关于计量经济学
- 格式:doc
- 大小:35.00 KB
- 文档页数:12
计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。
2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。
5、结构分析结构分析是对经济现象中变量之间相互关系的研究。
所采用的主要方法是弹性分析、乘数分析与比较静力分析。
6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。
7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。
8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。
9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。
10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。
11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。
12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。
13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。
14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。
15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。
16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。
17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。
18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。
计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
关于计量经济学参考文献汇总关于计量经济学参考文献汇总摘要:以下是关于计量经济学参考文献汇总,以供参考。
参考文献1、唐国兴,计量经济学——理论、方法和模型,复旦大学出版社,1988。
2、张寿、于清文,计量经济学,上海交通大学出版社,1984。
3、邹至庄,经济计量学,中国友谊出版公司,1988。
4、古扎拉蒂计量经济学(上,下),中国人民大学出版社2000年中译本。
5、伍德里奇,计量经济学导论——现代观点,中国人民大学出版社2003年中译本。
6、William H. Greene, Econometrics, 4th ed. 清华大学出版社2001年影印本。
7、汉密尔顿,时间序列分析,中国社会科学出版社1999中译本。
8、易丹辉,数据分析与Eviews应用,中国统计出版社2002。
9、张晓峒主编,计量经济学软件Eviews使用指南,南开大学出版社2003。
10、拉姆.拉玛丹山《应用计量经济学》,机械工业出版社2003中译本。
11、Box, Jenkins, Reinsel《时间序列分析:预测和控制(第三版)》,中国统计出版社,1997年中译本。
12、陆懋祖《高等时间序列计量经济学》,上海人民出版社,1999。
13、韩德瑞、秦朵《动态经济计量学》,上海人民出版社,1998。
14、谢识予、朱弘鑫《高级计量经济学》复旦大学出版社,2005。
15、弗朗西斯《商业和经济预测中的时间序列模型》,中国人民大学出版社,2002。
16、朱平芳《现代计量经济学》,上海财经大学出版社,2004。
17、Pindyck R S, Rubinfeld D L, Econometrics Models and Economic Forecasts, 4th ed. The McGraw-Hill Companies, Inc. 1998.18、Johnston, J. and J. DiNardo, 1997, Econometric Methods, 4th ed., McGraw-Hill.19、Wallace T D, Silver J L. Econometrics-An Introduction. Addison-Wesley Publishing Company, Inc. 1988.20、Gujarati, D. N., 1995, Basic Econometrics, 3nd. ed., McGraw-Hill.。
计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。
本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。
第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。
时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。
2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。
这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。
