七年级数学上册42直线射线线段时比较线段长短习题新版新人教版
- 格式:pptx
- 大小:6.89 MB
- 文档页数:16
直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。
直线、射线、线段的表示一. 选择题1.下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m2.下列说法正确的是( )A.过一点P只能作一条直线 B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线 D.射线a比直线b短3.下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线 AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.44.下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.6.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.107.下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短8.下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短9.预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段10.下列说法中正确的是()A.三条直线两两相交有三个交点 B.直线A与直线B相交于点MC.画一条5厘米长的线段 D.在线段、射线、直线中直线最长二. 填空题11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.12.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.13.如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票. 14.如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。
人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。
人教版七年级数学上册第四章《4.2直线、射线、线段》课时练习题(含答案)一、单选题1.如图,在数轴上,若点,A B 表示的数分别是-2和10,点M 到,A B 距离相等,则M 表示的数为( )A .10B .8C .6D .42.下列说法中正确的个数为( )①射线OP 和射线PO 是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC =BC ,则C 是线段AB 的中点. A .1个B .2个C .3个D .4个3.如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD =D .2CE AB =4.如图,直线l 上有A ,B ,C ,D 四点,点P 从点A 的左侧沿直线l 从左向右运动,当出现点P 与A ,B ,C ,D 四点中的至少两个点距离相等时,点P 就称为这两个点的黄金伴侣点,例:若P A =PB ,则在点P 从左向右运动的过程中,点P 成为黄金伴侣点的机会有( )A .4次B .5次C .6次D .7次5.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =6.互不重合的A 、B 、C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( ) A .点A 在B 、C 两点之间 B .点B 在A 、C 两点之间 C .点C 在A 、B 两点之间D .无法确定7.如图,在数轴上有A ,B 两点(点B 在点A 的右边),点C 是数轴上不与A ,B 两点重合的一个动点,点M 、N 分别是线段AC ,BC 的中点,如果点A 表示数a ,点B 表示数b ,求线段MN 的长度.下列关于甲、乙、丙的说法判断正确的是( ) 甲说:若点C 在线段AB 上运动时,线段MN 的长度为1()2b a -;乙说:若点C 在射线AB 上运动时,线段MN 的长度为1()2a b -;丙说:若点C 在射线BA 上运动时,线段MN 的长度为1()2a b +.A .只有甲正确B .只有乙正确C .只有丙正确D .三人均不正确8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个二、填空题9.如图所示,图中共有______条直线,______条射线,______线段.10.如图,木匠师傅经过刨平的木板上的A,B两个点,可以弹出一条笔直的墨线,能解释这一实际应用的数学基本事实是___________________.11.