硅材料的分类与制备
- 格式:ppt
- 大小:5.20 MB
- 文档页数:19
基础课件-硅材料基础知识硅材料基础知识主要内容:一、概述二、硅的结构、分类与来源三、硅的物理性质四、硅的化学性质五、硅的物理参数及测量六、硅的应用及注意事项一、概述硅材料的基础知识,课程包括较多,有固体物理、量子力学、半导体物理、半导体化学、半导体器件工艺、半导体材料等方面的知识;内容较多,如半导体电子状态和能级、载流子的发布、导电性、非平衡载流子、P-N结、金属与半导体的接触、表面理论、光电效应、磁电效压阻效应、异质结等。
这里只介绍半导体材料的最基本的内容。
1、材料按导电性能划分,可分为:导体、绝缘体、半导体三类。
导体——容易导电的材料。
如各种金属、石墨等。
一般的,电阻率<0.2Ω·cm 绝缘体——很难导电的材料。
如橡胶、玻璃、背板、EVA、SiO2、Si3N4等。
一般的,电阻率>20000Ω·cm半导体——介于两者之间的材料。
如Si、Ge、GaAs、ZnO等,它具有一些独特的性质。
注:a、金属靠电子导电,溶液靠离子导电,半导体导电靠电子或空穴导电。
b、空穴就是电子的缺少。
2、半导体材料,按组成结构可分为:元素半导体、化合物半导体、非晶半导体、有机半导体。
3、半导体器件对材料的要求:3.1禁带宽度适中(一般0.5~1.5电子伏,硅是1.08)3.2载流子迁移率高(一般1000~5000cm2/V·s)3.3纯度高3.4电阻率要求可靠、均匀(一般0.001~100000 ,硅本征2.3×105)3.5晶体的完整性二、硅的结构、分类与来源1、硅的原子理论1.1元素周期表中,第三周期、第IVA 族元素,原子序数14,原子量28电子排布1S 22S 22P 63S 23P 2 ,化合价为+4价(+2价)1.2硅有三种同位素28Si :92.21%、29Si :4.70%、30Si :3.09%、1.3晶体结构:金刚石结构(正四面体),原子间以共价键结合。
硅材料的分类硅材料是一种重要的材料,在现代工业中广泛应用。
根据其性质和用途的不同,硅材料可以分为多个分类。
本文将从晶体硅、非晶硅和有机硅三个方面介绍硅材料的分类。
一、晶体硅晶体硅是指具有高度有序的晶体结构的硅材料。
它具有优良的电特性和光学特性,因此广泛应用于半导体领域。
晶体硅可以通过单晶生长和多晶生长两种方法制备。
单晶生长是通过将硅溶液或熔体冷却,使硅原子有序排列而形成单晶。
而多晶生长则是通过在硅熔体中掺入少量的控制剂,使硅晶体在生长过程中形成多晶结构。
晶体硅的晶格结构具有优良的导电性和光学透明性,因此被广泛应用于半导体器件、太阳能电池等领域。
二、非晶硅非晶硅是指没有规则晶体结构的硅材料,其结构类似于液体。
非晶硅的制备方法主要有物理气相沉积和化学气相沉积两种。
物理气相沉积是通过将硅原料加热至高温,使其气化并沉积在基底上形成非晶硅薄膜。
化学气相沉积则是通过在反应气氛中加入硅源和反应气体,并在基底表面化学反应生成非晶硅。
非晶硅因其无规则的结构,具有较高的抗辐照性和较低的导电性,常用于薄膜太阳能电池、液晶显示器等领域。
三、有机硅有机硅是指硅原子与碳原子通过共价键结合形成的化合物。
有机硅材料具有优异的耐热性、耐寒性、耐腐蚀性和机械强度,因此广泛应用于橡胶、涂料、塑料、胶粘剂等领域。
有机硅材料的制备方法主要有两种:一种是通过直接合成有机硅化合物,例如通过将硅烷与有机化合物反应生成有机硅化合物。
另一种是通过硅烷的氧化反应制备有机硅材料,例如通过将硅烷与氧气反应生成SiO2,然后通过化学反应将SiO2还原为有机硅化合物。
硅材料可以分为晶体硅、非晶硅和有机硅三个分类。
晶体硅具有有序的晶体结构,广泛应用于半导体领域;非晶硅没有规则的晶体结构,常用于薄膜太阳能电池等领域;有机硅是硅原子与碳原子形成的化合物,具有优异的性能,在橡胶、涂料、塑料等领域有广泛应用。
