稀土发光材料的研究进展
- 格式:doc
- 大小:61.00 KB
- 文档页数:14
前言当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。
我国丰富的稀土资源,约占世界已探明储量的80%以上。
稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。
稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。
稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。
就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。
由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。
由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。
在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。
稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。
稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。
随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。
进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。
所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。
稀土上转换发光材料研究进展作者:张晓君来源:《科技资讯》 2011年第27期张晓君(东北电力大学化学工程学院吉林省吉林市 132012)摘要:本文简要介绍了稀土上转换发光材料的研究进展,并对其作为生物分子荧光标记探针的应用进行了探讨。
关键词:上转换材料稀土研究进展中图分类号:O482 文献标识码:A 文章编号:1672-3791(2011)09(c)-0052-01稀土上转换发光材料是指材料吸收能量较低的光子时却能够发出较高能量的光子的材料,或者也可以说是受到某种光激发时,材料可以发射比激发光波长短的荧光材料。
由此可知,上转换发光的本质是一种反Stokes发光。
一般来说,稀土离子上转换发光所用介质是晶体或玻璃态物质,通过激发态吸收或者各种能量的传递过程,稀土离子被激发至高于泵浦光子能量的能级,向下跃迁而发射上转换荧光。
早在1959年,就已经出现了利用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光的报道。
但由于早期最好的上转换材料的发光效率还不超过1‰,并且由于发光二极管的发射峰与上转换材料的激发峰匹配的不是特别理想,因此并没有达到实用化的水平。
1962年,上转换发光现象又在硒化物中得到了进一步的证实,红外辐射转换成可见光的效率达到了相当高的水平。
1966年,Auzel在研究钨酸镱钠玻璃时意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。
在此后的十几年内,上转换材料就发展成为了一种把红外光转变为可见光的有效材料,并且达到了实用的水平。
例如,上转换材料与发红外光的Si-GaAs发光二极管(LED)配合,能够得到绿光,其效率可以与GaP发光二极管媲美,这可以说是很大的突破。
它还可以用于各类半导体激光器的红外检测、红外发光二极管发射光跟踪、YAG等大型激光器的校对等。
20世纪90年代初,利用上转换材料实现激光输出获得了令人振奋的成果:不仅在低温下(液氮温度),于光纤中实现了激光运转,而且在室温下,在氟化物晶体中也成功地获得了激光运转,光-光转换效率超过了1%,高达1.4%,从而使红外激发上转换材料在显示、光计算和信息处理等领域显示了广泛的实用前景。
稀土材料高效光致发光技术研究稀土材料是指含有稀土元素的材料,是一种重要的功能材料。
其中,稀土离子的发光性质尤为引人注目,一些稀土离子可以较高效率地将电能转化为光能,这种光致发光技术已经广泛应用于发光材料、激光材料、光传感器等领域。
稀土材料的光致发光技术对于新型材料的研究和发展,以及提高各种器件的性能,具有重要的意义。
1. 稀土材料发光原理稀土元素电子最外层的电子结构是f电子不完全填充的稀土离子,在材料中具有良好的光致发光性能。
稀土离子有着由于f电子的电子配置所带来的强烈的电偶极矩和磁偶极矩,这些所谓的“内在性质”使稀土离子在与光子或其他离子相互作用的过程中表现出独特的发光性质。
这种发光过程主要分为两种类型:吸收光激发发光和室温发光。
2. 发光效率的提高稀土材料的光致发光效率受到多种因素的影响,其中最主要是其结构和氧化还原态之间的转换。
一些稀土离子在固态中的发光效率较低,其主要原因是其氧化还原态之间的转换较困难,造成了离子之间的复合,同时也限制了其表面活性,从而影响其发光效率。