同一平面内三条线直线两两相交,最少有_____个交点,最多有____个交点.12.如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC=3cm,CP=1cm,线段PN=__cm.13.在直线AB上,AB=10,AC=16,那么AB的中点与AC的中点的距离为__________.14.平面内有n个点A、B、C、D…,其中点A、B、C在同一条直线上,过其中任意两点画直线,最多可以画_____________________条.三、解决问题15.已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+=+=cm.16.如图,点A C 、、B 依次在直线l 上,AC CB a ==,点D 也在直线l 上,且13BD AD =,若M 为BD 的中点,求线段CM 的长(用含a 的代数式表示).17.已知平面上有四个村庄,用四个点A 、B 、C 、D 表示.(1)连接AB ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E ;(4)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.18.如图,C 为线段AD 上一点,点B 为CD 的中点,且9AD =cm ,2BC =cm .(1)图中共有______条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且3EA =cm ,求BE 的长.19.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.20.(理解新知)如图①,点M在线段AB上,图中共有三条线段AB、AM和BM,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M是线段AB的“奇妙点”,(1)线段的中点这条线段的“奇妙点”(填“是”或“不是”)(2)(初步应用)如图②,若24cmCD=,点N是线段CD的“奇妙点”,则CN=cm;(3)(解决问题)如图③,已知24cmAB=,动点P从点A出发,以2cm/s速度沿AB向点B匀速移动,点Q 从点B出发,以3cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止.设移动的时间为t,请求出为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的“奇妙点”。
4.2直线、射线、线段(1)课堂习题知识点1:直线的性质1、建筑工人在砌墙的时候经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根参照线,这根参照线就是直的。
这其中的道理是。
2、每年的3月12日是植树节,你用什么方法可以使植的树在一条直线上?3、如果你想将一根小木条固定在木板上,至少需要几个钉子?4、课桌的摆放与我们息息相关,你怎样使摆放的课桌在一条直线上?知识点2:点和直线的位置关系,直线与直线的位置关系1、如图,下面关于直线AB上的点的说法哪个正确?A B(1)直线AB上只有A、B两个点;(2)直线AB上有无数个点;(3)直线AB的点是可数的;(4)直线AB上没有点。
2、按下列语句画出图形:①直线EF经过点C;②点A在直线l 外;③直线AB与直线CD相交于点A.3、平面上有A、B、C三个点,过其中的任两点作直线,小敏说能作三条;小聪说只能作一条;小真说都有可能;你认为他们三人谁的说法对?知识点3:直线、射线、线段的区别与联系,表示方法1、判断下列说法是否正确:①线段AB和射线AB都是直线AB的一部分。
②直线AB和直线BA是同一条直线。
③射线AB和射线BA是同一条直线。
④把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线。
2、如图,下列语句表述错误的是( )A 、点A 在直线m 上B 、直线n 经过点AC 、点B 在直线 n 上D 、直线m 不经过B 点3、下列图形能相交的是( )4、请你来判断:(1)记作:直线AB ( )(2)记作:射线PO ( )(3) 记作:直线ab ( ) (4) 记作:线段BA ( ) 作业:P129 习题4.2 第2、3、4题学习之友 直线、射线、线段(1)A B a b A B。
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
