哈尔滨工业学光学习题课6干涉装置共26页
- 格式:ppt
- 大小:571.00 KB
- 文档页数:10
黑龙江哈尔滨市光的干涉衍射测试题一、光的干涉衍射选择题1.下列说法正确的是___________A.变化的电场一定产生变化的磁场,变化的磁场一定产生变化的电场B.全息照相的拍摄利用了光的干涉原理C.电视机遥控器是利用发出红外线脉冲信号来换频道的D.在杨氏双缝干涉实验中,用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距相等的条纹E.某人在水面上方观察水底同位置放置的红、黄、绿三盏灯时,看到绿灯距水面最近.比较2.如图所示,三束细光经玻璃三棱镜折射后分解为互相分离的a、b、c三束单色光a、b、c三束光,可知( )A.a为波长较长的光B.当它们在真空中传播时,a光的速度最大C.分别用这三种光做光源,使用同样的装置进行双缝干涉实验,a光的干涉条纹中相邻亮纹的间距最小D.若它们都从玻璃射向空气,c光发生全反射的临界角最大3.激光陀螺仪是很多现代导航仪器中的关键部件,广泛应用于民航飞机等交通工具。
激光陀螺仪的基本元件是环形激光器,其原理结构比较复杂,我们简化为如图所示模型:由激光器发出的A、B两束激光,经完全对称的两个通道(图中未画出)在光电探测器处相遇,产生干涉条纹。
如果整个装置本身具有绕垂直纸面的对称轴转动的角速度,那么沿两个通道的光的路程差就会发生变化,同时光电探测器能检测出干涉条纹的变化,根据此变化就可以测出整个装置的旋转角速度。
某次测试,整个装置从静止开始,绕垂直纸面的对称轴,顺时针方向逐渐加速旋转,最后转速稳定,这个过程中光电探测器的中央位置C处检测出光强经过了强→弱→强→弱→强的变化过程。
根据上述材料,结合所学知识,判断下列说法正确的是()A.A束激光的频率大于B束激光的频率B.整个装置加速转动过程中,A束激光到达光电探测器的路程逐渐变大C.整个装置加速转动过程中,C处始终没有出现干涉明条纹D.整个装置加速转动过程中,两束激光的路程差变化了2个波长4.如图所示,一光朿包含两种不间频率的单色光,从空气射向平行玻璃砖的上表面,玻璃砖下表面有反射层,光束经两次折射和一次反射后,从玻璃砖上表面分为a、b两束单色光射出。
练习二十二光的相干性双缝干涉光程一.选择题(1)完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2)同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上;(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上.以上三种装置,能在屏上形成稳定干涉花样的是(A) 装置(3).(B) 装置(2).(C) 装置(1)(3).(D) 装置(2)(3).为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 把两个缝的宽度稍微调窄.(C) 使两缝的间距变小.(D) 改用波长较小的单色光源.22.1所示,设s1、s2为两相干光源发出波长为λ的单色光,分别通过两种介质(折射率分别为n1和n2,且n1>n2)射到介质的分界面上的P点,己知s1P = s2P = r,则这两条光的几何路程∆r,光程差δ和相位差∆ϕ分别为(A) ∆ r = 0 ,δ = 0 ,∆ϕ = 0.(B) ∆ r = (n1-n2) r ,δ =( n1-n2) r ,∆ϕ=2π (n1-n2) r/λ.(C) ∆ r = 0 , δ =( n1-n2) r , ∆ϕ =2π (n1-n2) r/λ.(D) ∆ r = 0 ,δ =( n1-n2) r ,∆ϕ =2π (n1-n2) r.4. 如图22.2所示,在一个空长方形箱子的一边刻上一个双缝,当把一个钠光灯照亮的狭缝放在刻有双缝一边的箱子外边时,在箱子的对面壁上产生干涉条纹.如果把透明的油缓慢地灌入这箱子时,条纹的间隔将会发生什么变化?答:(A) 保持不变.(B) 条纹间隔增加.(C) 条纹间隔有可能增加.(D) 条纹间隔减小.5. 用白光(波长为4000Å~7600Å)垂直照射间距为a=0.25mm的双缝,距缝50cm处放屏幕,则观察到的第一级彩色条纹和第五级彩色条纹的宽度分别是(A) 3.6×10-4m , 3.6×10-4m.(B) 7.2×10-4m , 3.6×10-3m.(C) 7.2×10-4m , 7.2×10-4m.(D) 3.6×10-4m , 1.8×10-4m.二.填空题,两缝分别被折射率为n1和n2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆ϕ=.s1、、s2为双缝,缝光源,当s和s2移动时,中央明条纹将向移动;若s不动,而在s1后加一很薄的云母片,中央明条纹将向移动.3. 如图22.4所示,在劳埃镜干涉装置中,若光图22.1图22.4源s离屏的距离为D, s离平面镜的垂直距离为a(a很小).则平面镜与屏交界处A的干涉条纹应为条纹;设入射光波长为λ,则相邻条纹中心间的距离为.三.计算题,单色光源s到两缝s1和s2的距离分别为l1和l2,并且l1-l2=3λ, λ为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D,如图22.5,求(1)零级明纹到屏幕中央O点的距离;(2)相邻明条纹间的距离.2. 双缝干涉实验装置如图22.6所示,双缝与屏之间的距离D=120cm,两缝之间的距离d=0.50mm,用波长λ=5000 Å的单色光垂直照射双缝.(1) 求原点O(零级明条纹所在处)上方的第五级明条纹的坐标.(2) 如果用厚度e=1.0×10-2mm,折射率n=1.58的透明薄膜覆盖在图中的s1缝后面,求上述第五级明条纹的坐标x' .练习二十三薄膜干涉劈尖牛顿环一.选择题23.1 所示, 薄膜的折射率为n2, 入射介质的折射率为n1, 透射介质为n3,且n1<n2<n3, 入射光线在两介质交界面的反射光线分别为(1)和(2), 则产生半波损失的情况是(A) (1)光产生半波损失, (2)光不产生半波损失.