因此,研究氧化还原态之间的转换规律对于提高稀土材料的发光效率至关重要。
3. 稀土材料在LED领域的应用LED是一种高效、高亮度的半导体发光体,其广泛应用于照明、显示、通讯等领域。
然而,一些常规的半导体材料不具备足够的亮度和长寿命,因此需要借助功能材料来增强其发光性能。
利用稀土材料作为发光材料,不仅可以增强LED的发光性能,还可以降低其成本和环境污染。
4. 新型稀土材料的研究近年来,随着人们对新型功能材料的需求不断增加,新型稀土材料的研究也逐渐成为了研究热点。
例如,探索稀土材料的储氢性能、电导性能、磁特性等等,都将为材料科学的发展做出重要贡献。
同时,针对稀土材料自身缺陷和应用需求,制备出新型稀土材料,将有利于其广泛应用于更多领域。
总之,稀土材料的高效光致发光技术对于实现新型材料的研究和发展,提高各种器件的性能,以及推动人类社会的进步和发展,具有极为重要的意义。
稀土元素在发光材料中的应用及其发光性能研究1.引言发光材料是一类在外界激发下能够发出可见光的材料,其在照明、显示、激光、生物医学等领域具有广泛的应用。
稀土元素作为一类特殊的元素,在发光材料中扮演着重要的角色。
本文将探讨稀土元素在发光材料中的应用及其发光性能研究。
2.稀土元素在发光材料中的应用稀土元素具有较高的原子序数和复杂的能级结构,使其在发光材料中具有独特的发光性能。
稀土元素常被用于制备荧光粉、磷光体、荧光玻璃等发光材料。
以镝、钬、铒、钆等为代表的稀土元素在不同的发光材料中展现出不同的发光行为,例如镝离子表现出红色荧光、钬离子表现出蓝色荧光等。
通过调控稀土元素的掺杂浓度、晶体结构等因素,可以实现针对性地调节发光颜色和发光强度,满足不同应用领域的需求。
3.稀土元素发光性能研究稀土元素发光性能的研究是深入了解其在发光材料中的作用机制和性能表现的关键。
研究表明,稀土元素的发光性能受多种因素影响,包括晶体结构、掺杂浓度、激发光源等。
例如,通过增加稀土元素的掺杂浓度,可以提高发光材料的发光效率和色纯度;通过选择合适的晶体结构,可以改善发光材料的光学性能;通过设计合适的激发光源,可以实现更高强度的发光效果。
此外,稀土元素的能级结构和跃迁规律也对发光性能起着决定性的作用,深入研究这些规律对于提升发光材料性能具有重要意义。
4.稀土元素的应用案例稀土元素在发光材料中的应用案例丰富多样,涉及照明、显示、激光等多个领域。
以镝为例,其在LED照明中的应用已经成为主流。
镝离子作为红色荧光发射剂,可以实现LED的白光变色效果,提高照明品质;钆和铒等稀土元素在激光器件中的应用也取得了显著的效果,为激光技术的发展提供了关键支持。
随着稀土元素在发光材料中的研究不断深入,其应用领域将进一步拓展,为科技发展和产业升级注入新动力。
5.结论稀土元素在发光材料中的应用及其发光性能研究具有重要意义,对于推动发光材料技术的发展具有深远影响。
稀土发光材料的研究现状与应用稀土元素泛指周期表中镧系元素和铀系元素。
由于其特殊的电子结构和能级分布,稀土元素具有丰富的电子激发态和能级跃迁,这就为稀土发光材料提供了丰富的能量转换机制。
稀土离子的特殊能级结构使其在吸收光子能量后能够产生特定波长的发光。
根据不同的发射能级,稀土发光材料可以发出可见光、近红外光、红外光等不同波长的光。
此外,稀土发光材料还具有高发光效率、良好的光稳定性和长寿命等特点,对于实现高效照明、高亮度显示和高效能量转换等应用具有重要意义。
稀土发光材料的研究主要集中在以下几个方面。
首先,研究人员致力于寻找更高效的稀土发光材料。
例如,通过掺杂其他元素或设计新的晶体结构,可以调节稀土发光体系的能级结构,提高发光效率和发光强度。
其次,研究人员还在尝试制备具有宽带谱发光特性的稀土发光材料,以满足不同应用领域对光谱范围的需求。
例如,近红外光发射材料在生物医学成像、激光雷达等领域有着广阔的应用前景。
此外,稀土离子的发光性能还受到晶体结构、掺杂浓度、官能团的影响,对于这些因素的研究也是当前的热点。
稀土发光材料在实际应用中有着广泛的应用。
首先,稀土发光材料可以应用于照明领域。
以氧化物为基底的稀土发光粉体能够转换蓝光到黄、橙和红光,从而实现白光发射,被广泛应用于LED照明中。
其次,稀土发光材料可以在显示技术中发挥重要作用。
使用稀土发光材料作为背光源,可以实现彩色液晶显示器中的亮度和颜色的调节。
此外,稀土发光材料还可以应用于激光器、太阳能电池、荧光生物探针等领域。
值得注意的是,在稀土发光材料的研究和应用中,有一些挑战需要克服。
首先,稀土元素的资源稀缺,价格较高,因此如何提高稀土利用率,降低生产成本是一个重大问题。
其次,稀土发光材料在发光效率和发光强度等方面仍然有一定的改进空间,需要进一步深入研究和优化设计。
此外,稀土发光材料在光稳定性和长寿命方面也需要进一步提升,以满足实际应用的需求。
综上所述,稀土发光材料在光电子器件、照明、显示、激光器和生物医学等领域具有广泛的应用前景。