第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。
这些方法可以帮助我们理解和总结经济数据的基本特征。
2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。
例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。
第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。
这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。
2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。
例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。
第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。
2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。
第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。
计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体〔动身点、回宿、核心〕:经济现象及数量变化规律研究的工具〔手段〕:模型数学和统计方法必须明确:方法手段要服从研究对象的实质特征〔与数学不同〕,方法是为经济咨询题效劳2注重:计量经济研究的三个方面理论:即讲明所研究对象经济行为的经济理论——计量经济研究的根底数据:对所研究对象经济行为瞧测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济咨询题4区不:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的全然依据●经济现象不能作实验,只能被动地瞧测客瞧经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论根底区不:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依据其它经济理论,应用计量经济方法将这些理论数量化。
4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。
1、经济理论所作的陈述或假讲大多数是定性性质的,计量经济学对大多数经济理论给予经验内容。
一、问答题1、什么是计量经济学?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
2、计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究)。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学;无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系;二是因果关系。
3、模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
4、计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
答:由于客观经济现象的复杂性,以至于人们目前仍难以完全地透彻地了解它的全貌。
对于某一种经济现象而言,往往受到很多因素的影响,而人们在认识这种经济现象的时候,只能从影响它的很多因素中选择一种或若干种来说明。
这样就会有许多因素未被选上,这些未被选上的因素必然也会影响所研究的经济现象。
因此,由被选因素构成的数学模型与由全部因素构成的数学模型去描述同一经济现象,必然会有出入。
关于计量经济学的几点思考Part 1标题一:计量经济学的概念和本质标题二:计量经济学的研究方法标题三:计量经济学的广泛应用标题四:计量经济学应用中的问题和挑战标题五:计量经济学未来的发展方向1.计量经济学的概念和本质计量经济学是研究经济现象及其规律的科学,其本质是运用数学和统计学方法验证和量化经济学理论。
计量经济学作为一门经济学分支学科,与经济学其他分支学科的关系密切。
计量经济学将经济现象定量化,可以更加准确地揭示人类经济活动的内在规律和关系,为经济发展提供理论支持。
2.计量经济学的研究方法计量经济学从统计学和经济学的基础出发,运用数学工具来构建模型,推导出经济变量之间的关系,并通过实证研究对模型进行验证。
其中包括回归分析、面板数据、时间序列等方法。
此外,计量经济学还需要注意数据的选择和处理,避免因数据本身问题而产生的误差,以保证研究结论的有效性。
3.计量经济学的广泛应用计量经济学的应用领域非常广泛,包括宏观经济学、劳动经济学、产业经济学等。
例如,在宏观经济领域,通过对经济增长方面的研究,可以为经济政策制定者提供有力的决策支持。
在劳动经济学领域,应用计量经济学方法研究劳动力市场的变动,还可以分析劳动力市场中的性别、年龄和教育等因素对薪资的影响。
在产业经济学领域,可以通过计量经济学方法来研究市场结构和行业竞争力,为企业决策提供理论支持。
4.计量经济学应用中的问题和挑战虽然计量经济学方法非常强大,但在实际应用中也会遇到一些问题和挑战。