(B) (1)光(2)光都产生半波损失.(C) (1)光(2)光都不产生半波损失.(D) (1)光不产生半波损失,(2)光产生半波损失.波长为λ的单色光垂直入射到厚度为e的平行膜上,如图23.2,若反射光消失,则当n1<n2<n3时,应满足条件(1);当n1<n2>n3时应满足条件(2).条件(1),条件(2)分别是(A) (1)2ne = kλ, (2) 2ne = kλ.(B) (1)2ne= kλ+ λ/2,(2) 2ne= kλ+λ/2.(C)(1)2ne= kλ-λ/2,(2) 2ne= kλ.(D)(1)2ne = kλ, (2) 2ne = kλ-λ/2.3. 由两块玻璃片(n1 = 1.75)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm,现用波长为7000 Å的单色平行光,从入射角为30︒角的方向射在劈尖的表面,则形成的干涉条纹数为(A) 27.(B) 56.(C)40.(D) 100.图23.1涉实验中,(A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变稀,从中心向两边扩展.(B) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变密,从两边向中心靠拢.(C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变疏,条纹背向棱边扩展.(D) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变密,条纹向棱边靠拢.5. 一束波长为λ的单色光由空气入射到折射率为n的透明薄膜上,要使透射光得到加强,则薄膜的最小厚度应为(A) λ/2.(B) λ/2n.(C) λ/4.(D) λ/4n.二.填空题23.3所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为θ1和θ2 ,折射率分别为n1和n2 ,若二者形成干涉条纹的间距相等,则θ1 , θ2 , n1和n2之间的关系是.2. 一束白光垂直照射厚度为0.4μm的玻璃片,玻璃的折射率为 1.50,在反射光中看见光的波长是,在透射光中看到的光的波长是.空气劈尖干涉实验中,如将劈尖中充水,条纹变化的情况是,如将一片玻璃平行的拉开, 条纹变化的情况是.三.计算题1. 波长为λ的单色光垂直照射到折射率为n2的劈尖薄膜上, n1<n2<n3,如图23.4所示,观察反射光形成的条纹.(1)从劈尖顶部O开始向右数第五条暗纹中心所对应的薄膜厚度e5是多少?(2)相邻的二明纹所对应的薄膜厚度之差是多少?折射率n=1.50的玻璃上,镀上n'=1.35的透明介质薄膜,入射光垂直于介质膜表面照射,观察反射光的干涉,发现对λ1所镀介质膜的厚度.练习二十四单缝衍射光栅衍射一.选择题(A) 将单狭缝分成许多条带,相邻条带的对应点到达屏上会聚点的距离之差为入射光波长的1/2.(B) 将能透过单狭缝的波阵面分成许多条带, 相邻条带的对应点的衍射光到达屏上会聚点的光程差为入射光波长的1/2.1图23.4图23.3(C) 将能透过单狭缝的波阵面分成条带,各条带的宽度为入射光波长的1/2.(D) 将单狭缝透光部分分成条带,各条带的宽度为入射光波长的1/2.2. 波长λ = 5000 Å的单色光垂直照射到宽度a = 0.25 mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d = 12 mm ,则凸透镜的焦距为(A) 2m . (B) 1m . (C) 0.5m . (D) 0.2m . (E) 0.1m .λ垂直入射到单狭缝上,对应于某一衍射角θ , 此单狭缝两边缘衍射光通过透镜到屏上会聚点A 的光程差为δ = 2λ , 则(A) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A 点为明点.(B) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A 点为暗点.(C) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A 点为明点.(D) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A 点为暗点.λ = 5500 Å的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3.(C) 4.(D) 5.5. 每毫米刻痕200条的透射光栅,对波长范围为5000Å~6000Å的复合光进行光谱分析, 设光垂直入射.则最多能见到的完整光谱的级次与不重叠光谱的级次分别为(A) 8, 6. (B) 10, 6. (C) 8, 5. (D) 10, 5.二.填空题设第一级暗纹的衍射角很小,若用钠黄光(λ1≈5890 Å)照射单缝得到中央明纹的宽度为4.0mm , 则用λ2=4420 Å的蓝紫色光照射单缝得到的中央明纹宽度为 .2. 波长为5000 Å~6000 Å的复合光平行地垂直照射在a =0.01mm 的单狭缝上,缝后凸透镜的焦距为 1.0m,则此二波长光零级明纹的中心间隔为 ,一级明纹的中心间隔为.光栅上时,波长为λ1 = 440nm 的第3级光谱线,将与波长为λ2 = nm 的第2级光谱线重叠. 三.计算题λ = 6328Å的平行光垂直照射单缝,缝宽a = 0.15mm,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7mm,求此透镜的焦距.2. 波长λ=6000Å的单色光垂直入射到光图25.1一光栅上,测得第二级主极大的衍射角为30︒,且第三级是缺级.