山东省泰安市2018-2019学年高二下学期期末考试数学试卷 PDF版含答案
- 格式:pdf
- 大小:160.11 KB
- 文档页数:8
2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
高二年级考试 数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列有关不等式的推理( ) (1)a b b a >⇔< (2)a b a c b c >⇒+>+ (3),0a b c ac bc ><⇒< (4)22a b a b >⇒>其中,正确推理的个数是( ) A.0B.1C.2D.32.“()()120x x -+=”是“1x =”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知抛物线2:C y x =的焦点为F ,()00,A x y 是抛物线C 上一点,05||4AF x =,则0x =( ) A.1B.2C.4D.84.若1231,,,,4a a a 成等比数列,1233,,,,5b b b 成等差数列,则22a b 的值为( ) A.12-B.12C.2±D.12±5.如图,底面是平行四边形的棱柱''''ABCD A B C D -,'O 是上底面的中心,设,,AB a AD b AA c '===u u u r r u u u r r u u u r r,则AO '=u u u u r( )A.111222a b c ++r r rB.1122a b c ++r r rC.12a b c ++r r rD.12a b c ++r r r 6.等比数列{}n a 中,368,1a a ==,则数列{}2log n a 的前n 项和的最大值为( )A.15B.10C.1218D.2121log 87.已知0,0a b >>,且1a b +=,则49aba b+的最大值为( )A.124B.125C.126D.1278.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1C B 所成角的大小为( )A.90°B.75°C.60°D.45°9.数列{}n a 满足11221n n n n a a ++=-,且11a =,若15n a <,则n 的最小值为( ) A.3 B.4 C.5D.610.椭圆22221(0)x y a b a b +=>>的焦距为2c ,过点2,0a P c ⎛⎫⎪⎝⎭作圆222x y a +=的两条切线,切点分别为,M N .若椭圆离心率的取值范围为1,22⎡⎢⎣⎦,则MPN ∠的取值范围为( )A.,64ππ⎡⎤⎢⎥⎣⎦B.3,6ππ⎡⎤⎢⎥⎣⎦C.,43ππ⎡⎤⎢⎥⎣⎦D.,32ππ⎡⎤⎢⎥⎣⎦11.已知函数()()4,2x f x x g x a x =+=+,若11,22x ⎡⎤∀∈⎢⎥⎣⎦,2[1,3]x ∀∈,使得()()12f x g x ≥恒成立,则实数a 的取值范围是( ) A.2a ≥B.2a ≤C.4a ≤-D.4a ≥-12.过双曲线22221(0,0)x y a b a b-=>>的右焦点F 且平行于其一条渐近线的直线l 与另一条渐近线交于点A ,直线l 与双曲线交于点B ,且2BF AB =,则双曲线的离心率为( )D.2二、填空题:本题共4小题,每小题5分,共20分.13.已知命题p :“000,10xx R e x ∃∈--≤”,则p ⌝为_________.14.设向量()(),4,3,3,2,a x b y ==-r r,且//a b r r ,则xy =___________.15.关于x 的不等式22280(0)x ax a a +-<>的解集为()12,x x ,且2112x x -=,则a =________.16.若双曲线221412x y -=的左焦点为F ,点P 是双曲右支上的动点,已知()1,4A ,则PF PA +的最小值是_____________.三、解答题:本题共6个小题,共η0分,解答应写岀文字说明,证明过程或演算步骤. 17.(10分)已知2:210p x x -++≥,:34q x -≤≤,22:120(0)r x ax a a ≤-->. (1)判断是p 是q 什么条件;(2)如果q 是r 的充要条件,求a 的值. 18.(12分)已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求数列{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n n a b 的前n 项和n S . 19.(12分)已知抛物线2:2(0)C y px p =>,其准线方程为1x =-.准线与x 轴的交点为M ,过M 点做直线l 交抛物线于A 、B 两点.若点A 为MB 中点,求直线l 的方程. 20.(12分)如图,在三棱柱111ABC A B C -中,1BC ⊥平面ABC ,1,2,4AB BC AB BC BB ⊥===. (1)求证:AB ⊥平面11BB C C ,并求1BC 的长度; (2)若M 为1CC 的中点,求二面角1A B M B --的余弦值.21.