氨基酸的代谢
- 格式:docx
- 大小:401.31 KB
- 文档页数:9
生物化学中的氨基酸代谢是什么在生物化学的广袤领域中,氨基酸代谢是一个至关重要的环节。
它就像是一座精巧复杂的工厂,各种化学反应有条不紊地进行着,将氨基酸这一基本的“原材料”转化为生命活动所需的能量、物质和信息。
那么,究竟什么是氨基酸代谢呢?让我们一起揭开它神秘的面纱。
首先,我们要明白氨基酸在生命中的重要地位。
氨基酸是构成蛋白质的基本单位,而蛋白质是生命活动的执行者。
从肌肉的收缩到酶的催化作用,从抗体的免疫防御到激素的信号传递,几乎所有的生命过程都离不开蛋白质的参与。
因此,氨基酸的代谢对于维持生命的正常运转具有不可替代的作用。
氨基酸代谢主要包括两个方面:氨基酸的合成与分解。
氨基酸的合成是一个复杂而精妙的过程。
在生物体内,有一些氨基酸可以通过从头合成途径产生。
比如说,人体可以利用简单的前体物质,如二氧化碳、氨、丙酮酸等,经过一系列的酶促反应,合成非必需氨基酸。
这些非必需氨基酸是指人体自身能够合成,不一定需要从食物中摄取的氨基酸。
然而,还有一些氨基酸,被称为必需氨基酸,人体无法自行合成,必须从食物中获取。
这些必需氨基酸包括赖氨酸、色氨酸、苯丙氨酸、甲硫氨酸、苏氨酸、异亮氨酸、亮氨酸和缬氨酸。
与合成相对应的是氨基酸的分解。
当蛋白质被分解或者细胞需要能量时,氨基酸就会被分解代谢。
这个过程通常始于脱氨基作用。
简单来说,就是将氨基酸分子中的氨基脱去,生成相应的α酮酸和氨。
脱氨基的方式有多种,其中转氨基作用是比较常见的一种。
在转氨基作用中,一个氨基酸的氨基转移到一个α酮酸上,生成新的氨基酸和新的α酮酸。
另一种重要的脱氨基方式是联合脱氨基作用,它是转氨基作用和氧化脱氨基作用的联合,能够更有效地脱去氨基。
脱氨基产生的氨是一种有毒物质,需要及时处理。
在肝脏中,氨可以通过鸟氨酸循环转化为尿素,然后通过尿液排出体外。
这个过程对于维持体内氨的平衡和防止氨中毒至关重要。
氨基酸分解产生的α酮酸则有多种去向。
一方面,它们可以通过三羧酸循环彻底氧化分解,产生能量。
氨基酸代谢的三种方式
氨基酸的代谢主要有三种方式,分别是脱氨反应、反应价和酶促反应。
这几种氨基酸的代谢方式在生物体内起着至关重要的作用。
首先是脱氨反应。
氨基酸在体内以脱氨的方式释放能量,生成酮体。
这一过程会产生大量的氨气,从而导致酸碱失衡。
因此,生物体需要通过尿素循环将多余
的氨排出体外,维持体内的酸碱平衡。
其次是反应价。
反应价主要是通过氨基酸的羟基反应,来调节氨基酸的浓度。
当氨基酸的浓度过高时,生物体可以通过增加羟基反应的速度,来降低氨基酸的浓度。
反之,当氨基酸的浓度过低时,生物体可以通过减少羟基反应的速度,来提高氨基酸的浓度。
最后是酶促反应。
氨基酸在体内的代谢过程中,绝大部分是通过酶的催化来进行的。
氨基酸可以通过酶的催化,进行氧化脱羧、脱氨、转氨和分子重排等反应,从而实现其在体内的代谢。
综上所述,氨基酸的代谢主要有脱氨反应、反应价和酶促反应三种方式。
这三种方式在生物体内协同作用,维持着氨基酸的正常代谢,并使其发挥出应有的生
理功能。