(1) 光栅常数(a + b )等于多少? (2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a+b )和a 之后, 求在衍射角-π/2 <ϕ <π/2 范围内可能观察到的全部主极大的级次.练习二十五 光的偏振一.选择题光通过一偏振片,当偏振片转动时,最强的透射光是最弱的透射光光强的16倍,则在入射光中,自然光的强度I 1和偏振光的强度I 2之比I 1:I 2为(A) 2:15. (B) 15:2. (C) 1:15. (D) 15:1.,设想用完全相同但偏振化方向相互垂直的偏振片各盖一缝,则屏幕上(A) 条纹形状不变,光强变小. (B) 条纹形状不变,光强也不变. (C) 条纹移动,光强减弱. (D) 看不见干涉条纹.3. 自然光以入射角i = 58︒从真空入射到某介质表面时,反射光为线偏光,则这种物质的折射率为(A) cot58︒ . (B) tan58︒ .(C) sin58︒. (D) cos58︒.4. 一束平行入射面振动的线偏振光以起偏角入到某介质表面,则反射光与折射光的偏振情况是(A) 反射光与折射光都是平行入射面振动的线偏光.(B) 反射光是垂直入射面振动的线偏光,折射光是平行入射面振动的线偏光.(C) 反射光是平行入射面振动的线偏光, 折射光是垂直入射面振动的线偏光.(D) 折射光是平行入射面振动的线偏光,看不见反射光.π/4角度的线偏振光,以起偏角入射到某介质上,则反射光与折射光的情况是(A) 反射光为垂直入射面振动的线偏光, 折射光为平行入射面振动的线偏光.(B) 反射光与折射光都是振动与入射面成π/4的线偏光.(C) 反射光为垂直入射面振动的线偏光,折射光也是线偏光,不过它的振动在平行入射面上的投影大于在垂直入射面上的投影.(D) 看不见反射光,折射光振动方向与入射光振动方向相同. 二.填空题1.一束平行光,在真空中波长为589nm (1nm=10-9m),垂直入射到方解石晶体上,晶体的光轴和表面平行,如图251所示.已知方解石晶体对此单色光的折射率为n o=1.658, n e=1.486.则此光在该晶体中分成的寻常光的波长λo= , 非寻常光的波长λe = .1.65, 现将这块玻璃浸没在水中(n = 1.33), 欲使从这块火石玻璃表面反射到水中的光是完全偏振的,则光由水射向玻璃的入射角应为.振片P1与P3之间平行地加入一块偏振片P2. P2以入射光线为轴以角速度ω匀速转动,如图25.2.光强为I0的自然光垂直入射到P1上,t = 0时, P2与P1的偏振化方向平行,.则t时刻透过P1的光强I1= , 透过P2的光强I2= , 透过P3的光强I3= .三.计算题1. 如图25.3所示,三种透明介质Ⅰ、Ⅱ、Ⅲ的折射率分别为n1、n2、n3,它们之间的两个交界面互相平行.一束自然光以起偏角i0由介质Ⅰ射向介质Ⅱ,欲使在介质Ⅱ和介质Ⅲ的交界面上的反射光也是线偏振光,三个折射率n1、n2和n3之间应满足什么关系?,其偏振化方向成30︒角, 由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,已知两种成分的入射光透射后强度相等.(1)若不计偏振片对透射分量的反射和吸收, 求入射光中线偏振光光矢量振动方向与第一个偏振片偏振化方向之间的夹角.(2)仍如上一问,求透射光与入射光的强度之比.(3) 若每个偏振片对透射光的吸收率为5% , 再求透射光与入射光的强度之比.练习二十六光学习题课一.选择题26.1所示,折射率为n2折射率分别为n1和n3,已知n1 <n2>n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n2e.(B) 2n2e-λ/(2 n2 ).(C) 2n2e-λ.(D) 2n2e-λ/2.26.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为图26.2图25.2n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 + n2 t2)-(r1 + n1 t1).(B) [r2 + ( n2-1)t2]-[r1 + (n1-1)t1].(C) (r2 -n2 t2)-(r1 -n1 t1).(D) n2 t2-n1 t1.26.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n1<n2>n3,λ1为入射光在折射率为n1的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n2 e / (n1 λ1 ).(B) 4 π n1 e / (n2 λ1 ) +π.(C) 4π n2 e / (n1 λ1 ) +π.(D) 4π n2 e / (n1 λ1 ).4.在如图26.4所示的单缝夫琅和费衍射实验装置中,s为单缝,L为透镜,C为放在L的焦面处的屏幕,当把单缝s沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移.(B) 向下平移.(C) 不动.(D) 条纹间距变大.5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为(A) a = b.(B) a = 2b.(C) a = 3b.(D) b = 2a.二.填空题性质,光的偏振现象说明光波是波.充以某种液体时,观察到第10级暗环的直径由1.42cm变成1.27cm,由此得该液体的折射率n = .3. 用白光(4000Å~7600Å)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm的凸透镜,则第一级光谱的宽度为.三.计算题1.波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边l = 1.56cm的A处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ.(2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?