(12分)销售甲种商品所得利润是P 万元,它与投入资金t 万元的关系有经验公式1atP t =+,销售乙种商品所得利润是Q 万元,它与投入资金t 万元的关系有经验公式Q bt =,其中,a b 为常数.现将3万元资金全部投入甲、乙两种商品的销售;若全部投入甲种商品,所得利润为94万元;若全部投入乙种商品,所得利润为1万元.若将3万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元.(1)求函数()f x 的解析式;(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值. 22.(12分)如图,12F F 、分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,O 为坐标原点,121OF OF ⋅=-u u u r u u u u r .椭圆E经过点31,2A ⎛⎫⎪⎝⎭. (1)求椭圆E 的方程;(2)若B 、C 是椭圆E 上两个动点,直线AB 的斜率与直线AC 的斜率互为相反数,证明:直线BC 的斜率为定值,并求出这个定值.高二数学试题参考答案及评分标准一、选择题:每小题5分,共60分.二、填空题:每小题5分,共20分.13.,10xx R e x ∀∈--> 14. 9 15. 2 16. 9 三、解答题 17.(10分)解:(1)因为2210x x -++≥,整理得2210x x --≤,解方程2210x x --=,得两根121,12x x =-=.…………………………………………2分 所以2210x x -++≥的解集为1|12x x ⎧⎫-≤≤⎨⎬⎩⎭.……………………………………4分 因为1,1[3,4]2⎡⎤--⎢⎥⎣⎦Ü, 所以p 是q 的充分不必要条件.…………………………………………………………5分 (2)因为q 是r 的充要条件,所以不等式22120(0)x ax a a ≤-->的解集是{}34x x -≤≤.…………………………7分 因此,-3,4是方程22120(0)x ax a a =-->的两根, 由方程根与系数的关系(即韦达定理)得:234(3)412aa -+=⎧⎨-⨯=-⎩,………………………………………………………………………………9分 解得1a =.……………………………………………………………………………………10分 18.(12分)解:(1)设等差数列{}n a 的公差为d ,因为43a a d -=,所以2d =. 又因为1210a a +=,所以1210a d +=,解得14a =.所以()*42(1)22n a n n n N =+-=+∈.……………………………………………………4分 (2)设等比数列{}n b 的公差为q ,因为238b a ==,3716b a ==,所以2q =,14b =,所以12n n b +=.………………………………………………………6分 从而2(1)2n n n a b n +=+.345122232422(1)2n n n S n n ++=⨯+⨯+⨯++++L ,①…………………………7分 4562322232422(1)2n n n S n n ++=⨯+⨯+⨯++++L ,②…………………………8分由①-②得:3452322222(1)2n n n S n ++-=⨯++++-+L()33332122(1)2212n n n n S n n ++--=+-+=-⋅-.……………………………………11分所以32n n S n +=⋅.…………………………………………………………………………12分19.(12分)解:∵抛物线的准线方程为1x =-,∴1,22pp == ∴抛物线的方程为24y x =.…………………………………………………………………3分 显然,直线l 与坐标轴不平行,且()1,0M -.∴设直线l 的方程为1x my =-,221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.…………………………4分 联立直线与抛物线的方程214x my y x=-⎧⎨=⎩,得2440y my -+=.………………………………6分 216160m ∆=->,解得1m <-或1m >.……………………………………………………7分∵点A 为MB 的中点,∴2102y y +=,即212y y = ∴212124y y y ==,解得1y =.…………………………………………………………9分124y y m +=,∴4m =或4m =∴m =………………………………………………………………………………11分直线方程为440x -+=或440x ++=.…………………………………12分 20.(12分)解:(1)∵1BC ⊥平面ABC ,,AB BC ⊂平面ABC ,∴11,BC AB BC BC ⊥⊥,………………1分 ∵1,AB BC BC BC B ⊥=I ,1,BC BC ⊂平面11BB C C ,∴AB ⊥平面11BB C C .……………3分 又∵2AB BC ==,14BB =,∴1BC =.