新人教版数学七年级上册4.2 直线、射线与线段课时练习一、选择题(共15小题)1.有下列说法:①电线杆可看做射线,②探照灯光线可看做射线,③A地到B地的高速公路可看做一条直线.其中正确的有()A.0个B.1个C.2个D.3个答案:B知识点:直线、射线、线段解析:解答:电线杆可看做线段,故①错误;探照灯光线可看做射线,②正确;A地到B地的高速公路可看做一条线段,③错误.就一个正确,故选B.分析:本题考查的是直线、射线与线段的定义,明确直线没有端点,射线有一个端点,线段有两个端点,再联系实际即可解答.2.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条答案:C知识点:直线、射线、线段;探索图形的规律解析:解答:分别是线段AB、AC、BC.分析:一条线段有两个端点,图中有三个点,所以有3232⨯=条线段,若有n个端点,则有()12n n⨯-条线段.3.如图,点A、B、C在一直线上,则图中共有射线()A.1条B.2条C.4条D.6条答案:D知识点:直线、射线、线段;探索图形的规律解析:解答:分别以A、B、C为端点,向左右各有三条射线,共6条,故选D.分析:射线有一个端点,从一个点出发,向左右有两条射线,图中有三个点,所以有6条射线.4.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定答案:C知识点:直线、射线、线段;探索图形的规律解析:解答:①、当三点在同一条直线上时,只能画一条;②、当三点不在同一条直线上时可以画3条;故选C.分析:解本题主要考虑两种情况:三点在同一条直线上和三点不在同一条直线上,过不在同一条直线上的n个点,可以画()12n n⨯-条直线.5.下列说法中,正确的有()①射线与其反向延长线成一条直线;②直线a,b相交于点m;③两直线交于两点;④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个答案:C知识点:直线、射线、线段解析:解答:射线与其反向延长线成一条直线;①正确;一个点应该用大写字母表示,故②错误;两条直线只能交于一点,故③错误;三条直线两两相交,可能有3个交点,也可能有一个交点,故④错误;故选C分析:本题主要考察直线的一些性质,直线没有端点,无限长,两条直线只能交于一点,三条不平行的直线最多有三个交点,最少有一个交点.6.延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线BA的延长线上答案:B知识点:直线、射线、线段解析:解答:延长线段AB到C,则点C在直线AB上,故选B.分析:本题主要考查线段、直线的基本概念,根据线段、直线的基本概念判断即可。
2022-2023学年人教版七年级数学上册《4.2直线、射线、线段》同步练习题(附答案)一.选择题1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是()A.1B.2C.3D.42.下列四个图中,能表示线段x=a+c﹣b的是()A.B.C.D.3.下列说法:①画射线AB=6cm;②设a表示一个数,则﹣a一定不是正数;③射线AB 与射线BA是同一条射线;④用两个钉子就可以把一根木条固定在墙上,依据的数学原理是两点确定一条直线.其中正确的个数有()A.1个B.2个C.3个D.4个4.我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.355.下列说法:①延长射线AB;②射线OA与射线AO是同一条射线;③若(a﹣6)x3﹣2x2﹣8x﹣1是关于x的二次多项式,则a=6;④已知A,B,C三个点,过其中任意两点作一条直线,可作出1或3条直线,其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题6.如图所示,图中共有条直线,条射线,条线段.7.若平面内有4个点,过其中任意两点画射线,最多可以画条.8.直线AB,BC,CA的位置关系如图所示,下列语句:①点A在直线BC上;②直线BC 经过点B;③直线AC,BC交于点C;④点C在直线AB外;⑤图中共有12条射线.以上表述正确的有.(只填写序号)9.下列语句中:①画直线AB=3cm;②直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;③延长直线OA;④若AM=BM,则M为线段AB的中点;⑤若M是线段AB的中点,则AM=BM.正确的有个.10.如图有a条直线,b条射线,c条线段,则a+b﹣c=.11.从哈尔滨开北京的复兴号途中要停靠于3个站点,如果任意两站之间的票价都不同,那么有种不同的票价,应发行种不同的车票.12.把木条固定在墙上至少要钉两个钉子,这样做是依据基本事实:.13.如图,从学校A到书店B有①②共2条路线,最短的是①号路线,得出这个结论的根据是:.14.如图,点C是AB的中点,点D是BC的中点,则下列等式中成立的有(填写序号)①CD=AD﹣DB;②CD=AD﹣BC;③CD=2AD﹣AB;④CD=AB.15.若点C在线段AB的延长线上,则AC与AB的大小关系是,并且AB+BC =,AC﹣AB=.16.如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=cm;②若AC=8cm,EC=3cm,则AD=cm.17.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.18.