通过对硅材料的分类了解,可以更好地理解其性质和用途,并为相关领域的应用提供基础支持。
有机硅材料的制备与性质有机硅材料是由碳、氢、氧和硅等元素组成的高分子材料,因其具有高温抗氧化性、高强度、耐腐蚀、绝缘、耐热性、抗辐射性、防水性等特点而广泛应用于航空、汽车、电子、建筑、医疗等领域。
本文将介绍有机硅材料的制备和性质。
一、有机硅材料的制备有机硅材料的制备方法多种多样,以下是其中几种常见的制备方法。
1.水解法水解法将有机硅单体与水在酸催化剂的作用下进行水解反应制备有机硅材料。
水解反应发生后,生成的硅醇与有机官能团发生缩合反应,形成有机硅高分子。
此方法制备的有机硅材料质量稳定,制备过程简便。
2.聚合法聚合法将有机硅单体通过自由基聚合、阴离子聚合或阳离子聚合等反应得到有机硅高分子。
聚合反应需要催化剂的存在,常用的催化剂有过渡金属催化剂和碱性催化剂。
这种方法制备的有机硅材料品质较高,可以通过改变反应条件控制分子量和结构。
3.共聚法共聚法是将有机硅单体与非硅烷基单体进行共聚反应制备有机硅材料。
在反应中,有机硅单体的引入改变了聚合物的化学结构和物理性质。
共聚法制备的有机硅材料具有不同于聚合物和无机材料的合成结构和物理化学性质。
4.微乳液法微乳液法是将有机硅单体分散在水中,形成微乳液之后,加入表面活性剂、碱性催化剂和下线活性剂等,并在高转速下进行反应得到有机硅材料。
此方法制备的有机硅材料具有粒径小、分散性好、催化剂效率高等优点。
二、有机硅材料的性质有机硅材料由碳、氢、氧和硅等元素构成,其物理化学性质有很多独特的特点。
1.高温抗氧化性有机硅材料的高温抗氧化性能优异,长时间经受高温无明显膨胀、龟裂等现象,保持着其优良的物理化学性质,因此广泛应用于高温下的设备和构件制造。
2.耐腐蚀有机硅材料具有很强的耐腐蚀性能,可以经受酸、碱、盐等腐蚀性介质的侵蚀。
其耐腐蚀性能比许多金属和合金要好,因此在海洋环境、化学工业、水处理等领域具有广泛应用。
3.耐热性有机硅材料的耐高温性能非常突出,其熔点和玻璃化转变温度均很高,即便在高温下也能维持其物理化学性质不变。
半导体硅的物理制备方法半导体硅是质量符合半导体器件要求的硅材料。
包括多晶硅、单晶硅、硅晶片(包括切片、磨片、抛光片)、外延片、非晶硅薄膜、微晶硅薄等。
一、多晶硅的制备1、改良西门子法-闭环式三氯氢硅氢还原法改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。
国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅2、硅烷法——硅烷热分解法硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。
然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。
以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。
但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。
3、流化床法以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。
制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。
因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。
唯一的缺点是安全性差,危险性大。
其次是产品纯度不高,但基本能满足太阳能电池生产的使用。
此法是美国联合碳化合物公司早年研究的工艺技术。
目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。