在平面透射光栅上每厘米有5000条刻线,用图26.43图26.3它来观察波长为λ=589 nm的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m是多少?练习二十二光的相干性双缝干涉一.选择题 A C C D B二.填空题1. 2π(n1-n2)e/λ.2. 下, 上.3. 暗, ∆x=Dλ/(2a) .三.计算题1.光程差δ=(l2+r2)-(l1+r1)=(l2-l1)+(r2-r1)= l2-l1+xd/D=-3λ+xd/D (1)零级明纹δ=0有x=3λD/d(2)明纹δ=±kλ=-3λ+x k d/D有x k=(3λ±kλ)D/d∆x=x k+1-x k=Dλ/d2.(1)光程差δ=r2-r1=xd/D=kλx k=kλD/d因k=5有x5=6mm(2)光程差δ=r2-(r1-e+ne)=r2-r1-(n-1)e=x'd/D-(n-1)e=k λ有x'=[kλ+(n-1)e]D/d因k=5,有x'5=19.9mm练习二十三薄膜干涉劈尖一.选择题 B C A C B 二.填空题1. n1θ1= n2θ2.2. 0.48μm; 0.6μm, 0.4μm.3. 依然平行等间距直条纹,但条纹变密;依然平行等间距直条纹,条纹间距不变,但条纹平行向棱边移动.三.计算题1.(1)因n1<n2<n3,所以光程差δ=2n2e暗纹中心膜厚应满足δk=2n2e k=(2k+1)λ/2 e k=(2k+1)λ/(4n2) 对于第五条暗纹,因从尖端数起第一条暗纹δ=λ/2,即k=0,所以第五条暗纹的k=4,故e4=9λ/(4n2)(2)相邻明纹对应膜厚差∆e=e k+1-e k=λ/(2n2)2.因n1<n2<n3所以光程差δ=2n2eλ1相消干涉,有δ=2n2e=(2k1+1)λ1/2λ2相长干涉,有δ=2n2e=2k2λ2/2因λ2>λ1,且中间无其他相消干涉与相长干涉,有k1=k2=k,故(2k+1)λ1/2=2kλ2/2k=λ1/[2(λ2-λ1)]=3得e=kλ2/(2n2)=7.78⨯10-4mm练习二十四牛顿环迈克耳逊干涉仪一.选择题 C D D B A二.填空题1. 0.9.2. 4I0.3. 干涉(或相干叠加).三.计算题1.(1) 明环半径r=[(2k-1)Rλ/2]1/2λ=2r 2/[(2k -1)R ]=5000Å(2) (2k -1)=2r 2/(R λ)=100k =50.5故在OA 范围内可观察到50个明环(51个暗环)2. 暗环半径 2n kR λr k =2n kR λr k '=' 222n kR λn kR λn kR λr r r kk k '-='-13.6%111122222='-='-=n n n n n练习二十五 单缝 圆孔 分辨率一.选择题 A B B D C二.填空题1. 3.0mm .2. 0, 15mm .3. 1.0m .三.计算题1. 单缝衍射暗纹角坐标满足 a sin θk =k λ 线坐标满足 x k =f tan θ≈f sin θ=f k λ/a∆x=x k -x k -1≈f λ/a f ≈a ∆x/λ=400mm=0.4m ;2.(1) 单缝衍射暗纹角坐标满足a sin θ1=λ1 a sin θ2=2λ2因重合有a sin θ2=a sin θ1,所以λ1=2λ2(2) a sin θ1=k 1λ1 = k 12λ2 a sin θ2=k 2λ2a sin θ1= a sin θ2得 k 2=2k 1故当k 2=2k 1时,相应的暗纹重合练习二十六 光栅 X 射线的衍射一.选择题 B C C D A二.填空题 1. 660.2. 570nm, 43.16°. 3. 1, 3.三.计算题1.(1) (a+b )sin ϕ=k λa+b= k λ/sin ϕ=2.4⨯10-4cm(2) (a+b )sin θ=k λ,a sin θ=k 'λ(a+b )/a=k/k ' a=(a+b )k '/k这里k =3,当k '=1时a =(a+b )/3=0.8⨯10-4cm 当k '=2时 a =2(a+b )/3=1.6⨯10-4cm 最小宽度 a =0.8⨯10-4cm (3) 因θ<π/2,有 k λ=(a+b )sin θ<(a+b )k < (a+b )/ λ=4 k max =3而第三级缺级,故实际呈现k =0,±1,±2级明纹,共五条明纹.2.(1) (a+b ) sin θ=k λλ=(a+b )sin θ/k a+b =(1/300)mmk =1时, λ1=1.38⨯10-6m(红外光) k =2时,λ2=6.90⨯10-7m=0.69μm(红光) k =3时, λ3=4.60⨯10-7m=0.46μm 所以 λR =.069μm λB =0.46μm (2) k Rmax <(a+b )/λR =4.831故 k Rmax =4 k Bmax <(a+b )/λB =7.246故 k Bmax =7 各谱线出现的最高级次是:λR =.069μm 为4, λB =0.46μm 为7 重叠时有k R λR = k B λB k B =k R λR /λB =3k R /2 故除红光2级与兰光3级重叠外,还有红光4级与兰光6级重叠.(2)k Rmax =4且2级、4级与兰光重叠,不重叠只有1级、3级sin ϕ1=λR /(a+b )=0.207, ϕ1=11.9° sin ϕ3=3λR /(a+b )=0.621, ϕ3=38.4°练习二十七 光的偏振一.选择题 A D B D C二.填空题1. 355nm, 396nm;2. 51.13°.3. I0/2,I0cos2ωt/2,I0cos2ωt sin2ωt /2 (或I0sin2(2ωt)/8).三.计算题1. 依布儒斯特定律tan i0=n2/n1tan r0=n3/n2i0+r0=π/2tan r0=cot i0=n3/n2tg i0·cot i0=( n2/n1)·(n3/n2)=1n3=n12. 设入射前自然光与偏振光的光强均为I0,透射后自然光与偏振光光强分别为I1,I2.