如图直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB,若点C 是射线AB上一点,且满足AC=CO+CB,则OC=cm.19.如果A、B、C三点共线,线段AB=7cm,BC=5cm,那么A、C两点间的距离是.20.A、B、C、D四个车站的位置如图所示.(1)C、D两站的距离为;(2)若a=3,C为AD的中点,b=.21.如图在直线l上按指定方向依次取点A、B、C、D,且使AB:BC:CD=2:3:4,若AB的中点M与CD的中点N的距离为15cm,则AB的长是.22.如图所示,点C是线段AB上的点,点M、N分别是AC、BC的中点,若CB=3cm,MN=4.5cm,则线段MB的长度是.三.解答题23.如图,A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=16cm,则AD的长为cm;(2)若线段AD被点B、C分成了2:3:4三部分,且AB的中点M和CD的中点N之间的距离是18cm,求AD的长.24.如图,点E是线段AB的中点,C是EB上一点,AC=12.(1)若F为CB的中点,且BC=4,求EF的长;(2)若EC:CB=1:4,求AB的长.25.已知:点M,N,P在同一条直线上,线段MN=a,线段PN=b(a>b),点A是MP 的中点.求线段MP与线段AN的长.(用含a,b的代数式表示)26.如图,已知线段AB,延长线段AB至点C,使BC=2AB,延长线段BA至点D,使AD =AB,点E是线段AC的中点.(1)若AB=12,求线段DE的长;(2)若DE=a,请直接写出线段AB的长(用含a的代数式表示).27.如图,C是线段AB上一点,AB=12cm,AC=4cm,P、Q两点分别从A、C出发以1cm/s、2cm/s的速度沿直线AB向右运动,运动的时间为ts.(1)当t=1s时,CP=cm,QB=cm;(2)当运动时间为多少时,PQ为AB的一半?(3)当运动时间为多少时,BQ=AP?参考答案一.选择题1.解:①射线AB与射线BA不是同一条射线,他们的端点不同,因此①不正确;②线段AB是直线AB的一部分是正确的,③延长线段AB到C,使BC=AB,因此③不正确;④射线AB与射线BA的公共部分是线段AB是正确的;综上所述,正确的有②④,共两个,故选:B.2.解:根据线段的和差可得,能表示线段x=a+c﹣b的是B,故选:B.3.解:①因射线无长度,故画射线AB=6cm说法错误;②设a表示一个数,若是负数,则﹣a一定是正数,故错误;③射线AB与射线BA不是同一条射线,故错误;③用两个钉子就可以把一根木条固定在墙上,依据的数学原理是两点确定一条直线,故正确.故选:A.4.解:根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n﹣1=条直线.当n=6时,=15.即:最多可以画15条直线.故选:A.5.解:①因为射线向一段无限延伸,故延长射线AB的说法错误;②射线OA与射线AO的端点不同,方向相反,故它们不是同一条射线,故该说法错误;③若(a﹣6)x3﹣2x2﹣8x﹣1是关于x的二次多项式,则a=6,说法正确;④已知A,B,C三个点,过其中任意两点作一条直线,可作出1或3条直线,说法正确;故选:B.二.填空题6.解如图所示,图中共有1条直线,8条射线,6条线段.故答案为:1,8,6.7.解:设平面内这4个点分别为A,B,C,D,过任意两点画射线则有,射线AB,射线BA,射线AC,射线CA,射线AD,射线DA,射线BC,射线CB,射线BD,射线DB,射线CD,射线DC,共12条.故答案为:12.8.解:①点A不在直线BC上,故①错误;②直线BC经过点B,故②正确;③直线AC,BC相交于点C,故C正确;④点C在直线AB外,故④正确;⑤图中以A为端点的射线共有4条,以B为端点的射线共有4条,以C为端点的射线共有4条,故⑤正确.故答案为:②③④⑤.9.解:①画直线AB=3cm,说法错误,直线没有长度;②直线AB与直线BA是同一条直线,射线AB与射线BA不是同一条射线,故此说法错误;③延长直线OA,直线向两方无限延伸,不能延长,故此说法错误;④若AM=BM,则M为线段AB的中点,M可能没有在直线AB上,故此说法错误;⑤若M是线段AB的中点,则AM=BM,正确.故答案为:1.10.解:图中只有AD1条直线,故a=1;图中共有6条射线,故b=6;图中共有6条线段,故c=6;∴a+b﹣c=1+6﹣6=1,故答案为:1.11.解:如图,途中有3个站点,共有线段:AC、AD、AE、AB,CD、CE、CB,DE、DB,EB共10条线段,所以共有10种不同的票价;因为往返的车票不同,所以应发行20种不同的车票.故答案为:10,20.12.解:要把木条固定在墙上,至少要钉两个钉子,这说明一个几何事实:两点确定一条直线,故答案为:两点确定一条直线.13.解:从学校A到书店B有①②共2条路线,最短的是①号路线,得出这个结论的根据是:两点之间线段最短.故答案为:两点之间线段最短.14.