首先,选择合适的模型和数据样本是非常重要的,不合理的选择会导致结果的不准确。
其次,在处理数据时需要考虑误差的来源,避免因自身数据问题而影响研究结论的准确性。
最后,在研究中需要注意成果的可重复性和可验证性,以便他人可以验证研究的结论。
5.计量经济学未来的发展方向随着科技的进步和研究方法的不断提高,计量经济学将会得到更广泛的应用和发展。
未来的研究方向可能包括多维度分析、非线性建模、大数据分析等方面。
关于计量经济学一、计量论文的两大要点是什么?二、如何判断计量论文的水平高低?三、做计量的“大杀器”有哪些?四、瞎倒腾计量的秘诀五、大规模发CSSCI的建议一、计量论文的两大要点是什么?1、计量模型的建立(就是那个方程,表达什么经济含义要知道);2、模型中的系数如何估计出来(关键在于估计方法的选择)。
第1个要点涉及你论文主题。
你一般要想用数据检验某种经济关系,根据这种经济关系来建立计量模型。
如果你不知道要检验什么经济关系,那我劝你就此打住。
你发不了经济研究了。
第2个要点。
千万种方法的出现,目的都是要把那个系数给估计出来。
不同估计方法的估计效果好坏,就是根据各种统计量来判断。
如果能选择一种最合适你数据的估计方法,那么这论文基本就成了。
二、如何判断计量论文的水平高低?掌握了上面两个要点,只是说你能写出一篇计量论文,并不是说能写出一篇高水平的论文。
水平的高低在于你处理这两个要点时水平的高低。
下面仔细讲解。
如果只是为了写计量论文,只需要“知其然”即可。
没有人会因为不会推导OLS估计量而对软件里面出来的结果不知所措。
这条途径,最快捷的走法是找一个懂的人,把结果里面的各种东西所表示的意思给你讲一遍,每个东西要注意什么。
基本就可以了。
在一般的CSSCI 上发表论文没有什么问题。
如果找不到人,就看STATA的手册,里面的例子会讲解每个指标参数统计量的含义。
这样慢一点,但效果很好,而且也能成为STATA专家。
STATA手册比高级计量教材看起来轻松多了,就是告诉你怎么操作软件,然后得到什么结果的。
计量论文中的估计问题,最关键的事情,不是能推导估计量,而是在STATA里面选择一个“合适”的方法估计出来。
然后解释结果的经济意义。
而计量水平的高低,不在于方法的复杂性,而在于方法的合适程度。
因此高水平的计量论文,不必要求作者掌握高深的计量推导,而在于“选择”的技巧。
每种计量方法,都有优劣。
所谓用人之长,容人之短。
水平高的人,能够选择以其之长,攻它之短。
同时又能隐藏计量方法内在的拙劣。
其实,计量论文的水平主要决定于论文的主题的重要性。
这个话题大家都很关心,就很重要,发表就很容易。
所以,你会发现国际顶级期刊上一些计量论文所用的方法很简单。
这些论文能发表,主要是他讨论的问题很重要(这涉及第一个要点),采用的方法即使有缺陷,也无伤大雅。
如果问题不是非常重要,只是有新意,但是估计方法比较合适,也能发一个中上等期刊。
如果问题属于鸡毛蒜皮之类,那就只能诉诸于超级复杂的计量方法,祈求审稿人看论文时,方法还没看完就已经累得半死,再也没有心情来思考你的问题的重要性,然后也能通过了。
三、做计量的“大杀器”有哪些?所谓的大杀器,不是指超级复杂的计量方法,而是指这种东西一旦用起来,一般不会有人来攻击。
所谓的一招毙命,毙了审稿人的命。
计量方法很多,可以说满天飞。
但是,真正有价值的方法,被人公认为具有一定可信度的方法(就是所谓的“大杀器”),只有5种。
并不是你所看到的所有的方法都有人信。
这点大部分初学计量的人都不会意识到。
看到书上介绍一个方法,就认为这是一个好方法。
其实不是。
书上很多方法的介绍,仅仅是出于理论推演的需要,并不是实际研究中都能用的。
你如果查阅一下国际上关于经验研究类的论文,会发现大部分论文所用方法无非是:1、简单回归;2、工具变量回归;3、面板固定效应回归;4、差分再差分回归(difference in differnece);5、狂忒二回归(Quantile)。
大杀器就这几种,破绽最少,公认度最高,使用最广泛。
真是所谓的老少皆宜、童叟无欺。
其他的方法都不会更好,只会招致更多的破绽。
你在STATA里面还可以看到无数的其他方法,例如GMM、多层次分析法等。
这个GMM实在是一个没有用的忽悠,他还分为diffGMM和系统GMM。
其关键思想是当你找不到工具变量时,用滞后项来做工具变量。
结果你会发现令人崩溃的情况:不同滞后变量的阶数,严重影响你的结果,更令人崩溃的是,一些判断估计结果优劣的指标会失灵。
这完全是胡搞!这GMM的唯一价值在于理论价值,而不在于实践价值。
你如果要玩计量,你就可以在GMM的基础上进行修改(玩计量的方法后面讲)。
有人会问:简单回归会不会太简单?我只能说你真逗。
STATA里面那么多选项,你加就是了。
什么异方差、什么序列相关,一大堆尽管加。
如果你实在无法确定是否有异方差和序列相关,那就把选项都加上。
反正如果没有异方差,结果是一样的。
有异方差,软件就自动给你纠正了。
这不很爽嘛。
如果样本太少,你还能加一个选项:bootstrap 来估计方差。
你看爽不爽!bootstrap就是自己提靴子的方法。
自己把脚抬起来扛在肩上走路,就这么牛。
这个bootstrap就是用30个样本能做到30万样本那样的效果。
有吸引力吧。
你说这个简单回归简单还是不简单!很简单,就是加选项。
可是,要理论推导,就不简单了。
我估计国内能推导的没几个人。
经济研究上论文作者,最多只有5%的人能推导,而且大部分是海龟。
所以,你不需要会推导,也能把计量做的天花乱坠。
工具变量(IV)回归,这不用说了,有内生性变量,就用这个吧。