磷灰石结构稀土发光材料研究进展马欣旭;周威;王心蕊【摘要】The rare earth luminescent materials with apatite structure were chose as the research object and the development of domestic and foreign apatite materials in recent years were introduced. The advantages of apatite in structure,physical and chemical properties were explained. The different types of apatite were cited. The luminescence characteristics of apatite doped with rare earth ions were analyzed. The commonly used preparation methods and applications were summarized. The deficiency of apatite structure of rare earth luminescent materials was pointed out,and the future development trend and application prospect were discussed.%以磷灰石结构稀土发光材料作为研究对象,介绍了近年来国内外该种材料的研究情况,说明了磷灰石结构稀土发光材料在结构、理化性能上的优势,列举了不同种类的磷灰石基质,分析了磷灰石结构无机盐掺杂不同稀土离子的发光特点,总结了常用的制备方法及应用情况,指出了磷灰石结构稀土发光材料的不足,并对未来发展趋势和应用前景进行了展望.【期刊名称】《广州化工》【年(卷),期】2018(046)005【总页数】4页(P12-14,20)【关键词】磷灰石;合成方法;发光特性【作者】马欣旭;周威;王心蕊【作者单位】北京工商大学理学院化学系,北京 100048;北京工商大学理学院化学系,北京 100048;北京工商大学理学院化学系,北京 100048【正文语种】中文【中图分类】TQ17稀土发光材料由基质和激活剂组成,基质一般为无机盐类,激活剂为稀土元素,有时为了提高发光效率会加入稀土离子作为敏化剂,形成稀土离子间的能量传递。
基于稀土配合物和离子液体的新型稀土发光材料研究进展李焕荣;王天任【摘要】Rare earth organic complexes exhibit excellent luminescent properties. However,the in-herent shortcomings like low stability and poor processability severely limit their practical applica-tions. Ionic liquids (ILs) exhibit good stability and solubility,and the combination of ILs with rare earth organic complexes can overcome the abovementioned shortcomings and can afford the comple-xes more excellent properties as well as enhanced practicability. This paper presents several typical rare earth complexes/ILs luminescent materials as well as the status of ILs in the materials,and the future applications of these materials are also prospected.%稀土有机配合物具有优异的发光性能,但其内在缺陷如较低的稳定性和较差的加工性等则限制了它们的实际应用.离子液体稳定性和溶解性能均较好,将稀土配合物和离子液体结合可以有效地弥补上述不足,同时可以赋予材料更多奇特和优异的性能,从而增强它们的实用性.本文主要介绍了一些典型的含离子液体和稀土配合物的发光材料体系,阐明了离子液体在这些体系中的地位及作用,并对这类材料未来的应用及发展前景作了展望.【期刊名称】《发光学报》【年(卷),期】2018(039)004【总页数】15页(P425-439)【关键词】稀土;离子液体;杂化材料;天线效应;荧光【作者】李焕荣;王天任【作者单位】河北工业大学化工学院,天津 300130;河北工业大学化工学院,天津300130【正文语种】中文【中图分类】O611.41 引言稀土配合物是一类非常重要的光功能材料,它们具有激发态寿命长、发光色纯度高、发光效率高和发射谱线丰富(范围覆盖紫外区至红外区)等优点。
前言当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。
我国丰富的稀土资源,约占世界已探明储量的80%以上。
稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。
稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。
稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。
就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。
由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。
由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。
在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。
稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。
稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。
随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。
进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。
所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。
纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。
纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。
受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从而影响其中掺杂的激活离子的发光和动力学性质,如光吸收、激发态寿命、能量传递和发光量子效应等。
纳米稀土发光材料可以广泛应用于发光、显示、光信息传递、太阳能光电转换、生物标识等领域,是二十一世纪各种平板显示器的信息显示、人类医疗健康、照明光源、离子探测和记录、光电子器件及农业、军事等领域中的支撑材料。
发光材料广泛地应用于人们的生活之中,人们对于发光材料已经有了非常充分的感性认识。
稀土元素在发光材料的研究与实际应用中占有极其重要的地位,由于稀土发光材料具有优异的性能,甚至在某些领域具有不可替代的作用,所以稀土发光材料正逐渐取代部分非稀土发光材料。
稀土发光材料已经成为信息显示和高效照明器具的关键基础材料之一。
第一章稀土发光材料的概述1.1稀土发光材料的基本概念从原子序数57~71 的15 个镧系元素加上钪和钇共17 个稀土元素,无论它们被用作发光材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂的发光材料,一般统称为稀土发光材料或稀土荧光材料。
物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态〔非稳定态)在返回到基态的过程中,以光的形式放出能量。
以稀土化合物为基质和以稀土元素为激活剂的发光材料多属一于后一类,即稀土荧光粉。
稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f 轨道,为多种能级跃迁创造了条件,含稀土的化合物表现出许多独特的化学性质和物理性质,因而在光、电、磁领域得到广泛的应用,被誉为材料的宝库。
发光材料是由作为材料主题化合物和掺入微量的杂质原子即发光中心。
激活剂作为发光中心所处的位置可能有以下几种状态:①激活剂原子或离子处于晶格间隙;②激活剂代替正常格点上的原子;③激活剂处于晶格缺位的旁边;④激活剂处于无的位置。
发光中心在晶体中不是孤立的,它既受着周围离子及其化学键的作用,也对围离子产生影响。
在有些情况下可掺入另一种杂质作为敏化剂或辅助激活剂,辅助激活剂在基质中本身不发光或存在微弱的发光,但可以对激活剂的发光强度特别是余辉寿命产生重要影响。
在20 世纪40 年代以前,人们发现有一类磷光体能在红外光的激励下发射可见光,人们将此定义为上转换发光,但这不是真正意义上的上转换发光,而是红外释光。
早在1959 年,就出现了上转换发光的报道。
用960nm 的红外光激发多晶ZnS ,观察到了525nm 绿色发光。
1962 年,此种现象又在硒化物中得到了进一步的证实,红外辐射转换成可见光的效率达到了相当高的水平。
人们将此定义为上转换发光,但这不是真正意义上的上转换发光,而是红外释光。
早在1959 年,就出现了上转换发光的报道。
用960nm 的红外光激发多晶ZnS ,观察到了525nm 绿色发光。
1962 年,此种现象又在硒化物中得到了进一步的证实,红外辐射转换成可见光的效率达到了相当高的水平。
人们将此定义为上转换发光,但这不是真正意义上的上转换而是红外释光。
国外学者进行三价稀土离子的4f-4f能级跃迁、4f5d能态及电荷转移态的基础研究工作,发现上转换现象,完成三价稀土离子位于5000cm-1以下的4f电子组态能级的能量位置基础工作,所有三价稀土离子的发光和激光均起源于这些能级,这些能级间的跃迁产生从紫外至近红外荧光光谱。