氨基酸代谢途径是指生物体细胞中氨基酸的合成、分解及转换的系统过程,是生物体细胞代谢的一个重要组成部分。
氨基酸是构成蛋白质的重要成分,也是许多糖类、核酸及其他物质的重要原料。
氨基酸代谢途径可以分为三大类:合成途径,分解途径和转换途径。
合成途径是指生物体合成氨基酸的过程,它又可以分为两类:细胞内合成和细胞外合成。
细胞内合成途径由多种酶及细胞内调节因子参与,它们可以将非氨基酸类物质转化为
氨基酸,产生特定的氨基酸。
细胞外合成途径则是指使用外源的氨基酸来进行合成,如摄
入的食物中的氨基酸等。
分解途径是指氨基酸的分解过程,它可以将氨基酸分解为多种产物,如氨基酸的分解
可以产生二氧化碳、水等产物,而氨基酸的分解可以产生细胞内其他物质,如氨基酸的分
解可以产生糖、脂肪、核酸等物质。
转换途径是指氨基酸之间的相互转换过程,它可以将一种氨基酸转换为另一种氨基酸,它可以改变氨基酸的结构,使它们可以参与其他的生物反应,从而促进各种生物体的生理
活动。
总的来说,氨基酸代谢途径是一个复杂的系统,它可以帮助我们了解氨基酸的合成、
分解及转换过程,从而更加深入地了解生物体的代谢过程。
第十二章 氨基酸代谢第一节 体内氨基酸的来源一、 外源氨基酸(一)蛋白质在胃和肠道被消化被成氨基酸和寡肽1.场所一:胃酶类:胃蛋白酶原、胃酸、胃蛋白酶消化程度:多肽及少量氨基酸2.场所二:小肠酶类:肠激酶、胰液蛋白酶(原)、内/外肽酶 消化程度:氨基酸和小肽——小肠是蛋白质消化的主要部位3.场所三:小肠粘膜细胞内酶类:寡肽酶(例如氨基肽酶及二肽酶等) 消化程度:最终产生氨基酸。
(二)氨基酸的吸收是一个主动转运过程吸收部位:主要在小肠粘膜细胞 吸收形式:氨基酸、寡肽、二肽 吸收机制:耗能的主动吸收过程1.方式一:载体蛋白与氨基酸、Na+组成三联体,由ATP 供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。
2.方式二:γ-谷氨酰基循环(三)未被吸收的蛋白质在肠道细菌作用下发生腐败作用腐败作用的产物大多有害,如胺、氨、苯酚、吲哚、硫化氢等;也可产生少量的脂肪酸及维生素等可被机体利用的物质,对机体有一定的营养作用。
组胺和尸胺:降血压;酪胺:升血压;酪胺和苯乙胺:假神经递质(肝性脑病)二、 内源氨基酸(一)蛋白质的降解及其半寿期1.半寿期:蛋白质降低其原浓度一半所需要的时间,用t1/2表示。
2. PEST 序列:脯-谷-丝-苏,快速降解标志序列。
(二)真核细胞内有两条主要的蛋白质的降解途径胃蛋白胃蛋白酶 + 多肽碎片胃酸、胃蛋白酶 (十二指肠分泌,胆汁激活)1.外在和长寿蛋白质在溶酶体通过ATP-非依赖途径降解 (1)不依赖ATP (2)利用溶酶体中的组织蛋白酶降解外源性蛋白、膜蛋白和长寿命的细胞内蛋白2.异常和短寿蛋白质在蛋白酶体通过需要ATP 的泛素途径降解 (1)依赖ATP (2)泛素共价地结合于底物蛋白质,蛋白酶体特异性地识别被泛素标记的蛋白质并将其迅速降解,泛素的这种标记作用是非底物特异性的,称为泛素化。
(3)降解异常蛋白和短寿命蛋白 3*.P53蛋白:细胞内的分子警察由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动。