有(1)自然光I1=(I0/2)cos230°偏振光I2=I0cos2αcos230°且I1=I2得cosα=22所以入射光中线偏振光光矢量振动方向与第一个偏振片偏振化方向之间的夹角α=45°(2)透射光与入射光的强度之比(I1+ I2)/(2 I0)=(1/2)( cos230°/2+cos245°cos230°)= cos230°/2=3/8;(3)I'1=[I0(1-5%)/2](1-5%)cos230°I'2=I0(1-5%)cos2α(1-5%)cos230°故考虑吸收后透射光与入射光的强度之比(I'1+ I'2)/(2 I0)=I'/I0=(1/2)(1-5%)2cos230°=0.338练习二十八光学习题课一.选择题 D B C C A二.填空题1.波动,横.2. 1.25.3. 14.7cm(或14.4cm).三.计算题1.因是空气薄膜,有n1>n2<n3,且n2=1,得δ=2e+λ/2,暗纹应δ=2e+λ/2=(2k+1)λ/2,所以2e=kλe=kλ/2因第一条暗纹对应k=0,故第4条暗纹对应k=3,所以e=3λ/2(1)空气劈尖角θ=e/l=3λ/(2l)=4.8⨯10-5rad(2) 因δ/λ'=(2e+λ'/2)/λ'=3λ/λ'+1/2=3故A处为第三级明纹,棱边依然为暗纹. (3) 从棱边到A处有三条明纹,三条暗纹,共三条完整条纹.2. (1) (a+b) sinθ=k maxλ<(a+b)k max<(a+b)/λ=3.39所以最高级数k max=3(2) (a+b) (sin30°+sinθ')=k'maxλk'max<(a+b) (sin30°+1)/λ=5.09所以k'max=5Ⅳ 课堂例题 一.选择题1.平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,如图所示,凸透镜可沿O O '移动,用波长λ=500 nm(1nm=10-9m)的单色光垂直入射.从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是(A) 156.3 nm (B) 148.8 nm (C) 78.1 nm (D) 74.4 nm2.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹(A) 间距变大. (B) 间距变小. (C) 不发生变化.(D) 间距不变,但明暗条纹的位置交替变化. 3.设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k(A) 变小. (B) 变大. (C) 不变. (D) 改变无法确定.4.在双缝干涉实验中,用单色自然光,在屏幕上形成干涉条纹,若在两缝后放一个偏振片,则 (A) 无干涉条纹.(B) 干涉条纹的间距不变, 但明纹的亮度加强. (C) 干涉条纹的间距变窄, 且明纹的亮度减弱. (D) 干涉条纹的间距不变, 但明纹的亮度减弱.5.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I =I 0 / 8.已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是(A) 30°. (B) 45°. (C) 60°. (D) 90°.6.一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光.二.填空题1.如图所示,假设有两个同相的相干点光源S 1和S 2,发出波长为λ的光.A 是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差∆φ=________.若已知λ=500 nm ,n =1.5,A 点恰为第四级明纹中心,则e =_____________nm .(1 nm =10-9m)2.如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为__________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n =____________.3.波长为λ=480.0 nm 的平行光垂直照射到宽度为a =0.40 mm 的单缝上,单缝后透镜的焦距为f =60 cm ,当单缝两边缘点A 、B 射向P 点的两条光线在P 点的相位差为π时,P 点离透镜焦点O 的距离等于_______________________.4.假设某介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是____.三.计算题1.在双缝干涉实验装置中,幕到双缝的距离D 远大于双缝之间的距离d .整个双缝装置放在空气中.对于钠黄光,λ=589.3 nm(1nm=109m),产生的干涉条纹相邻两明条纹的角距离(即相邻两明条纹对双缝中心处的张角)为0.20°.(1) 对于什么波长的光,这个双缝装置所得相邻两明条纹的角距离将比用钠黄光测得的角距离大10%?(2) 假想将此整个装置浸入水中(水的折射率n =1.33),相邻两明条纹的角距离有多大?2.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1 m 的凸透镜,现以λ=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a 的单缝衍射中央明条纹宽度为多少? (2) 在该宽度内,有几个光栅衍射主极大?PE3.在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm,λ2=760 nm (1 nm=10-9 m).已知单缝宽度a=1.0×10-2 cm,透镜焦距f=50 cm.(1) 求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d=1.0×10-3 cm的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.4.