统计学--第十二章卡方检验1
- 格式:ppt
- 大小:203.50 KB
- 文档页数:34
本科学生实验报告学号姓名学院生命科学学院专业、班级生物科学15C班实验课程名称生物统计学<实验>指导教师及职称孟丽华开课时间2016 至2017 学年下学期填报时间2017 年 5 月26 日云南师范大学教务处编印的检验,而是对总体分布的假设检验。
适合性检验(吻合度检验):是指对样本的理论数先通过一定的理论分布推算出来,然后用实际观测值与理论数相比较,从而得出实际观测值与理论数之间是否吻合。
因此又叫吻合度检验。
实验流程:(1)听老师讲解理论知识;(2)结合书上习题5.4进行练习,加强对知识的掌握:设置变量输入各组数据进行加权进行适合性检验4、实验方法步骤及注意事项:实验方法步骤:1、打开SPSS页面。
2、设置变量,将变量名分别设置为“类型”和“数量”,将Decimals改为0,在“类型”变量中,点击Values进行赋值,将“钩芒”赋值为1,“长芒”赋值为2,“短芒”赋值为3,设置好变量后,输入各组数据。
3、点击Date——Weight Cases…进行加权,在跳出的Weight Cases框中点二、输入各组数据三、进行加权四、进行适合性检验2、对实验现象、数据及观察结果的分析与讨论:(1)假设H0:大麦F2代芒性状表型的比率符合9:3:4的理论比率;H A:其比率不符合9:3:4的理论比率。
(2)选取显著水平为α=0.05。
(3)计算统计数χ2:采用χ2值计算简式可得χ2=1/n∑O i2/Pi-n=1/(348+115+157)×[3482/(9/16)+1152/(3/16)+1572/(4/16)]-(348+115+157)=0.041或利用SPSS软件进行计算。
(4)查χ2值表,df=2时,χ20.05=5.99,χ2<χ20.05,所以,接受H0,认为大麦F2代芒性状表型比率符合9:3:4的理论比例。
或由SPSS的计算结果可知:Asymp.sig.=0.980,因为0.980>0.05,所以接受H0,认为大麦F2代芒性状表型比率符合9:3:4的理论比例。
463人手术患者,预测并发症人数为169位,实际并发症人数201位,该如何用卡方检验判断有无统计学意义?是配对X2检验吗?该如何将数据列表?如何用Spss得出结果呢?方法一:把数据转化成四格表,然后你就明白了。
然后用卡方检验。
发病不发病实际(fo)201 262 共463人期望(fe) 169 294 共463人X2=4.789由于df=1,查表得,P<0.05显著,说明这个预测是具有统计学意义的。
方法二:用spss做,是列联表分析。
数据录入格式为:建立两个变量,变量1是实际和期望,实际用数据1表示,那期望就用数据2表示;变量2是发病情况,发病用1表示,不发病用2表示,也就是说,你的变量1中应该数据463个1,然后输入463个2,变量2中,先输入201个1,再输入262个2,再输入169个1,再输入294个2,建议你用EXCL来数据方便的多。
直接可以复制。
数据录入完成后,点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。
我算过了,卡方值应该是4.609,df=1,P值=0.032,P<0.05,所以显著。
预测是有统计学意义的。
如果按照你叙述的来看,其实是按照“teng7925 |”这位说的去做,只不过在SPSS输入数据的时候,不需要按照他说的那样,只需要设计三个变量,第一个变量输入:1 1 2 2;第二个变量输入:1 2 1 2;第三个变量输入:201 262 169 294。
输入完,按照他说的步骤,可以得到他说的同样的结果,得到的结果说明预测与实际的发症人数有显著差异。
但是我仔细想了下,你书上说的思路可能不是上面那种想法。
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