…………………………………………5分(2)如图所示,分别以1,,BC AB BC 所在的直线为x 轴,y 轴和z 轴,建立空间直角坐标系, 则()()()((110,0,0,0,2,0,2,0,0,,B A C B C -,易知(M,∴((11,,22AM AB =-=--u u u u ru u u r,,…………………………7分设平面1AB M 的一个法向量为(),,n x y z =r, 100n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩r u u u u rr u u u r,即20220x y x y ⎧-+=⎪⎨--+=⎪⎩,令1x =-,得2z y ==-,∴(1,2,n =--r.…………………………………………………………10分易知()0,2,0BA =u u u r为平面1BMB 的一个法向量则cos ||||n BA n BA n BA ⋅<⋅>=⋅r u u u rr u u u r r u u u r由题意知:二面角1A B M B --的余弦值为2.………………………………12分 21.(12分)解:(1)由题意,,1atp Q bt t ==+, 故当3t =时,39,31314a p Q b ====+.…………………………………………2分解得3a =,13b =.……………………………………………………………………4分所以31,13t p Q t t ==+.从而()33,[0,3]13x xf x x x -=+∈+.……………………………………………………6分(2)由(1)可得:()33133113313x x x f x x x -+⎛⎫=+=-+ ⎪++⎝⎭.……………………8分 因为[]0,3x ∈,所以[]11,4x +∈,故31213x x ++≥+,当且仅当3113x x +=+,即2x =时取等号. 从而137()233f x ≤-=.当且仅当2x =时取等号.…………………………………………10分所以()f x 的最大值为73.答:分别投入2万元、1万元销售甲、乙两种商品时,所得利润总和最大,最大利润是73万元.……12分22.(12分)解:(1)∵212OF OF c ⋅=-u u u r u u u u r ,∴1c =,…………………………………………………1分因为31,2A ⎛⎫⎪⎝⎭在椭圆上,所以2219114b b +=+.……………………………………2分 解得23b =,234b =-(舍去),……………………………………………………3分 ∴椭圆方程为22143x y +=;…………………………………………………………4分 (2)设直线AB 的方程为3(1)2y k x =-+, 代入22143x y +=得 ()2223344(32)41202k x k k x k ⎛⎫++-+--= ⎪⎝⎭,……………………………………6分设()()1122,,,B x y C x y ,因为点31,2A ⎛⎫⎪⎝⎭在椭圆上, ∴21112341232,342k x y kx k k ⎛⎫-- ⎪⎝⎭==+-+,………………………………………………8分 又直线AC 的斜率与AB 的斜率互为相反数, 在上式中以k -代k ,可得22222341232,342k x y kx k k ⎛⎫+- ⎪⎝⎭==-+++,………………………………………………10分 ∴直线BC 的斜率()12212121212BC k x x k y y k x x x x -++-===--1 2.……………………………………………………12分∴直线BC的斜率为定值,该定值为。
2018年泰安市高二数学下学期期末(理)试题及答案
5 试卷类型A
泰安市iB-1+ic1-iD-i
2设随机变量,若,则等于
A03B04c06D07
3设曲线在点(0,0)处的切线方程为,则的值为
A0B1c2D3
4设为实数,若复数,则
5某车间为了规定工时定额,需要确定加工零所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法得回归直线方程,表中有一个数据模糊不清,请你推断该数据的值为零个数x(个)102处取得极小值,则函数=xf ’(x)的图像可能是
二、填空题本大题共5小趣,每小题5分,共25分请把答案填在答题纸相应的位置
11若复数z=l+i(i为虚数单位),是的共轭复数,则的虚部为▲
12抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数服从二项分布,若
则亭的方差D()= ▲
13曲线=x2-2x与直线x=-1,x=l以及z 轴所围图形的面积为▲ 14将标号为1,2,3,4,5,6的6张卡片放人3个不同的信封中。
若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有▲ 种(用数字作答)
15观察下列等式
(1+1)=2xl
(2+1)(2+2)=22×l×3。
试卷类型:A高二年级考试物理试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共5页,满分100分,考试时间90分钟。
第Ⅰ卷(选择题共48分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、试卷类型、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上。