一、氨基酸代谢的概况∙重点、难点∙第一节蛋白质的营养作用∙第二节蛋白质的消化,吸取∙第三节氨基酸的一般代谢∙第四节个别氨基酸代谢食物蛋白质经过消化吸收后进人体内的氨基酸称为外源性氨基酸。
机体各组织的蛋白质分解生成的及机体合成的氨基酸称为内源性氨基酸。
在血液和组织中分布的氨基酸称为氨基酸代谢库(aminoacidmetabolic pool)。
各组织中氨基酸的分布不均匀。
氨基酸的主要功能是合成蛋白质,也参与合成多肽及其它含氮的生理活性物质。
除维生素外,体内的各种含氮物质几乎都可由氨基酸转变而来。
氨基酸在体内代谢的基本情况概括如图。
大部分氨基酸的分解代谢在肝脏进行,氨的解毒过程也主要在肝脏进行。
图8-2 氨基酸代谢库二、氨基酸的脱氨基作用脱氨基作用是指氨基酸在酶的催化下脱去氨基生成α—酮酸的过程,是体内氨基酸分解代谢的主要途径。
脱氨基作用主要有氧化脱氨基、转氨基、联合脱氨基、嘌呤核苷酸循环和非氧化脱氨基作用。
(一)氧化脱氨基作用氧化脱氨基作用是指在酶的催化下氨基酸在氧化的同时脱去氨基的过程。
组织中有几种催化氨基酸氧化脱氨的酶,其中以L-谷氨酸脱氢酶最重要。
L-氨基酸氧化酶与D-氨基酸氧化酶虽能催化氨基酸氧化脱氨,但对人体内氨基酸脱氨的意义不大。
1.L-谷氨酸氧化脱氨基作用由 L谷氨酸脱氢酶(L-glutamatedehydrogenase)催化谷氨酸氧化脱氨。
谷氨酸脱氢使辅酶NAD+还原为NADH+H+并生成α-酮戊二酸和氨。
谷氨酸脱氢酶的辅酶为NAD+。
谷氨酸脱氢酶广泛分布于肝、肾、脑等多种细胞中。
此酶活性高、特异性强,是一种不需氧的脱氢酶。
谷氨酸脱氢酶催化的反应是可逆的。
其逆反应为α-酮戊二酸的还原氨基化,在体内营养非必需氨基酸合成过程中起着十分重要的作用。
(二)转氨基作用转氨基作用:在转氨酶(transaminase ansaminase)的催化下,某一氨基酸的a-氨基转移到另一种a-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。
一、一般代谢( 一) 氨基酸的代谢经肠道吸收的氨基酸在体内可用于蛋白质的合成,包括体蛋白和产品蛋白分解供能或转化为其它物质。
在氨基酸的代谢中主要有转氨基、脱氨基及脱羧基反应。
参与转氨基反应的酶主要有谷氨酸转氨酶、α - 酮戊二酸转氨酶、谷氨酸丙酮酸转氨酶(GDT) 和谷氨酸草酰乙酸转氨酶(GOT) ;参与脱氨基反应的主要是L- 谷氨酸脱氢酶;氨基酸脱羧酶也有多种,且大多数氨基酸脱羧酶的辅酶是磷酸吡哆醛。
通过上述代谢反应使氨基酸转变成酮酸、氨、胺化物和非必需氨基酸。
酮酸可用于合成葡萄糖和脂肪,也可进入三羧酸循环氧化供能。
氨可在肝脏中形成尿素或尿酸。
胺则可用于核蛋白体、激素及辅酶的合成。
肠道吸收的氨基酸,有一半左右是机体进入肠道的内源物含氮物质的消化产物。
吸收的氨基酸、体蛋白质降解和体内合成的氨基酸均可用于蛋白质的合成。
图1 是体内氨基酸代谢的示意图。
体内的氨基酸库汇合了来自各方面的氨基酸,氨基酸不断地进入也不断输出。