此法比较适合生产价廉的太阳能级多晶硅。
4、太阳能级多晶硅新工艺技术除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。
1)冶金法生产太阳能级多晶硅据资料报导[1]日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。
基础课件-硅材料基础知识硅材料基础知识主要内容:一、概述二、硅的结构、分类与来源三、硅的物理性质四、硅的化学性质五、硅的物理参数及测量六、硅的应用及注意事项一、概述硅材料的基础知识,课程包括较多,有固体物理、量子力学、半导体物理、半导体化学、半导体器件工艺、半导体材料等方面的知识;内容较多,如半导体电子状态和能级、载流子的发布、导电性、非平衡载流子、P-N结、金属与半导体的接触、表面理论、光电效应、磁电效压阻效应、异质结等。
这里只介绍半导体材料的最基本的内容。
1、材料按导电性能划分,可分为:导体、绝缘体、半导体三类。
导体——容易导电的材料。
如各种金属、石墨等。
一般的,电阻率<0.2Ω·cm 绝缘体——很难导电的材料。
如橡胶、玻璃、背板、EVA、SiO2、Si3N4等。
一般的,电阻率>20000Ω·cm半导体——介于两者之间的材料。
如Si、Ge、GaAs、ZnO等,它具有一些独特的性质。
注:a、金属靠电子导电,溶液靠离子导电,半导体导电靠电子或空穴导电。
b、空穴就是电子的缺少。
2、半导体材料,按组成结构可分为:元素半导体、化合物半导体、非晶半导体、有机半导体。
3、半导体器件对材料的要求:3.1禁带宽度适中(一般0.5~1.5电子伏,硅是1.08)3.2载流子迁移率高(一般1000~5000cm2/V·s)3.3纯度高3.4电阻率要求可靠、均匀(一般0.001~100000 ,硅本征2.3×105)3.5晶体的完整性二、硅的结构、分类与来源1、硅的原子理论1.1元素周期表中,第三周期、第IVA 族元素,原子序数14,原子量28电子排布1S 22S 22P 63S 23P 2 ,化合价为+4价(+2价)1.2硅有三种同位素28Si :92.21%、29Si :4.70%、30Si :3.09%、1.3晶体结构:金刚石结构(正四面体),原子间以共价键结合。
高纯硅材料的制备与应用分析1.引言高纯硅是一种非常重要的材料,其制备和应用在许多领域都有着广泛的应用。
高纯硅制备的方法主要包括化学还原法、物理还原法、气相沉积法、单晶生长法等。
高纯硅的应用领域主要包括电子信息、半导体、太阳能电池等。
2.高纯硅材料的制备2.1化学还原法化学还原法是通过还原剂还原硅化合物,生成高纯金属硅的制备方法。
制备方法采用的还原剂主要是钠、钠铝合金、镁、硅等。
化学还原法制备高纯硅的过程主要分为两步,首先要处理原料,使它变成可还原的硅化合物,其次要加入还原剂进行还原。
化学还原法制备高纯硅的优点是操作简单易行,还原效率高;其缺点是在制备过程中需要使用大量有毒物质,对环境和人体都有一定的危害。
2.2物理还原法物理还原法是一种利用化合物的分解反应使其分解成元素的方法,如高温汽化法、熔融法等。
物理还原法制备高纯硅的优点是制备工艺简单,设备和环境要求不高;其缺点是成本较高,制备效率较低。
2.3气相沉积法气相沉积法是将气态前体分解成固态产物的方法,主要用于制备细小颗粒的硅,如制备硅纳米颗粒。
气相沉积法制备高纯硅的优点是反应温度低,制备过程中无需使用有毒或危险的化学试剂;其缺点是成本较高,需要较为专业的设备和技术。
2.4单晶生长法单晶生长法是一种非常高级的制备方法,是将单晶硅晶体从溶液中生长出来的方法。
该方法制备的高纯硅质量稳定,纯度高,但制备成本和难度都比较大。
3.高纯硅材料的应用3.1电子信息领域高纯硅在电子信息领域应用非常广泛。
比如,高纯硅晶片被广泛应用于集成电路制造中,作为电路的基础材料,以提高电子设备的性能和稳定性。