3.考试结束后,监考人员将本试卷和答题卡一并收回。
一、选择题:本题共12小题,每小题4分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分。
1.如图所示表示交变电流的电流随时间变化的图象,此交变电流的有效值是A.52姨A B.5A C.3.52姨AD.3.5A2.下列说法正确的是A.气体对容器的压强是大量气体分子对器壁的碰撞引起的B.物体温度升高,其中每个分子热运动的动能均增大C.液体分子的无规则运动称为布朗运动D.气体对外做功,内能一定减少3.下列说法错误的是A.自然发生的热传递过程是向着分子热运动无序性增大的方向进行的B.液体表面层内分子间的相互作用力表现为斥力C.若一定质量的理想气体被压缩且吸收热量,则压强一定增大D.分子势能随着分子间距离的增大,可能先减小后增大2019.74.空气压缩机的储气罐中储有压强为P0的空气6.0L,现再充入压强为P0的空气9.0L。
设充气过程为等温过程,空气可看做理想气体,则充气后储气罐中气体压强为A.1.0P0B.2.0P0C.1.5P0D.2.5P05.天然放射性元素衰变时能够放出的三种射线是A.β射线,红外线和紫外线B.α射线、X射线和紫外线C.α射线,β射线和γ射线D.γ射线、X射线和红外线6.如图甲所示,通过一理想自耦变压器给灯泡L 1和L2供电,R为定值电阻,电表均为理想电表,原线圈接适当的交流电源,下列说法正确的是A.将电键S闭合,小灯泡L1变亮B.将电键S闭合,电流表示数变大,电压表示数变大C.将电键S闭合,电压表示数不变,电流表示数变小D.将电键S闭合,为保证小灯泡L1亮度不变,可将滑片P适当下移7.一群氢原子处于n=4的激发态,当它们自发地跃迁到较低的能级时,下列判断中正确的是A.可能辐射出7种不同频率的光子B.从n=4的能级直接跃迁到n=1的能级时释放出波长最长的光子C.从n=4的能级跃迁到n=3的能级时释放出频率最低的光子D.从n=2的能级跃迁到n=1的能级时释放出波长最长的光子8.如图为一定质量的理想气体由状态A变化到状态B过程中的P-1V图象,则该气体的温度变化情况是A.逐渐变小B.逐渐变大C.保持不变D.先变小再变大9.下列对光学知识的叙述,正确的有A.泊松亮斑是典型的衍射现象B.光波的偏振特性说明光是横波C.水面上的油膜在阳光的照射下出现彩色的花纹是光的衍射现象D.增透膜的厚度应为入射光在增透膜中波长的四分之一10.如图所示,一束光沿半径方向射向一块半圆柱形玻璃砖,在玻璃砖底面上的入射角为θ,经折射后射出a、b两束光线。
2018-2019年第二学期期末高二数学试卷一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,迭出符合题目要求的一项)1.若集合A={x |0<x<3},B={x |-1<x<1},则AUB= ( )A 、{x|-1<x<3}B 、{x| -1<x<0}C 、{x|0<x<1}D 、{x|1<x<3}2.下列函数中,在区间(0,+∞)上单调递增的是 ( )A 、y= -x+1B 、x y 21log =C 、y=e -xD 、y=21x3.若函数f(x)=2cosx,则f '(4π)= ( ) A 、1 B 、2C 、-2D 、O4.甲射击命中目标的概率为21,乙射击命中目标的概率为32.甲乙是否命中目标互相无影 响.现在两人同时射击目标一次,则目标至少被击中一次的概率是 ( )A 、61B 、31 C 、21 D 、65 5.下列求导数运算正确的是( )A 、211'1x x x -=-)(B 、xx 1'log 3=)( C 、2)1('x x e x e x x -=)( D 、x x x x cos 2'sin 2=)( 6.函数f(x)=x,f(x)=x 2在[0,1]的平均变化率分别记为k 1,k 2,则下面结论正确的是 ( )A 、k 1>k 2B 、k 1<k 2C 、k 1=k 2D 、k 1,k 2大小关系不能确定7.若非空集合A,B,I 满足AUB=I 且B ⊄A,则 ( )A 、“I x ∈"是“A x ∈”的充分条件但不是必要条件B 、“I x ∈”是“A x ∈”的必要条件但不是充分条件C 、"I x ∈"是"A x ∈”的充要条件D 、“I x ∈"既不是“A x ∈”的充分条件也不是“A x ∈”的必要条件8.设310<<p ,随机变量ζ的分布列如下当P 在)310(,内增大时,下列结论正确的是 ( )A 、)(ζD 减小B 、)(ζD 增大C 、)(ζD 先减小后增大 D 、)(ζD 先增大后减小 第二部分(非选择题 共110分)二、填空题(共6个小题,每小题5分,共30分)9.函数11-=x y 的定义域为 10.命题“041,2≥+-∈∀x x R x ”的否定是 11.从3名男生、2名女生中选派3人参加社区服务.如果要求至多有1名女生参加,那么不 同的选派方案种数为 .(用数字作答)(用数字作答)12.设,...)2(6210621062m m m m x a x a x a x a x x ++++=-则6210...m m m m ++++=13.