波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b)等于多少?(2) 透光缝可能的最小宽度a等于多少?(3) 在选定了上述(a+b)和a之后,求在衍射角-π/2<ϕ<π/2范围内可能观察到的全部主极大的级次.附Ⅴ振动和波课堂例题解答一.选择题 E B B D C C二.填空题 1. 0.842. )2121c o s (2.0π-π=t y P . 3. 2k π + π /2, k = 0,±1,±2,…2k π +3 π /2,k = 0,±1,±2,… 4. 1065 Hz , 935 Hz 三.计算题1.解:(1))1024cos(1.0x t y π-π= )201(4cos 1.0x t -π= (SI) 3分(2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= 2分(3)振速)20/(4sin 4.0x t t y -ππ-=∂∂=v . 当)4/1(212==T t s , 在x 1= λ /4= (10 /4)m 处质点的振速26.1)21sin(4.02-=π-ππ-=v m/s 3分2.解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v 所以 π-=21φ 2分又==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P)234.0cos(04.0π-π=t (SI) 2分3.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差]2[]2[1112λφλφx x d π---π-π+=)12(K即π+=-π--)12(22)(112K x d λφφ ① 2分在x 2点两波引起的振动相位差]2[]2[2122λφλφx x d π---π-π+=)32(K即π+=-π--)32(22)(212K x d λφφ ② 3分②-①得π=-π2/)(412λx x6)(212=-=x x λ m 2分由①π+=-π+π+=-)52(22)12(112K x d K λφφ 2分当K = -2、-3时相位差最小 π±=-12φφ 1分4.解:选O 点为坐标原点,设入射波表达式为])/(2cos[1φλν+-π=x t A y 2分则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分附Ⅵ 光学课堂例题解答一.选择题 C C B D B B二.填空题1. 2π (n -1)e /λ ,4×103 2. 3λ ,1.33. 3. 0.36 mm 4. 54.7°三.计算题1.解:(1)干涉条纹间距∆x = λD / d 2分相邻两明条纹的角距离∆θ = ∆x / D = λ / d由上式可知角距离正比于λ,∆θ 增大10%,λ也应增大10%.故λ'=λ(1+0.1)=648.2nm 3分(2) 整个干涉装置浸入水中时,相邻两明条纹角距离变为∆θ'=∆x / (nd ) = ∆θ/ n由题给条件可得∆θ '=0.15° 3分2.解:(1) a sin ϕ = k λ tg ϕ = x / f 2分当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分∴中央明纹宽度为∆x = 2x = 0.06 m 1分 (2)( a + b ) sin ϕλk '=='k ( a +b ) x / (f λ)= 2.5 2分取k '= 2,共有k '= 0,±1,±2 等5个主极大 2分 3.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ 由于11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以a f x /2311λ= 1分a f x /2322λ=1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分(2) 由光栅衍射主极大的公式1111sin λλϕ==k d2221sin λλϕ==k d 2分且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm 2分 4.解:(1) 由光栅衍射主极大公式得 a + b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大)λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)因此 k =3,6,9,缺级. 2分又因为k max =(a +b ) / λ=4,所以实际呈现k=0,±1,±2级明纹.(k=±4在π / 2处看不到.) 2分。
一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。
【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。
【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。
图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。
【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。
【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。
【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。
【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。