卡方检验用途:可以对两个率或构成比以及多个率或构成比间的差异做统计学检验第一节. 四格表资料的χ2检验例8.1 为了解铅中毒病人是否有尿棕色素增加现象,分别对病人组和对照组的尿液作尿棕色素定性检查,结果见表8.1,问铅中毒病人和对照人群的尿棕色素阳性率有无差别?表8.1 两组人群尿棕色素阳性率比较组别阳性数阴性数合计阳性率%病人29(18.74) 7(17.26) 36 80.56对照9(19.26)28(17.74) 37 24.32合计38 35 73 52.05卡方检验的基本思想表1中29、7、9、28是构成四格表资料的四个基本格子的数字,其余行合计和列合计以及总的合计都可以根据该四个数字推算出来,故该类资料被称为四格表资料四格表卡方检验的步骤以例8.1为例1.建立假设:H0:π1 = π2H1:π1≠π2α=0.05四格表的四格子里的数字是实际数,在表1中四个数字旁边括号中的四个数字为理论数,其含义是当无效假设成立的时候,理论上两组人群各有多少阳性和阴性的人数。
若H0:π1=π2成立→p1=p2=p即假设两组间阳性率无差别,阳性率都是等于合计的52.05%,那么铅中毒病人36人,则理论上有36 ╳52.05%=18.74人为阳性;对照组37人,则理论上有37 ╳52.05%=19.26人为阳性。
故每个实际数所对应的理论数算法是,该实际数对应的行和乘列和再除以总的N样本含量。
即TRC=nR nC / n2.计算理论数第1行1列: T11=36×38/73= 18.74依次类推T12 = 17.26T21 = 19.26T22 = 17.74四格表中理论数的两大特征:(1)理论频数表的构成相同,即不但各行构成比相同,而且各列构成比也相同;(2)各个基本格子实际数与理论数的差别(绝对值)相同。
一、卡方检验基本公式A: 实际数 T: 理论数卡方检验的基本思想是看理论数与实际数的吻合程度上述公式中卡方统计量的大小取决于实际数和理论数的相差大小情况,如果无效假设成立的话,那么实际数和理论数不应该相差过大,所以卡方统计量应该较小,而如果卡方统计量越大,则越有可能推翻无效假设而得出有统计差异的结论。
40. 什么是统计学中的卡方检验?40、什么是统计学中的卡方检验?在统计学这个广袤的领域中,卡方检验是一种非常重要且常用的方法。
那么,究竟什么是卡方检验呢?卡方检验,简单来说,就是一种用于比较观察值和期望值之间差异的统计方法。
它通过计算一个叫做卡方值的统计量,来判断两个或多个变量之间是否存在显著的关联。
为了更清楚地理解卡方检验,让我们先从一个简单的例子说起。
假设我们想研究吸烟是否与患肺癌有关系。
我们可以收集一组人群的数据,其中一部分人吸烟,另一部分人不吸烟,然后观察他们中患肺癌和未患肺癌的人数。
在这个例子中,我们可以先根据一些已知的信息或者假设,计算出在没有任何关联的情况下,吸烟和不吸烟人群中患肺癌和未患肺癌的理论人数,也就是期望值。
然后,将实际观察到的人数与这些期望值进行比较。
卡方检验的核心思想就是,如果观察值与期望值之间的差异非常小,那么我们就可以认为吸烟与患肺癌之间可能没有关联;但如果差异很大,那就说明两者之间很可能存在关联。
那么,卡方值是怎么计算出来的呢?其实就是将每个类别中的观察值与期望值相减,然后平方,再除以期望值,最后把所有类别的结果相加。
卡方检验有不同的类型,其中最常见的是拟合优度检验和独立性检验。
拟合优度检验主要用于检验一组观察数据是否符合某种理论分布,比如正态分布、泊松分布等。
比如说,我们想知道某个城市中家庭人口数量的分布是否符合某种预期的模式,就可以使用拟合优度检验。
独立性检验则用于判断两个分类变量之间是否相互独立。
就像前面提到的吸烟与患肺癌的例子,吸烟与否和是否患肺癌就是两个分类变量。
在实际应用中,卡方检验有着广泛的用途。
比如在医学研究中,它可以帮助研究人员判断某种治疗方法是否有效;在市场调查中,可以了解消费者的不同特征与购买行为之间的关系;在社会学研究中,能够探究不同社会因素之间的相互影响。
不过,使用卡方检验也有一些需要注意的地方。
首先,样本量不能太小,否则卡方检验的结果可能不准确。