解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC,则CD=AD﹣AC=AD﹣BC,①错误;②正确;2AD﹣AB=2AC+2CD﹣AB=2CD,③错误;∵点C是AB的中点,点D是BC的中点,CD==AB,④错误,故答案为:②.15.解:如图,则AC>AB,AB+BC=AC,AC﹣AB=BC,故答案为:AC>AB,AC,BC.16.解:(1)∵D、E分别是线段AB、BC的中点,∴DB=AB=,BE=BC=,∴DE=DB+BE==4,故答案为:4;(2)∵D、E分别是线段AB、BC的中点,∴BC=2EC=6,∴AD=AB=(AC﹣BC)=×(8﹣6)=1,故答案为:1.17.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.18.解:∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得:OB=4cm,OA=2OB=8cm.设CO的长是xcm,依题意有:①当点C在线段AO上时,8﹣x=x+4+x,解得x=;②当点C在线段OB上时,8+x=x+4﹣x,解得:x=﹣4(舍去);③当点C在线段AB的延长线上时,8+x=x+x﹣4,解得x=12.故CO的长为cm或12cm,故答案为:或12.19.解:如图所示,点C、点C'的位置就是点C位置的两种情况.点C的位置有两种情况,点C在点B的右边时,AC=7+5﹣12cm;点C在点B的左边时,AC=7﹣5=2cm.故答案为12cm或2cm.20.解:(1)根据题意可得,CD=BD﹣BC=(3a+2b)﹣(2a﹣b)=a+3b.故答案为:a+3b;(2)∵C为AD的中点,∴AC=CD,∴(a+b)+(2a﹣b)=a+3b,∴2a=3b,∵a=3,∴b=2.故答案为:2.21.解:设AB=2x,则BC=3x,CD=4x,∵M是AB中点,N是CD中点,∴BM=x,CN=2x,∴MN=MB+BC+CN=x+3x+2x=15,解得x=,∴AB=5cm.故答案为:5cm.22.解:∵点N是BC的中点,CB=3cm,∴NC=BC=1.5cm,∵MN=4.5cm,∴MC=MN=NC=4.5﹣1.5=3cm,∴MB=MC+CB=3+3=6cm,故答案为:6cm.三.解答题23.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:=;②∵BC=AC,AC=16cm,∴BC=12cm,∴AB=AC﹣BC=4cm,∵AB=CD,∴CD=4cm,∴AD=AC+CD=20cm;故答案为:20;(2)如图:设AM=BM=xcm,根据已知得:AB=2xcm,BC=3xcm,CD=4xcm,∴AD=9xcm,CN=DN=CD=2xcm,∵MN=18,∴BM+BC+CN=18,即x+3x+2x=18,解得x=3,∴AD=9x=27(cm).答:AD的长是27cm.24.解:(1)∵点E是线段AB的中点,∴AE=BE,设CE=x,∴AE=BE=12﹣x,∴BC=BE﹣CE=12﹣x﹣x,∵F为CB的中点,∴CF=BC=6﹣x,∴EF=CE+CF=x+6﹣x=6;(2)∵EC:CB=1:4,∴设CE=x,则CB=4x,∵点E是线段AB的中点,∴AE=BE,∴AE=5x,∴AC=6x=12,∴x=2,∴AB=10x=20.25.解:(1)当点P在N点左侧时,如图所示MP=MN﹣NP=a﹣b,∵点A为MP的中点,∴,∴AN=AP+PN=(a+b)+b=a+b;(2)当点P在N点右侧时,如图所示:MP=MN+NP=a+b,∵点A为MP的中点,∴,∴AN=AP﹣PN=(a+b)﹣b=a﹣b,∴线段MP的长是a+b或a﹣b;线段AN的长是a+b或a﹣b.26.解:(1)∵BC=2AB,AD=AB,AB=12,∴BC=12×2=24,AD=12×=4,∴AC=AB+BC=12+24=36,DC=AC+AD=36+4=40,∵点E是AC的中点,∴EC=AC=36×=18,∴DE=DC﹣CE=40﹣18=22;(2)设AB=x,∵BC=2AB,AD=AB,AB=x,∴BC=2x,AD=x,∴AC=AB+BC=x+2x=3x,DC=AC+AD=3x+x=x,∵点E是AC的中点,∴EC=AC=x,∴DE=DC﹣CE=x﹣x=x,∴x=a,解得x=a.∴AB=a.27.解:(1)∵AB=12cm,AC=4cm,∴CB=12﹣4=8cm,当t=1s时,CP=4﹣1×1=3(cm),QB=8﹣2×1=6(cm).故答案为:3,6;(2)t秒后,AP=t,AQ=4+2t,∴(4+2t)﹣t=12,解得t=2,答:当运动时间为2s时,PQ为AB的一半;(3)ts后,AP=t,BQ=|8﹣2t|,∴t=|8﹣2t|,解得t=8或,答:当运动时间为8s或s时,BQ=AP.。
4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。
