九年级数学22一元二次方程
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
《22配方法公式法解一元二次方程》教案姓名年级性别教材第课教学课题教学目标1、利用配方法解数字系数的一般一元二次方程。
2、进一步理解配方法的解题思路。
课前检查作业完成情况:优□良□中□差□建议__________________________________________过程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:用配方法解一元二次方程ax²+bx+c=0(a≠0)的一般步骤:(1)移项:将常数项移到方程右边;(2)把二次项系数化为1:方程左右两边同时除以二次项系数(3)配方:方程左右两边同时加上一次项系数一半的平方,把原方程化为2()x m n+=的形式即将2x mx±的式子加上2()2m,可得到完全平方式⇒222()()22m mx mx x±+=±(4)当0n≥时,用直接开方法解变形后方程三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【例题剖析】【衔接训练】1、一元二次方程230x -=的解是 ( )A 、3x =B 、3x =-C 、123,3x x ==-D 、123,3x x ==- 2、一元二次方程21090x x ++=可变形为 ( )A 、2(5)16x +=B 、2(5)34x +=C 、2(5)16x -=D 、2(5)25x +=5、用配方法解下列方程时,配方有错误的是 ( )A 、22430(2)7x x x --=-=化为 B 、227252730()416x x x -+=-=化为 C 、22525490()33636x x x --=-=化为 D 、22517215()416y y y +=+=化为 6、将二次三项式241x x -+配方后得 ( )A 、2(2)3x -+B 、2(2)3x --C 、2(2)3x ++D 、2(2)3x +-7、(1)226___(__)x x x ++=+; (2)224___(__)3x x x -+=-; (3)228___(__)x x x ++=+ (4)2214___(__)x x x -+=-(5)227___(__)x x x ++=+ (6)223___(__)5x x x -+=- (7)22___(__)x px x ++=+; (8)22___(__)b x x x a++=+;(9)222()___(__)x m n x x -++=- (10)22___(__)x ax x -+=- 8、用配方法解一元二次方程225033x x +-=时,此方程可变形为_____________,解得:12____,____x x == 9、解下列方程:(1)x 2=2 (2)4x 2-1=0 (3)(x +1)2= 2(4)22350x x --= (5) 22410x x --=(6)23(1)50x x +-= (7)(1)(2)12t t --=10、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长。
22.1 一元二次方程
教学目标:
知识与技能:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(≠0),能分清一元二次方程的二次项及系数、一次项及系数、常数项。
2、会用试验的方法估计一元二次方程的解。
数学思考及问题解决:
通过观察,归纳一元二次方程的概念。
情感态度:
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
重点
一元二次方程的概念及一般形式
难点:
1.会正确识别一般式中的“项”及“系数”和列一元二次方程。
2.理解用试验的方法估计一元二次方程的解的合理性。
教学过程:
教学环节教学内容教师活动
学生活
动
设计意
图
情1.问题一
绿苑小区住宅设计,准备在每
两幢楼房之间,开辟面积为900平
方米的一块长方形绿地,并且长比
宽多10米,那么绿地的长和宽各
为多少?
2.问题二
学校图书馆去年年底有图书5
分析:对于问题一,设长
方形绿地的宽为x米,不难列出
方程x(x+10)=900
整理可得x2+10x-900=0.(1)
对于问题二,设这两年的年
平均增长率为x,我们知道,去
年年底的图书数是5万册,则今
年年底的图书数是5(1+x)万
册;同样,明年年底的图书数又
让学生
通过列
方程,感
受到有a
.。
22.2.4一元二次方程根的判别式基础知识1.一元二次方程根的判别式△=b 2-4ac 叫做一元二次方程02=++c bx ax (c b a a 、、,0≠是常数)的根的判别式。
2、△>0⇔有两个不相等的实数根; △=0⇔有两个相等的实数根; △<0⇔没有实数根; △≥0⇔有实数根.【提醒】应用根的判别式时,其前提条件为二次系数不为0.不解方程,判断方程根的情况时,须做到:(1)明确方程是常数系数方程还是字母系数;(2)确定二次方程中的a ,b ,c ;(3)求出b 2-4ac 的值,利用判别式的性质进行判断. 例题例1.已知:关于x 的方程2230x kx k ++-=.(1)试说明无论k 取何值时,方程总有两个不相等的实数根: (2)若5k =,请解此方程. 【答案】见解析;(2)x 1=12-,x 2=-2【分析】(1)由△=k 2-4×2(k -3)=k 2-8k +24=(k -4)2+8>0可得结论; (2)将k =5代入方程得2x 2+5x +2=0,利用配方法解方程即可. 【详解】解:(1)∵△=k 2-4×2(k -3)=k 2-8k +24=(k -4)2+8>0, ∴无论k 取何值时,方程总有两个不相等的实数根; (2)当k =5时,原方程为:2x 2+5x +2=0, ∴(2x +1)(x +2)=0, ∴x 1=12-,x 2=-2.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;也考查了配方法.例2.关于x 的一元二次方程2320mx x -+=有两个实数根. (1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.【答案】(1)98m ≤且0m ≠;(2)11x =,22x =【分析】(1)根据一元二次方程的定义及根的判别式列不等式组求解即可; (2)根据(1)得到m 的值,求出方程的解. 【详解】解:(1)∵2=(3)42m ∆--⨯=98m -,依题意,得0980m m ≠⎧⎨-≥⎩,解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为2320x x -+=. 解得11x =,22x =.【点睛】此题考查一元二次方程的定义,一元二次方程根的判别式,解一元二次方程,熟练掌握本章知识并应用解决问题是解题的关键. 练习1.