同时,高纯硅也被用于制造各种半导体器件,如大功率齐纳二极管、三极管等。
3.2半导体领域高纯硅在半导体领域也是应用广泛的一种材料。
半导体中的硅材料是高纯度、高品质、高稳定性的,是制造半导体器件中不可或缺的一种材料。
同时,在半导体领域中,高纯硅材料还可用于制造光电子元器件、光伏电池等。
硅材料制备及工艺硅材料是一种常用的半导体材料,在电子工业、光电子技术、太阳能电池等领域有广泛的应用。
其制备和工艺是实现材料性能优化和产品加工的关键环节。
本文将介绍硅材料的制备方法以及相关的工艺。
硅材料的制备主要有两种方法,一种是通过化学方法制备,另一种是通过物理方法制备。
化学方法是利用化学反应将硅的原料转化为硅材料。
常见的化学方法有:氯化法、硼砂法、硫酸法和火花渗硅法等。
氯化法是一种常用的方法,它利用氯和硅原料在高温下反应生成二氯化硅,然后通过还原反应得到纯净的硅材料。
硼砂法是另一种常用的方法,它利用硼砂和硅原料的反应生成四氯化硅,然后通过还原反应得到纯净的硅材料。
硫酸法是一种较为简单的制备方法,它利用硅酸盐和硫酸的反应生成硅酸,然后通过脱水反应得到硅材料。
火花渗硅法是一种新兴的制备方法,它利用电火花放电将硅原料气态化,然后通过凝结反应得到硅材料。
物理方法是利用物理手段将硅的原料转化为硅材料。
常见的物理方法有:热解法、溅射法和激光沉积法等。
热解法是一种常用的方法,它利用高温下原料的热分解生成纯净的硅材料。
溅射法是一种利用离子轰击使硅原料喷射到基片上形成薄膜的方法,常用于制备硅薄膜。
激光沉积法是一种利用激光蒸发硅原料使其在基片上形成硅薄膜的方法,适用于制备高质量的硅薄膜。
硅材料的工艺是对硅材料进行深加工和改性的过程,旨在改善其性能和适应特定的应用需求。
常见的硅材料工艺有:切割、掺杂、薄膜沉积和表面处理等。
切割是将硅材料切割成所需形状和尺寸的过程,常用的切割方法有:机械切割、砂轮切割和激光切割等。
掺杂是向硅材料中引入掺杂剂,改变其导电性能的过程,常用的掺杂方法有:扩散法、离子注入法和溅射法等。
薄膜沉积是将硅材料上沉积一层或多层薄膜,用于增强硅材料的特定性能,常用的薄膜沉积方法有:物理气相沉积、化学气相沉积和物理溅射沉积等。
表面处理是改变硅材料表面性质的过程,常用的表面处理方法有:氧化、涂覆和刻蚀等。
硅材料的分类
硅材料是一类广泛应用于电子、光电、化工、建筑等领域的材料。
根据不同的特性和应用,硅材料可分为以下几类:
1. 单晶硅
单晶硅是指在高温下通过熔融法制备出来的纯度极高的硅晶体。
由于其具有高热稳定性、低自由载流子浓度和良好的光电特性,因此被广泛应用于半导体器件制造中,如集成电路、太阳能电池等。
2. 多晶硅
多晶硅是指由许多小晶粒组成的硅材料。
它具有较高的导电性和光吸收能力,因此被广泛应用于太阳能电池制造中。
3. 硅薄膜
硅薄膜是指通过物理或化学气相沉积技术在基板上生长出来的一层非常薄的硅膜。
它具有优异的光学和电学特性,因此被广泛应用于显示器件、太阳能电池等领域。
4. 氧化硅
氧化硅是一种无机化合物,也称为二氧化硅。
它具有优异的绝缘性能
和耐高温性能,因此被广泛应用于半导体器件中的绝缘材料。
5. 氮化硅
氮化硅是一种新型的半导体材料,具有优异的机械、热学和电学性能。
它被广泛应用于高功率电子器件中,如微波功率放大器、高频开关等。
6. 硅酸盐
硅酸盐是一种广泛存在于地球上的无机化合物。
它们具有良好的耐火
性和抗腐蚀性能,因此被广泛应用于建筑材料、陶瓷制品等领域。
7. 硅胶
硅胶是一种由二氧化硅和水合物组成的胶态物质。
它具有优异的吸附
性能和稳定性,因此被广泛应用于干燥剂、防潮剂、催化剂等领域。
总之,硅材料是一类非常重要的材料,在电子、光电、化工、建筑等
领域都有着广泛的应用前景。
根据不同特性和应用需求,我们可以选
择不同种类的硅材料来满足我们的需求。