消化道―→氨基酸库←→体蛋白的合成和分解―→特殊化合物的合成(嘌呤、卟啉、激素等)―→产品物质合成(奶、蛋、毛)←→氨基酸的分解和合成(转化为碳水化合物和脂类物质,进入尿素循环)图1 机体氨基酸的代谢( 二) 蛋白质的合成蛋白质的合成是一系列十分复杂的过程,几乎涉及细胞内所有种类的RNA 和几十种蛋白因子。
蛋白质合成的场所在核糖体内,合成的基本原料为氨基酸,合成反应所需的能量由A TP 和GTP 提供。
蛋白质的生物合成可以如下描述: 以携带细胞核内DNA 遗传信息的mRNA 为模板,以tRNA 为运载工具,在核糖体内,按mRNA 特定的核苷酸序列( 遗传密码) 将各种氨基酸连接形成多肽链的过程。
肽链的形成包括活化、起始、延长和终止几个阶段。
新合成的多肽链多数没有生物活性,需经一定的加工修饰,才能成为各种各样有生物活性的蛋白质分子。
体内蛋白质的合成受多种因素调控。
各组织蛋白质的氨基酸比例不同,既是这种调控的结果,也是生物进化过程中各组织、器官分工合作的体现。
小节练习第三节氨基酸的一般代谢2015-07-07 71802 0一、体内蛋白质分解生成氨基酸体内的蛋白质处于不断合成与降解的动态平衡。
成人体内的蛋白质每天约有1%~2%被降解,其中主要是骨骼肌中的蛋白质。
蛋白质降解所产生的氨基酸,大约70%~80%又被重新利用合成新的蛋白质。
(一)蛋白质以不同的速率进行降解不同的蛋白质降解速率不同。
蛋白质的降解速率随生理需要而变化,若以高的平均速率降解,标志此组织正在进行主要结构的重建,例如妊娠中的子宫组织或严重饥饿造成的骨骼肌蛋白质的降解。
蛋白质降解的速率用半寿期(half-life,t1/2)表示,半寿期是指将其浓度减少到开始值的50%所需要的时间。
肝中蛋白质的t1/2短的低于30分钟,长的超过150小时,但肝中大部分蛋白质的t1/2为1~8天。
人血浆蛋白质的t1/2约为10天,结缔组织中一些蛋白质的t1/2可达180 天以上,眼晶体蛋白质的t1/2更长。
体内许多关键酶的t1/2都很短,例如胆固醇合成的关键酶HMG-CoA还原酶的t1/2为0.5~2小时。
为了满足生理需要,关键酶的降解既可加速亦可滞后,从而改变酶的含量,进一步改变代谢产物的流量和浓度。
(二)真核细胞内蛋白质的降解有两条重要途径细胞内蛋白质的降解也是通过一系列蛋白酶和肽酶完成的。
蛋白质被蛋白酶水解成肽,然后肽被肽酶降解成游离氨基酸。
1.蛋白质在溶酶体通过ATP非依赖途径被降解溶酶体的主要功能是消化作用,是细胞内的消化器官。
溶酶体含有多种蛋白酶,称为组织蛋白酶(cathepsin)。
这些蛋白酶对所降解的蛋白质选择性较差,主要降解细胞外来的蛋白质、膜蛋白和胞内长寿蛋白质。
蛋白质通过此途径降解,不需要消耗ATP。
2.蛋白质在蛋白酶体通过ATP依赖途径被降解蛋白质通过此途径降解需泛素的参与。
泛素是一种由76个氨基酸组成的小分子蛋白质,因其广泛存在于真核细胞而得名。
泛素介导的蛋白质降解过程是一个复杂的过程。
氨基酸分解的共同代谢途径氨基酸是构成蛋白质的基本组成单元,它们在体内通过代谢途径被分解为能量、葡萄糖和其他代谢产物。