已知函数f(x)同时满足条件:①f(x)在区间[0,+∞)上单调递减:②f(x)仅有一个极值点,则f(x)可以是x -2 0<x14. 已知函数f(x)=1+|x-1| 0≥x 若函数f(x)-m=0有三个零点,则实数m 的取值范围是三、解答题(共6个小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)设全集U=R,集合A={x |21≤≤-x },B={x |04<+p x }.(I)若p=2,求B A ⋂;(II)若A C B U ⊆,求实数p 的取值范围.16.(本小题满分13分)已知函数f(x)=log a (x+1),g(x)=log a (1-x)(a>0,且a ≠l).(I)当a=2时,若f(x)>0,求x 的取值范围;(Ⅱ)设函数F(x)=f(x)-g(x),试判断F(x)的奇偶性,并说明理由.17.(本小题满分13分) 已知n x x )12(-,*N n ∈的二项展开式中第2项与第6项的二项式系数相等.(Ⅰ)求n 的值;(Ⅱ)求二项展开式中的常数项.18.(本小题满分13分) 已知函数R x x x x x f ∈-+=,22131)(23. (Ⅰ)求函数f(x)在(1,f(1))处的切线方程;(Ⅱ)求函数f(x)在区间[-3,2]上的最大值和最小值.19.(本小题满分14分)顺义区教委对本区高一,高二年级学生体质健康测试成绩进行抽样分析.学生测试成绩满分为100分,90分及以上为优秀,60分以下为不及格.先从两个年级各抽取100名学生的测试成绩.其中高一年级学生测试成绩统计结果如图1,高二年级学生测试成绩统计结果如表I.(I)求图1中a 的值(Ⅱ)为了调查测试成级不及格的同学的具体情况,决定从样本中不及格的学生中抽取3人,用X 表示抽取的3人中高二年级的学生人数.求X 的分布列及均值(Ⅲ)若用以上抽样数据估计全区学生体质健康情况.用Y 表示从全区高二年级全部学生中任取3人中成绩优秀的人数,求EY 的值;(ⅠN)用DX 1,,DX 2,分别表示样本中高一,高二年级学生测试成绩的方差,比较其大小(只需写出结果).20.(本小题满分14分) 已知函数.,ln )(R a xa x x f ∈-= (I)若0)(≥x f 恒成立,求a 的取值范围(Ⅱ)当a=1时,函数y=(x)的图像与直线y=2x-3是否有公共点?如果有,求出所有公共点;若没有,请说明理由(Ⅲ)当a= -1时,有)()(21x f x f =且21x x ≠,求证:221>+x x .2018-2019年第二学期期末高二数学答案第一部分一、选择题1---8 CDCDC CBA第二部分。
2018--2019学年度第二学期期末质量检测试题高二数学(文科)注意:本试卷分卷Ⅰ和卷Ⅱ两部分,全卷满分150分,考试时间120分钟。
考试结束后,卷Ⅰ由自己保存,只交卷Ⅱ。
卷Ⅰ一、选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把符合要求的选项选出来。
)1、若复数z 满足(34)|43|i z i -=+,则z 的虚部为( ) A . 4- B . 4i 5 C . 4 D . 452、函数cos sin y x x x =-的导数为( )A .sin x xB .sin x x -C .cos x xD .cos x x - 3、设a ,b 是向量,命题“若a b =-,则a b =”的否命题是( ) A .若a b ≠-,则a b ≠ B .若a b =-,则a b ≠ C .若a b ≠,则a b ≠-D .若a b =,则a b =-4、用反证法证明命题“设a ,b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )A.方程30x ax b ++=没有实根B.方程30x ax b ++=至多有一个实根C.方程30x ax b ++=至多有两个实根D.方程30x ax b ++=恰好有两个实根5、设命题p :函数sin 2y x =的最小正周期为错误!未找到引用源。
;命题q :函数cos y x =的图象关于直线2x π=对称,则下列判断正确的是( )A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真6、设x R ∈,则“11x +<”是“220x x +-<”的( )条件A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要 7、若抛物线22y px =上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为( )A .24y x =B .26y x = C .28y x = D .210y x =8、以下命题中,真命题有( )①对两个变量y 和x 进行回归分析,由样本数据得到的回归方程ˆˆˆybx a =+必过样本点的中心(),x y ; ②若数据123,,,,n x x x x 的方差为2,则1232,2,2,,2n x x x x 的方差为4;③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1。
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。