人教版数学七年级上册第四章几何图形初步 4.2 直线、射线、线段4.2.2 比较线段的长短同步课时训练1. 在同一平面内画出三条直线,使它们分别满足以下条件:①没有交点;②有一个交点;③有两个交点;④有三个交点.其中能画出图形的是( )A.①②③④ B.①②③ C.①②④ D.①③2. 给出下列图形,其中表示直线的方法不正确的是( )3. 如图,下列语句中,①直线l经过A,B两点;②点A,B都在直线l上;③直线l和直线AB不是同一条直线;④点P在直线l上;⑤点P在直线l外;⑥直线AB不经过点P.能准确地表达该图情形的句子有( )A.5个B.4个C.3个D.2个4. 下列关于直线的说法:①直线是直的,向两端无限伸展;②直线的长是可以量出来的;③直线有粗细之分;④直线只能向一个方向伸展.其中正确的有( )A.1句 B.2句 C.3句 D.4句5. 关于射线的说法正确的是( )A.射线是直线的一半 B.射线是直线的一部分,只能向一个方向伸展C.射线没有端点 D.射线比直线短6. 如图,A,B,C是同一条直线上的三点,下列说法正确的是( )A.射线AB与射线BA是同一条射线 B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线 D.射线BA与射线BC是同一条射线7. 如图,下列说法正确的是( )A.射线AB B.延长线段AB C.延长线段BA D.反向延长线段BA8. 如图,对于直线AB,线段CD,射线EF,其中能相交的是( )9. 下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④点M在直线AB上,则点M在射线AB上.其中正确的结论共有( )A.1个 B.2个 C.3个 D.4个10. 如图,下列说法正确的是( )A.点P在直线AB的延长线上 B.点P在射线AB的延长线上C.点P在线段AB的延长线上 D.点P在线段BA的延长线上11. 同一平面内的三条直线两两相交最多有m个交点,最少有n个交点,则m -n的值为( )A.0 B.1 C.2 D.312. 经过_________有一条直线,并且________一条直线,即________确定一条直线.13. 要将一根木条固定在墙上,至少需要____个钉子,其依据是_____________.14. 当两条不同的直线有一个_________时,我们称这两条直线相交,这个公共点叫做它们的_______.15. 射线和线段都是________的一部分.16. 如图,A,B,C三点在同一条直线上,则图中不同的线段有____条;不同的射线有____条.17. 如图,能用O,A,B,C中的两个字母表示的不同射线有____条,写出以点B为端点的射线为__________________.18. 如图,点C,D在直线AB上.(1)图中射线CD与射线____表示同一条射线;(2)图中共有____条直线,____条射线,____条线段.19. 在同一平面内,过一点可以画________条直线,过两点可以画____条直线,过三点中的任意两点可以画________条直线,过四点中的任意两点可以画____________条直线.20. 往返于甲、乙两地的火车沿途要停靠五个站(包括甲、乙,设每两个站之间的距离不相等).(1)问有多少种不同的票价?(2)要准备多少种车票?参考答案:1---11 ADBAB CCBCC C12. 两点只有两点13. 两两点确定一条直线14. 公共点交点15. 直线16. 3 617. 7 射线BA,射线BC18. (1) CB(2) 1 8 619. 无数 1 1或3 1或4或620. 解:(1)有10种不同的票价(2)同一段路,往返时起点和终点正好相反,所以应准备20种车票。
第四章几何图形的初步4.2直线、射线、线段(线段长短的比较)精选练习答案一. 选择题(共10小题)1.(2018·海口市期末)经过平面上的四个点,可以画出来的直线条数为()A.1B.4C.6D.前三项都有可能【答案】D【解析】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故选D.2.(2019·江苏南京一中初一期末)平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是()A. B. C. D.【答案】D【详解】如图:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n条直线相交有1+2+3+4+5+…+(n-1)=个交点.所以a=,而b=1,∴a+b=.故选D.3.(2017·兴隆县第二中学初一期中)题目;已知:线段a,b.求作:线段AB,使得AB=a+2b.小明给出了四个步骤①在射线AM上画线段AP=a;②则线段AB=a+2b;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为顺序正确的是()A.①②③④B.④①③②C.④③①②D.④②①③【答案】B【解析】由题意可知,正确的画图顺序是:④画射线AM;①在射线AM上画线段AP=a;③在射线PM上画PQ=b,QB=b;②则线段AB=a+2b.故选B.4.