氨基酸的分解主要发生在肝脏和肌肉组织中。
以下是氨基酸分解的共同代谢途径:1. 转氨基酸代谢(Transamination):这是氨基酸分解的初始步骤之一,通过此过程,氨基酸的α-氨基基团被转移至α-酮酸上,形成新的氨基酸和酮酸。
转氨基酶是催化这一过程的酶。
最常见的转氨基酸是谷氨酸,它接受多种氨基酸的氨基基团。
2. 脱羧反应(Decarboxylation):氨基酸的α-酮酸部分接受氨基基团后,可能进一步发生脱羧反应。
这个过程涉及酶的催化,导致α-酮酸失去一个羧基,产生相应的酮。
这一步骤通常伴随着能量的产生。
3. 尿素循环(Urea Cycle):在氨基酸分解的过程中,产生的氨基基团会形成尿素,通过尿素循环排出体外。
尿素循环主要发生在肝脏中,其中包括多个酶催化的反应,将氨基基团与二氧化碳结合形成尿素。
4. 丙酮酸和乙酰辅酶A的产生:某些氨基酸经过转氨基酸代谢和脱羧反应后,形成丙酮酸和乙酰辅酶A。
这些代谢产物进一步进入三羧酸循环(TCA循环)产生能量,或者用于脂肪酸合成。
5. 胱氨酸代谢:胱氨酸是一种含有硫的氨基酸,它在体内参与许多重要的代谢途径。
在氨基酸分解中,胱氨酸可以被降解为丙酮酸和一种含有硫的代谢产物——丙硫醇。
6. 酮体生成:某些氨基酸在分解过程中产生的丙酮酸和乙酰辅酶A可以进一步生成酮体,如β-羟基丁酸、乙酰丙酮等。
酮体是一种可以用于供能的代谢产物,尤其在餐后或低碳水化合物饮食时,它们可以成为脑和其他组织的能量来源。
7. 葡萄糖生成:在氨基酸分解的过程中,一部分代谢产物如丙酮酸、乙酰辅酶A等可以通过葡萄糖新生途径转化为葡萄糖。
这对于在低血糖状态下提供能量至关重要。
这些代谢途径共同构成了氨基酸在体内的分解过程,为维持生命活动提供了重要的能量和代谢产物。
这些产物不仅能够满足细胞的能量需求,还可以参与脂质合成、糖新生等重要的生物学过程。
一、氨基酸代谢的概况∙重点、难点∙第一节蛋白质的营养作用∙第二节蛋白质的消化,吸取∙第三节氨基酸的一般代谢∙第四节个别氨基酸代谢食物蛋白质经过消化吸收后进人体内的氨基酸称为外源性氨基酸。
机体各组织的蛋白质分解生成的及机体合成的氨基酸称为内源性氨基酸。
在血液和组织中分布的氨基酸称为氨基酸代谢库(aminoacidmetabolic pool)。
各组织中氨基酸的分布不均匀。
氨基酸的主要功能是合成蛋白质,也参与合成多肽及其它含氮的生理活性物质。
除维生素外,体内的各种含氮物质几乎都可由氨基酸转变而来。
氨基酸在体内代谢的基本情况概括如图。
大部分氨基酸的分解代谢在肝脏进行,氨的解毒过程也主要在肝脏进行。
图8-2 氨基酸代谢库二、氨基酸的脱氨基作用脱氨基作用是指氨基酸在酶的催化下脱去氨基生成α—酮酸的过程,是体内氨基酸分解代谢的主要途径。
脱氨基作用主要有氧化脱氨基、转氨基、联合脱氨基、嘌呤核苷酸循环和非氧化脱氨基作用。
(一)氧化脱氨基作用氧化脱氨基作用是指在酶的催化下氨基酸在氧化的同时脱去氨基的过程。
组织中有几种催化氨基酸氧化脱氨的酶,其中以L-谷氨酸脱氢酶最重要。
L-氨基酸氧化酶与D-氨基酸氧化酶虽能催化氨基酸氧化脱氨,但对人体内氨基酸脱氨的意义不大。