光学郑植仁姚凤凤《光学》教材提纲挈领、深入浅出地讲述了光学的基本概念和基本原理。
《光学习题课教程》是与《光学》教材配套的光学习题课教材,简明地介绍了光学的基本概念和公式,透彻地讲述了光学问题的基本类型和基本解题方法。
给出了《光学》习题的解答以及模拟试题的解答。
人类认识世界的目的归根到底是为了适应世界、进而改造世界,因此学习任何一门知识都应当做到既明白道理又能够解决问题,也就是既要学懂弄通所学知识的基本概念,又要掌握运用基本原理解决相关问题的基本方法。
参考书:(1)《光学》赵凯华、钟锡华编,北京大学出版社(2)《光学》,E. 赫克特等著,人民教育出版社出版(3)《光学》,潘笃武等编著,复旦大学出版社出版(4)《光学》,蔡履中等编著,山东大学出版社出版(5)《现代光学基础》钟锡华编,北京大学出版社学好光学课的重要意义•当今科研前沿的热门学科•光学学科是我校的国家重点学科和博士点•光学课程是光学方面课程的基础启蒙课程如:光学,激光原理与技术,量子光学,信息学光纤光学,集成光学,光谱学,光子开关术全息光存储技术,光纤通信技术原理,非性光学晶体光学,原子光学,光电信号检测技术等光学课的特点内容新:中学学得不多,光学发展很快,新内容不断涌现分支多:几何光学,干涉,衍射,偏振,光与物质的相互作用公式多:大约有200多个公式课程编排特点:重点是物理光学部分(干涉,衍射,偏振)如何学好光学课程•课前预习•按时听课•及时复习•独立完成作业•主动答疑课程安排•光学理论授课•光学习题课•观看光学实验演示绪论一、光学发展的概况人类感官感觉外部世界的总信息量中有90%以上通过眼睛接收光学是一门古老的学科,又是一门新兴的年青学科激光器诞生后,光学开始了迅猛发展,成为科研前沿极为活跃的学科五个时期一、萌芽时期公元前500年‾公元1500年经历大约2000年面镜、眼镜和幻灯等光学元件已相继出现二、几何光学时期1500‾1800,大约300年1、建立了光的反射定律和折射定律,奠定了几何光学的基础2、研制出了望远镜和显微镜等光学仪器3、牛顿为代表的微粒说占据了统治地位4、其对折射定律的解释是错误的三、波动光学时期1800‾1900,近100年1、杨氏利用实验成功地解释了光的干涉象2、惠更斯-菲涅耳原理成功地解释了光的衍射现象3、菲涅耳公式成功地解释了光的偏振现象4、麦克斯韦的电磁理论证明光是电磁波5、傅科的实验证实光在水中传播的速度小于在空气中的传播速度6、波动光学的理论体系已经形成,光的波动说战胜了光的微粒说四、量子光学时期1900‾1950,近50年1、1900年普朗克提出了量子假说,成功地解释了黑体辐射问题2、爱因斯坦提出了光子假说,成功地解释了光电效应问题3、光的某些行为象经典的“波动”4、另一些行为却象经典的“粒子”5、光是一种几率波,又具有可分割性,光具有“波粒二象性”五、现代光学时期从1950年至今1、全息术、光学传递函数和激光的问世是经典光学向现代光学过渡的标志2、光学焕发了青春,以空前的规模和速度飞速发展1)智能光学仪器2)全息术3)光纤通信4)光计算机5)激光光谱学的实验方法等等第1章几何光学1.1几何光学的基本规律1. 几何光学三定律2. 全反射临界角3. 光的可逆性原理4. 三棱镜的最小偏向角1. 几何光学三定律1)光的直线传播定律:光在均匀介质里沿直线传播。
哈尔滨市光的干涉衍射测试题一、光的干涉衍射选择题1.下列现象中说法正确的是 _______A.雨后的彩虹是折射的色散现象B.全息照片的拍摄利用了光的偏振现象C.在杨氏双缝干涉实验中,如果仅将入射光由红光改为紫光,则条纹间距一定变小D.玻璃中的气泡看起来特别明亮是全反射的结果E.光的衍射现象完全否定了光沿直线传播的结论2.如图所示,一束可见光a从玻璃砖射向空气,分成b、c两束单色光。
单色光b和c相比较。
下列说法正确的是()A.在相同条件下进行双缝干涉实验,b光的干涉条纹间距较大B.真空中b光的波长较小C.玻璃砖中b光的速度较小D.从玻璃射向空气发生全反射时,b光的临界角较小3.在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),已知红光与绿光的频率、波长均不相等,这时().A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失B.红色和绿色的双缝干涉条纹消失,其他颜色的双缝干涉条纹仍然存在C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮D.屏上无任何光亮4.下列色散现象是通过干涉产生的是A.在白光下观察肥皂泡呈现彩色B.一束太阳光通过三棱镜在墙壁上呈现彩色光斑C.两块玻璃砖叠放在一起,玻璃砖上表面出现彩色条纹D.将两支铅笔并排放置,其直缝与日光灯平行,通过直缝看到彩色条纹5.在杨氏双缝干涉实验中,如果A.用白光作为光源,屏上将呈现黑白相间的条纹B.用红光作为光源,屏上将呈现红黑相间的条纹C.用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹D.用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹6.如图所示,一束由单色光a、b组成的复合光通过厚度均匀的平行玻璃板M后,在地面上投射出两个光斑A、B,玻璃板M与地面平行放置,A对应a光,B对应b光,下列说法正确的是( )A.用同一套装置做双缝干涉实验,a光的条纹间距比b光的大B.a光在玻璃板中传播的速度小于b光在玻璃板中传播的速度C.若增加玻璃板的厚度,则光斑右移D.若a光是氢原子从n=3激发态跃迁到基态时辐射的光子,则b光可能是氢原子从n=2激发态跃迁到基态时辐射的光子7.下列说法中正确的是()A.单摆在周期性外力作用下做受迫振动,其振动周期与单摆的摆长无关B.线性变化的电场一定产生恒定的磁场,线性变化的磁场一定产生恒定的电场C.在杨氏双缝实验中,若仅将入射光由红光改为蓝光,则干涉条纹间距变窄D.光纤通信的工作原理是光的反射,光纤通信具有容量大,抗干扰性强等优E.