(2018·郁南县南江口中学初一期末)如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段AD的长是()A.6B.2C.8D.4【答案】C【解析】试题解析:∵BC=AB-AC=4,点D是线段BC的中点,∴CD=DB=BC=2,∴AD=AC+CD=6+2=8;故选C.5.(2018·南山区期末)如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b【答案】A【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.6.(2018·浙江省永康市龙川学校初一期末)已知线段AB=10 cm,点C是直线AB上一点,点D是线段BC 的中点,AC=4 cm,则AD的长为()A.3 cmB.5 cmC.7 cmD.3 cm或7 cm【答案】D【详解】试题解析:①如图1所示,∵AB=10cm,AC=4cm,∴BC=AB-AC=10-4=6cm,∵D是线段BC的中点,∴AD= =×6=7cm;②如图2所示,∵AB=10cm,AC=4cm,∴BC=AB+AC=10+4=14cm,∵D是线段BC的中点,∴AD=BC-AC=×14-4=3cm.故选D.7.(2018·漯河市实验中学初一期末)如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN的长度,那么只需条件()A.AB=16B.BC=3C.AM=4=1【答案】A【解析】因为MN=BM+BN=MC-B C+ = =,故选A.8.(2018·龙口市期中)点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2ACB.AC=2BCC.AC=BCD.BC=AB【答案】B【详解】A、若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B、若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C、若点C在线段AB上,AC=BC,则点C为线段AB的中点;D、若点C在线段AB上,BC=AB,则点C为线段AB的中点.故选:B.9.(2018·防城港市期末)要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直【答案】B【详解】根据两点确定一条直线.故选:B.10.如图所示,已知线段a,b,c(a>b+c),求作线段AB,使AB=a-b-c.下面利用尺规作图正确的是()A. B.C. D.【答案】D【详解】解:用尺规先作线段AC=a,再从内部顺次截取CD=b,DB=c,则AB=a-b-c. 故选D.二. 填空题(共5小题)11.(2018·甘井子区期末)如图,、两点将线段分成2:3:4三部分,为线段的中点,,则线段______.【答案】1cm【分析】根据、两点将线段分成2:3:4三部分,设,然后表示出,再根据,求得x的值,进而求出AB的长;再计算出AE的长,然后利用AD﹣AE可得DE长.【详解】解:设∵∴解得:∴∵为线段的中点∴故答案为:1cm12.(2018·尚志市期末)已知点A、B、C在同一直线上,AB=8厘米,BC=3AC,那么BC=_________厘米.【答案】6或12【详解】∵BC=3AC,∴AC=BC,如图1,点C在线段AB上时,BC+BC=8,解得C=6(厘米),如图2,点C在线段BA的延长线上时,BC-BC=8,解得BC=12(厘米),综上所述,BC=6或12厘米.故答案为:6或12.13.(2018·成都市期末)如图,C、D在线段AB上,且C为线段BD的中点,若AD=3,AB=11,则AC的长等于______.【答案】6.5【详解】∵AD=3,AB=10,∴BD=AB-AD=7,∵C为线段BD的中点,∴BC=DC=BD=3.5,∴AC=AD+DC=6.5;故答案为:6.5,14.(2018·翁牛特旗乌丹第六中学初一期末)点C 在射线AB上,若AB=3,BC=2,则AC为_____.【答案】1或5.【解析】解:本题有两种情形:(1)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=1;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=5.故答案为:5或1.15.(2018·浙江省杭州第二中学初一期末)已知点A、B、C都是直线l上的点,且AB=8cm,BC=5cm,那么点A与点C之间的距离是________________.【答案】3或13cm【详解】解: 根据A, B, C三点在同一直线上对应的位置不同,可分两种情况计算.如图所示,点B在线段AC上,根据题意,AC=AB+BC=8+5=13cm;如图所示,点C在线段AB上, AC=AB-BC=8-5=3cm.故答案为:3或13cm三. 解答题(共3小题)16.(2019·河北衡水中学初一期中)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE 的中点。