1.L-谷氨酸氧化脱氨基作用由 L谷氨酸脱氢酶(L-glutamatedehydrogenase)催化谷氨酸氧化脱氨。
谷氨酸脱氢使辅酶NAD+还原为NADH+H+并生成α-酮戊二酸和氨。
谷氨酸脱氢酶的辅酶为NAD+。
谷氨酸脱氢酶广泛分布于肝、肾、脑等多种细胞中。
此酶活性高、特异性强,是一种不需氧的脱氢酶。
谷氨酸脱氢酶催化的反应是可逆的。
其逆反应为α-酮戊二酸的还原氨基化,在体内营养非必需氨基酸合成过程中起着十分重要的作用。
(二)转氨基作用转氨基作用:在转氨酶(transaminase ansaminase)的催化下,某一氨基酸的a-氨基转移到另一种a-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成a-酮酸。
转氨酶催化的反应是可逆的。
因此,转氨基作用既属于氨基酸的分解过程,也可用于合成体内某些营养非必需氨基酸。
图8-4 转氨基作用除赖氨酸、脯氨酸和羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。
人体内有多种转氨酶分别催化特异氨基酸的转氨基反应,它们的活性高低不一。
其中以谷丙转氨酶(glutamicpyruvic transaminase,GPT,又称ALT)和谷草转氨酶(glutamic oxaloacetictransaminase,GOT,又称AST)最为重要。
它们催化下述反应。
转氨酶的分布很广,不同的组织器官中转氨酶活性高低不同,如心肌GOT最丰富,肝中则GPT最丰富。
转氨酶为细胞内酶,血清中转氨酶活性极低。
当病理改变引起细胞膜通透性增高、组织坏死或细胞破裂时,转氨酶大量释放,血清转氨酶活性明显增高。
如急性肝炎病人血清GPT活性明显升高,心肌梗死病人血清GOT活性明显升高。
这可用于相关疾病的临床诊断,也可作为观察疗效和预后的指标。
各种转氨酶的辅酶均为含维生素B6的磷酸吡哆醛或磷酸吡哆胺。
它们在转氨基反应中起着氨基载体的作用。
在转氨酶的催化下,α—氨基酸的氨基转移到磷酸吡哆醛分子上,生成磷酸吡哆胺和相应的α—酮酸;而磷酸吡哆胺又可将其氨基转移到另一α—酮酸分子上,生成磷酸吡哆醛和相应的α—氨基酸(图8—6),可使转氨基反应可逆进行。
图8-5 谷丙转氨酶和谷草转氨酶转氨基作用图8-6 磷酸吡哆醛传递氨基的作用(三)联合脱氨基作用转氨基作用与氧化脱氨基作用联合进行,从而使氨基酸脱去氨基并氧化为α-酮酸(α-ketoacid)的过程,称为联合脱氨基作用。
联合脱氨基作用可在大多数组织细胞中进行,是体内主要的脱氨基的方式。
图8-7 联合脱氨基的作用(四)嘌呤核苷酸循环由于骨骼肌和心肌L谷氨酸脱氢酶活性较低,氨基酸不易借上述联合脱氨基作用方式脱氨基,但可通过转氨基反应与嘌呤核苷酸循环(purine nucleotide cycle)的联合脱去氨基。
在肌肉等组织中,氨基酸通过转氨基作用将其氨基转移到草酰乙酸上形成天冬氨酸,天冬氨酸可与次黄嘌呤核苷酸(1MP)作用,生成腺苷酸代琥珀酸,后者经酶催化裂解生成腺嘌呤核苷酸(AMP)并生成延胡索酸。