用标准玻璃样板和单色光检查平面的平整度是利用了光的偏转8.下列说法正确的是___________A.变化的电场一定产生变化的磁场,变化的磁场一定产生变化的电场B.全息照相的拍摄利用了光的干涉原理C.电视机遥控器是利用发出红外线脉冲信号来换频道的D.在杨氏双缝干涉实验中,用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距相等的条纹E.某人在水面上方观察水底同位置放置的红、黄、绿三盏灯时,看到绿灯距水面最近9.如图所示,一束由两种单色光混合的复色光,沿PO方向射向一上下表面平行的厚玻璃平面镜的上表面,得到三束反射光束I、II、III,若玻璃砖的上下表面足够宽,则下列说法正确的是()A.光束I仍为复色光,光束II、III为单色光B.改变α角,光束I、II、III仍保持平行C.通过相同的双缝干涉装置,光束II产生的条纹宽度要小于光束III的D.在真空中,光束II的速度小于光束III的速度10.a、b两束相互平行的单色光,以一定的入射角照射到平行玻璃砖上表面,经平行玻璃砖折射后汇聚成一束复色光c,从平行玻璃砖下表面射出,判断正确的是()A.a光在玻璃中的传播速度比b光在玻璃中的传播速度大B.玻璃砖对a光的折射率大C.双缝干涉时,用a光照射得到条纹间距小D.增大入射角,a光在下表面可发生全反射11.光在科学技术、生产和生活中有着广泛的应用,下列说法正确的是________A.用透明的标准平面样板检查光学平面的平整程度是利用光的偏振现象B.用三棱镜观察白光看到的彩色图样是利用光的衍射现象C.在光导纤维束内传送图像是利用光的全反射现象D.光学镜头上的增透膜是利用光的干涉现象E.在光的双缝干涉实验中,若仅将入射光由红光改为绿光,则干涉条纹间距变窄12.如图所示,光源S从水面下向空气斜射一束复色光,在A点分成a、b两束,则下列说法正确的是()A.在水中a光折射率大于b光B.在水中a光的速度大于b光C.若a、b光由水中射向空气发生全反射时,a光的临界角较小D.分别用a、b光在同一装置上做双缝干涉实验,a光产生的干涉条纹间距小于b光13.用某单色光做光的双缝干涉实验,能在光屏上观察到干涉条纹.若把其中一条缝遮住,则在光屏上()A.没有任何条纹B.只有一条亮条纹C.有等间距的明暗相间的条纹D.有不等间距的明暗相间的条纹14.两束单色光a和b沿如图所示方向射向半圆形玻璃砖的圆心O,已知a光在底边界面处发生了全反射,两束光沿相同方向射出,则()A.在玻璃砖中,a光的速度比b光的小B.在真空中,a光的波长大于b光的波长C.分别用a和b在相同条件下做单缝衍射实验,a光的中央亮纹比b光的宽D.分别用a和b在相同条件下做双缝干涉实验,a光的条纹间距比b光的大15.如图所示分别是a光、b光各自通过同一双缝干涉仪器形成的图样(黑色部分表示亮纹),则下列说法正确的是()A.在同一均匀介质中,a光的传播速度小于b光的传播速度B.两种光通过同一狭缝时,a光产生的中央亮条纹的宽度比b光的大C.光由同一介质射入空气,发生全反射时,a光的临界角比b光大D.a光和b光由玻璃棱镜进入空气后频率都变大16.如图所示的四种明暗相间条纹,是红光、紫光分别通过同一个双缝干涉仪形成的干涉图样和通过同一个单缝形成的衍射图样.图中黑色部分代表亮纹,下列四幅图中由红光形成的图样是()A.B.C.D.17.如图所示,O1O2是半圆柱形玻璃体的对称面和纸面的交线,A、B是关于O1O2轴等距且平行的两束不同单色细光束,从玻璃体右方射出后的光路如图所示,MN是垂直于O1O2放置的光屏,沿O1O2方向不断左右移动光屏,可在屏上得到一个光斑P,根据该光路图,下列说法正确的是_______.A.A光的频率比B光的频率高B.A比B更容易发生衍射现象C.在该玻璃体中,A光的速度比B光的速度小D.在该玻璃体中,A光的临界角大于B光的临界角E.用同一双缝干涉实验装置分别以A、B光做实验,A光的干涉条纹间距大于B光的干涉条纹间距18.中国古人对许多自然现象有深刻认识,唐人张志和在《玄真子·涛之灵》中写道:“雨色映日而为虹”。
习题六一、选择题1.如图所示,在杨氏双缝干涉实验中,设屏到双缝的距离D =2.0m ,用波长λ=500nm 的单色光垂直入射,若双缝间距d 以0.2mm ⋅s -1的速率对称地增大(但仍满足d << D ),则在屏上距中心点x =5cm 处,每秒钟扫过的干涉亮纹的条数为 [ ] (A )1条; (B )2条; (C )5条; (D )10条。
答案:D解:缝宽为d 时,双缝至屏上x 处的光程差为dx Dδ=。
所以当d 增大时,光程差改变,引起干涉条纹移动。
若干涉条纹移动N 条,则对应的光程差改变为N δδδλ'∆=-=,依题意,经1s ,光程差的改变量为:()0.2d x xd N D Dδλ+∆=-= 由此可解出N =10。
2.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹中心位于图中O 处,现将光源S 向下移动到示意图中的S ' 位置,则 [ ](A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。
答案:D解:条纹间距与参数d 、D 和λ有关,而与光源的竖直位置无关。
但光源下移时,在原O 点处两光程差不再为0,而且光程差为0处必在O 点上方,即中央明纹向上移动。
3.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉。
若薄膜厚度为e ,而且n 1 > n 2 > n 3,则两束反射光在相遇点的位相差为 [ ](A )24/n e πλ; (B )22/n e πλ; (C )24/n e ππλ+; (D )24/n e ππλ-+。
答案:A解:三层介质折射率连续变化,故上下两光之间无附加程差。
垂直入射,所以反射光S O1S 2S S 1n 2n 3n eλ22422,n en e ππδϕδλλ=∆==4.借助于玻璃表面上所涂的折射率为n =1.38的MgF 2透明簿膜,可以减少折射率为1.60的玻璃表面的反射。