x ⎰-=0sin 两边对x 求导,得 )1()sin(dx dz z x z x e x -⋅--=,-----------11分
即 )
s i n ()
(1z x z x e dx dz x ---
= -----------13分 将其代入(1)式,得 ()1sin()x du f y f e x z f dx x x y x z z ⎡⎤∂∂-∂=-+-⎢⎥∂∂-∂⎣⎦.-----------15分.。