肌组织中富含的腺苷酸脱氢酶可催化AMP脱下来自氨基酸的氨基,生成的IMP及延胡索酸可再参加循环。
由此可见,此过程实际上也是另一种形式的联合脱氨基作用。
图8-8 嘌呤核苷酸循环(五)非氧化脱氨基作用个别氨基酸还可以通过特异脱氨基作用脱去氨基。
如丝氨酸可在丝氨酸脱水酶的催化下脱水生成氨和丙酮酸,天冬氨酸酶催化天冬氨酸直接脱氨。
三、氨的代谢体内氨主要自氨基酸代谢产生,氨是毒性物质,血氨增多对脑神经组织损害最明显。
虽然氨在人体内不断产生,但肝脏有强大能力将氨转变为无毒的尿素,维持人血中氨在极低浓度((一)氨的来源和去路1.来源人体内氨的主要来源有:组织中氨基酸的脱氨基作用、肾脏来源的氨和肠道来源的氨。
图8-9 血氨的来源和去路(1)氨基酸可经脱氨基反应生成氨是体内氨的主要来源。
此外,体内一些胺类物质也可分解释放出氨。
(2)肾脏来源的氨主要来自谷氨酰胺分解。
血液中的谷氨酰胺流经肾脏时,在肾远曲小管上皮细胞中经谷氨酰胺酶催化分解为谷氨酸和氨,其它氨基酸在肾脏分解过程中也产生氨。
(3)肠道来源的氨一小部分来自蛋白质腐败作用,另一部分来自肠道菌脲酶对肠道尿素的分解。
肠道产氨量大,每天可产生4g 氨,并能被吸收入血。
因NH3比NH+’更容易透进细胞而吸收,当肠道内pH值低于6时,肠道内氨偏向于生成NH+,利于排出体外;肠道pH值较高时,肠道内的氨吸收增多。
临床护理中给高血氨患者作灌肠治疗时,应禁忌使用碱性溶液如肥皂水灌肠,以免加重氨的吸收。
为减少肾中NH3的吸收,也不能使用碱性利尿药。
2.去路(1)肝脏合成尿素。
(2)氨与谷氨酸合成谷氨酰胺。
(3)氨的再利用:参与合成非必需氨基酸或其它含氮化合物(如嘧啶碱)。
(4)肾排氨:中和酸以铵盐形式排出。
(二)氨的转运组织在代谢过程中产生的氨必需经过转运才能到达肝脏或肾脏。
机体将有毒的氨转变为无毒的化合物,在血中安全转运。
氨在体内的运输主要有丙氨酸和谷氨酰胺两种形式。
1.丙氨酸—葡萄糖循环肌肉蛋白质分解的氨基酸占机体氨基酸代谢库一半以上,肌肉中的氨基酸将氨基转给丙酮酸生成丙氨酸,后者经血液循环转运至肝脏再脱氨基,生成的丙酮酸经糖异生合成葡萄糖后再经血液循环转运至肌肉重新分解产生丙酮酸,通过这一循环反应过程即可将肌肉中氨基酸的氨基转移到肝脏进行处理。
这一循环反应过程就称为丙氨酸-葡萄糖循环。
肌肉中的氨以无毒的丙氨酸形式运输到肝肝脏为肌肉提供了葡萄糖。
图8-10 丙氨酸-葡萄糖循环2.谷氨酰胺的合成与运氨作用谷氨酰胺的合成由谷氨酰胺合成酶(glutamine synthetase)催化,其合成需消耗ATP。
谷氨酰胺的合成与分解是由不同酶催化的不可逆反应。
图8-11 谷氨酰胺的合成与运氨作用主要从脑、肌肉等组织向肝、肾运氨,是脑中解氨毒的一种重要方式,是氨的运输形式,也是氨的贮存、利用形式。
临床上对氨中毒患者可服用或输入谷氨酸盐,以降低血氨的浓度。
谷氨酰胺在肾脏分解生成谷氨酸和氨,氨与原尿H’结合形成铵盐随尿排出有利于调节酸碱平衡。
体内存在L—天冬酰胺酶将天冬酰胺水解为天冬氨酸和氨,由于某些肿瘤生长需要大量获得谷氨酰胺及天冬酰胺,谷氨酰胺酶和天冬酰胺酶可作为抑肿瘤成分。