稀土离子的光学光谱学、晶体场理论及能量传递机理等研究日益深入和完善,新的现象和新概念不断被揭示和提出,新材料如雨后春笋不断被发明。
1.2稀土发光材料的发光机理稀土元素的三价态是稀土离子的特征氧化态,除钪、钇、镧外,均有4f电子及4f亚层的7个可填充电子的轨道,4f组态内的跃迁产生荧光光谱。
稀土离子的发光具有许多极其优异的性能,使得稀土元素的发光研究具有重要的理论意义和应用价值。
以无机和有机两大系统来了解发光现象已有100多年的历史,但到目前为止,还没有一个普遍而完整的发光作用机理,对于稀土发光材料的发光机理而言同样如此。
稀土发光材料的发光机理是指稀土固体发光材料受到紫外线、X射线、电子轰击等激发方式的作用时,产生辐射的一种物理过程,即是发光物质去激活的一种方式。
不论采用哪一种形式的发光,都包含了激发、能量传递和发光三个过程。
其中发光过程又把它分为激活剂发光和非辐射回到基态,后一过程常会降低物质的发光效率。
能量传递方式一般可分为两类,即辐射传递过程和无辐射传递过程,辐射传递是一个离子的辐射光被另一个离子再吸收的过程,要求发射的能量谱带和吸收带相重益,在稀土离子间这种方式不是主要的,因为-ff跃迁较弱,无论是发射和吸收都不会很强。
而无辐射传递过程是稀土离子的主要过程。
激发是通过激活剂、敏化剂或基质吸收能量的过程,而发光则是处于高能量的激发态跃迁回到基态,并把吸收的一部分能量以光辐射的形式释放出来的过程。
因此其发光过程可以描述如下:激活剂吸收激发光的能量变为激发态,然后又回到基态并发出光。
1.3稀土发光材料的性能发光材料的发光性能主要包含以下几个方面:(1)激发光谱激发光谱是指在某一发射波长监控下,荧光强度随激发光波长的变化曲线。
它反应了发光材料所吸收的激发光的波长中,哪一谱段波长的光对材料的发光更为有效,即最佳的激发波长。
因为固体发光材料的能隙宽度约为几个电子伏,相当于紫外光区的能量,故对固体发光材料的激发一般选择紫外光区进行激发,用紫外灯即可达到该目的。
激发光谱用平面坐标表示。
横轴代表激发光的波长,纵轴代表发光的强弱,可以用相对强度表示。
物质的激发光谱与吸收光谱形状相似,区别在于吸收光谱测定的是对紫外光的吸收度,而激发光谱则测定发射荧光的强度。
(2)发射光谱发射光谱是指在某一波长紫外光激发下,发射的荧光强度随发射光波长的变化曲线。
用最强发射峰波长监控和最强激发峰波长激发,测得的激发光谱和发射光谱为荧光物质的特征光谱。
发射光谱按发射峰的宽度可以分为以下三种谱:宽带谱(半宽度100nm)、窄带谱(半宽度50nm)和线谱(半宽度0.1nm)。
(3)发光强度由于发光强度是随激发强度而变的,通常用发光效率来表征材料的发光本领。
发光效率有三种表示方法:量子效率、能量效率及光度效率。
量子效率指发光的量子数与激发源输入的量子数的比值;能量效率是指发光的能量与激发源输入的能量的比值;光度效率指发光的光度与激发源输入的能量的比值。
(4)余辉衰减余辉衰减按余辉时间的长短分为荧光和磷光两种。
荧光是指分子吸收了近紫外或可见光后再自发辐射出波长较长的光,激发一停止,发光也就随之停止,一般把余辉持续时间短于10-8s的称为荧光。
荧光是发生在相同的多重度电子态之间的。
(5)荧光淬灭激发态分子失活回到基态可以经过下述过程:辐射跃迁、无辐射跃迁、能量传递、电子转移和化学反应。
辐射跃迁的过程就会产生荧光或磷光。
无辐射跃迁即淬灭发生在不同电子态的等能级的振动-转动能级之间,其发生的几率与两个能级间的能隙成指数关系,还与周围介质的振动频率有关,能隙越大,多声子无辐射跃迁的几率就越小。
淬灭分为内部淬灭和外部淬灭。
内部淬灭为低级电子态的高级振动能级和高级电子态的低级振动能级间的耦合,跃迁过程中分子的电子激发能变为较低级电子态的振动能,大多数物质的内部淬灭过程很快,无荧光发出。
外部淬灭为激发态分子通过碰撞将能量转移给其他分子,直接回到基态。
(6)斯托克位移和反斯托克位移在绝大多数情况下,发光材料的发射谱带总是位于相应激发谱带的长波边。
如:激发光在蓝光区,发射光则在红光区。
把激发峰位和发射峰位的波长差称为斯托克位移。
它表示分子回到基态前,激发态和基质晶体中的周围离子产生能量交换,放出一部分能量,并转移到能量较低的另一激发态,最后从该激发态跃迁返回基态的过程。
因此,发光的光子能量,必然小于激发光子的能量。
1.4 稀土发光材料的研究现状稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。
尤其是独特的4f电子层结构使得稀土离子的4丝且态中共有1639个能级,不同能级之间可发生跃迁数目高达192177个,使得稀土发光材料的吸收、激发和发射光谱展现出范围很宽且内涵丰富的光学光谱和发光特性,从真空紫外延伸到近红外光谱区,构成取之不尽的光学宝库,引起了人们的广泛关注。
因此,在当今发光材料的研究和实际应用中,稀土发光材料占主导和最重要地位,进入新世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步人一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。