一旦有内生性变量,你的估计就有问题了。
国际审稿人会拼了老命整死你。
国内审稿人大部分不懂这东西(除了经济研究这类刊物的部分审稿人以外)。
工具变量的选择只要掌握一个关键点就行:找一个和内生性变量有数据相关的,但是没有因果关系的东西,这就是你的IV了。
例如贸易量如果是内生的,那么你找地理距离作为IV。
北京到纽约的距离,那是自然形成的,没人认为是由贸易量导致的,这就是没有因果关系。
但是你会发现两者在数据上具有相关性。
这就很好。
这种数据相关性越强,IV的效果就越好。
就这么一段话,IV变量回归就讲完了。
在STATA里面,你直接把原回归方程写出来,然后把IV 填进去就可以了,回车就得到你的结果。
关键是你不一定能找到这样的工具变量。
你能找到,这个工具也不大能用。
不过要注意,IV不灵不代表你不能发表。
经济研究上还不是发了一大堆这样的论文。
所以,你只要找到一个IV,效果不是差的太离谱,一般都能发。
当然不能发国际一流了。
国内是没问题。
国内审稿人没人会重复你的结果看看是否有问题,因此你说这个IV效果已经是最好的了,世界上还找不到第二个比这个更好的了,审稿人也没的话说。
就发表呗!如果审稿人说,另外一个IV效果可能要比你的好。
那你就采纳他的建议用他的IV(尽管他的建议会更差),然后感谢他一下。
第二次审稿,难道他还会说自己上次是胡说八道???所以就发表了,哈哈哈哈!有人又会问:面板不是还有个随机效应嘛?我只能说,你是看过书的人,所以才知道随机效应。
其实随机效应压根就没什么用处。
有人信誓旦旦说可以用hausman来检验。
我只能告诉你,这检验压根就不可靠。
可靠也是理论上可靠,实践上根本没人信。
当然中国人都信,不信的都是美国欧洲这样的计量经济学家。
你难道不知道hausman 还会出现负值!做过这个检验的人都很头疼这个负值,不知道该怎么做。
你如果看看一些高手的建议,或者一些书籍,你就会发现,最权威的建议就是:当你无法判断该用固定效应还是随机效应的时候,选择固定效应更可靠。
随机效应不是任何时候都可以做,但是固定效应是任何时候都可以做。
所以你知道该怎么做了吧。
差分再差分,是固定效应的一个变种,在估计某个事件发生带来的效应时最有用的方法,特简单,看看STATA手册就明白了。
狂忒二回归(Quantile)是一般均值回归的一个推广。
看名字挺吓人,其实很简单。
如果你知道OLS是一个均值回归,那类推就可以知道1/2分位数回归。
你知道的,正态分布下,均值就是1/2分位数的地方。
均值回归就是1/2分位数回归。
知道了1/2回归,你自然知道1/4和3/4分位数回归了。
如果还不懂,翻开伍德里奇的书,讲到简单OLS回归时,我记得有一个图,上面对不同位置的x位置画了不同的正态分布密度函数(第2版是figure 2.1,pp26,见下面)。
如果是异方差问题,那么不同x位置的正太分布图的方差就有变化。
这个图上注明了预测值是E(Y|X),就是Y的条件期望,就是那根回归预测直线啦。
在正态分布下就是Y的密度函数的中心点的连线,就是1/2分位数点的连线。
如果那条预测线画在密度函数的1/4和3/4分位数点上,那么预测结果就不是Y的均值(在非正态下可能是均值),而是1/4和3/4分位数点的预测值。
这下明白狂忒二回归了吧。
分位数回归就是看看那根预测直线在不同的分位数点上有什么结果,得到什么样的回归系数。
通常的OLS预测直线,仅仅是一个特例而已。
进一步推广,可以推广到任意分位数点回归的情况。
道理一样。
伍德里奇《计量经济学导论——现代观点》的图2.1(解释Quantile 回归的意义)不过要注意,大杀器要用对。
有内生性变量,你就不要用简单回归了,你得用IV回归。
这几种大杀器的精髓一领会,基本上其他东西就难不倒你了。
就是STATA里面的选项多选几个或者少选几个的问题。
你所要做的就是在STATA里面打钩、设置参数。
对付一般的CSSCI 论文,已经是绰绰有余了。
如果你提了一个大家很感兴趣的问题,就是一个重要问题,那么用用IV,或者固定面板,发个经济研究基本没问题。
如果你的问题不是很重要,还想发经济研究,那你就要简单问题复杂化。
上面大杀器能解决的问题,你就用更不可靠的方法但更复杂的方法去解决吧。
大家用开源软件就会知道,一般开源软件会有一个稳定版本,功能比较少,效果很稳定,能满足你日常几乎所有的需求。
还有一个开发版本,专门给那些吃饱了撑着没事干的人倒腾的版本,因为是开发版本,所以很不稳定,经常会出错、崩溃。
不过能倒腾的人不怕崩溃,崩溃了能自己修。
你要是想倒腾,接着往下看吧。
四、瞎倒腾计量的秘诀瞎倒腾有两种水平,第一种是低水平,第二种,那你也猜到了,就是高水平瞎倒腾。
低水平瞎倒腾,就是大杀器不够过瘾,要用摄人魂魄、但容易走火入魔的计量方法达到发表经济研究的目的。
例如,没事弄弄协整,搞一把单位根检验之类的。
听起来头头是道,其实都是杞人忧天。
你想想,要是有协整,时间序列你根本不用着急。
要是没有协整,你着急也没用。
那你还协整个啥!面板来说,你有协整,也没有一个较好的估计方法,期刊上不是还有很多人在用固定效应OLS,或者是加点滞后滞前项变成一个固定效应动态OLS来估计非平稳面板嘛。
面板到现在为止也没有一个公认的可靠的协整向量估计方法,否则STATA这样的软件早就提供按钮了(STATA和EVIEW现在只有协整的检验方法,不是协整向量的估计)。
既然没有公认可靠的方法,你急啥!其实,协整这玩意,最大的价值也在于理论价值,实践价值几乎没有。
当年格兰杰发表协整思想,说如果变量不平稳,在没有协整关系的情况下,前人回归都不可靠。