如临床上常用天冬酰胺酶以减少血中天冬酰胺浓度,达到治疗白血病的目的。
(三)鸟氨酸循环与尿素的合成体内氨的主要代谢去路是用于合成无毒的尿素。
合成尿素的主要器官是肝脏,但在肾及脑中也可少量合成。
尿素合成是经称为鸟氨酸循环的反应过程来完成的。
催化这些反应的酶存在于胞液和线粒体中。
尿素的生成分为三个阶段,首先是鸟氨酸与C02和氨结合生成瓜氨酸,然后瓜氨酸再与氨结合生成精氨酸,最后在精氨酸酶的作用下,精氨酸水解生成尿素和鸟氨酸。
鸟氨酸再重复上述循环过程。
每经过一次循环,一分子C02和两分子氨合成一分子尿素。
1.尿素生成的体合成过程如下:(1)氨基甲酰磷酸的合成氨基甲酰磷酸合成酶I(carbamoyl phosphate synthetaseI,CPS—1)催化氨和C02在肝脏线粒体中合成氨基甲酰磷酸。
此为一耗能反应,需2分子ATP和Mg2+参与,N—乙酰谷氨酸(N—acetyl glutamatic acid,AGA)为CPS—工必需的变构激活剂。
生成的含高能键的氨基甲酰磷酸有很强的反应活性。
肝细胞中存在两种氨基甲酰磷酸合成酶,上述的CPS—工存在于肝细胞线粒体中,以NH3为氮源,产物用于合成尿素。
而另一种CPS—Ⅱ存在于肝细胞胞液中,以谷氨酰胺为氮源,生成的氨基甲酰磷酸是嘧啶合成的前体。
(2)瓜氨酸的合成线粒体中的鸟氨酸氨基甲酰转移酶(ornithine carbamoyl transferase,OCT)催化氨基甲酰磷酸与鸟氨酸缩合生成瓜氨酸。
借助线粒体内膜上的特异载体,鸟氨酸不断由胞液转进线粒体,而生成的瓜氨酸由线粒体转入胞液。
(3)精氨酸的合成瓜氨酸进入细胞浆,由精氨酸代琥珀酸合成酶(argininosucclnatesynthetase),催化瓜氨酸与天冬氨酸缩合,为尿素合成提供第二个氨基。
反应需要ATP和Mg2’,生成产物精氨酸代琥珀酸。
后者经过精氨酸代琥珀酸裂解酶(argininosucclnate, lyase)作用裂解生成精氨酸和延胡索酸。
反应中生成的延胡索酸在胞液中类似三羧酸循环相似反应,先生成苹果酸再脱氢生成草酰乙酸,后者再经转氨基作用接受多种其他氨基酸的氨基生成天冬氨酸,天冬氨酸作为氨基载体又可参与精氨酸生成反应。
(4)精氨酸水解及尿素的生成肝细胞中的精氨酸酶催化精氨酸水解生成尿素和鸟氨酸。
尿素合成的全过程可用图8—12表示。
图8-12 尿素合成的过程2.尿素合成的特点(1)合成主要在肝脏的线粒体和胞液中进行;(2)合成一分子尿素需消耗四分子ATP;(3)精氨酸代琥珀酸合成酶是尿素合成的关键酶;(4)尿素分子中的两个氮原子,一个来源于NH3,一个来源于天冬氨酸。
解除氨毒的主要方式是在肝脏中经鸟氨酸循环合成尿素。
肝功能严重损害时,尿素合成障碍,氨在血中积聚导致水平增高。
增高的血氨进入脑将引起脑细胞损害和功能障碍,临床上称为肝性脑病或肝昏迷。
这可能由于脑主要利用谷氨酸合成谷氨酰胺来消除增高的氨,并消耗大量。
—酮戊二酸氨基化以补充谷氨酸,使三羧酸循环因中间产物α—酮戊二酸的减少而减弱,脑组织缺乏ATP供能而发生功能障碍。
肝中尿素合成途径的5个酶中任何一种有遗传性缺陷,也会导致先天性尿素合成障碍及高血氨。