下列一元二次方程中,没有实数根的是( ) A .2210x x -+= B .2210x x -+= C .2210x x --=D .220x x -=2.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是( ) A .13a >-B .13a <-C .13a >-且0a ≠D .13a ≥-且0a ≠3.如果关于x 的一元二次方程()222110k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠4.一元二次方程4x 2+1=﹣4x 的根的情况是( ) A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根6.一元二次方程2414x x +=的根的情况是______.7.如果关于x 的一元二次方程()21230k x kx k -+++=有实数根,则k 的取值范围是______________.8.若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为______.9.已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2620x x k -++=的两个根,则k 的值等于______________.10.若关于x 的方程221(56)(3)04m m x m x -+--+=无解,则m 的取值范围是______. 11.已知关于x 的一元二次方程210x x m -+-=有两个实数根. (1)求m 的取值范围;(2)若此方程的一个实数根为1,求m 的值及方程的另一个实数根.12.已知关于x 的一元二次方程0222=++-k x x . (1)若6k =-,求此方程的解;(2)若该方程无实数根,求k 的取值范围.13.已知:关于x 的一元二次方程2(1)210(1)m x mx m m --++=>. (1)求证:方程总有两个不相等的实数根.(2)m 为何整数时,此方程的两个实数根都为正整数.14.已知关于x 的方程x 2﹣2mx +m 2﹣1=0.(1)求证:对于任意实数m ,方程总有两个不相等的实数根; (2)若x =2是该方程的一个根,求代数式﹣3m 2+12m +2021的值.15.已知正方形ABCD 的对角线AC ,BD 的长是关于x 的方程202m x mx的两个实数根.(1)求m 的值; (2)求正方形的面积.参考答案1.A 【分析】根据一元二次方程根的判别式24b ac ∆=- 逐个求解即可. 【详解】A 、224(1)42170b ac ∆=-=--⨯⨯=-<,没有实数根,故A 正确;B 、224(2)4110b ac ∆=-=--⨯⨯=,有两个相等的实数根,故B 不正确;C 、224(1)42(1)90b ac ∆=-=--⨯⨯-=>,有两个不相等的实数根,故C 不正确;D 、224(2)41040b ac ∆=-=--⨯⨯=>,有两个不相等的实数根,故D 不正确. 故选:A . 【点睛】本题主要考查了一元二次方程根的判别式24b ac ∆=-,解题的关键是熟练运用一元二次方程根的判别式判断一元二次方程根的情况. 2.C 【分析】根据一元二次方程解的情况利用根的判别式可求出a 的取值范围,同时必须考虑0a ≠的情况. 【详解】解:关于x 的方程2230ax x +-= 有两个不相等的实数根,240b ac ∴->,即224(3)0a -⨯⨯->, 解得:13a >-,又a 是二次项系数,0a ∴≠,综上:a 的取值范围为:13a >-且0a ≠,故选:C . 【点睛】本题主要考查根据一元二次方程根的情况运用根的判别式求参,熟知(1)240b ac ->,方程有两个不相等的实数根;(2)24=0b ac -,方程有两个相等的实数根;(3)24<0b ac ,方程无根,是解题关键.3.B 【分析】若一元二次方程有两不等根,则根的判别式△=b 2-4ac >0,建立关于k 的不等式,求出k 的取值范围. 【详解】解:关于x 的一元二次方程()222110k x k x -++=有两个不相等的实数根,∴△>0,△=b 2-4ac =(2k +1)2-4k 2=4k +1>0.又∵方程是一元二次方程, ∴k ≠0,∴k >14-且k ≠0.故选:B . 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义. 4.C 【分析】把方程化为一般形式,计算其判别式,即可求得答案. 【详解】解:方程4x 2+1=-4x 化为一般形式为4x 2+4x +1=0, ∴Δ=42-4×4×1=0, ∴该方程有两个相等的实数根, 故选:C . 【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键. 5.C 【分析】先计算根的判别式得到△=[﹣(p +2)]2﹣4×2p =(p ﹣2)2,再利用非负数的性质得到△≥0,然后可判断方程根的情况.【详解】解:△=[﹣(p +2)]2﹣4×2p =(p ﹣2)2, ∵(p ﹣2)2≥0, 即△≥0,∴方程有两个实数根. 故选:C . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 6.有两个相等的实数根 【分析】根据一元二次方程根的判别式可进行求解. 【详解】解:由一元二次方程2414x x +=可得:24410x x -+=, ∴24164410b ac ∆=-=-⨯⨯=,∴一元二次方程2414x x +=的根的情况是有两个相等的实数根; 故答案为:有两个相等的实数根. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 7.32k ≤且1k ≠ 【分析】当0≥时,一元二次方程有实数根,结合二次项系数不为0,列出不等式求解即可. 【详解】由题意得2(2)4(1)(3)010k k k k ⎧--+≥⎨-≠⎩,解得32k ≤且1k ≠, 故填:32k ≤且1k ≠. 【点睛】本题考查根据一元二次方程根的情况求参数取值范围,熟记0≥时,一元二次方程有实数根是解题的关键,注意一元二次方程的二次项系数不等于0. 8.8或9 【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得. 【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n -+=的一个根, 因此有24640-⨯+=n , 解得8n =,则方程为2680x x -+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n -+=有两个相等的实数根,因此,根的判别式3640n ∆=-=, 解得9n =,则方程为2690x x -+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理; 综上,n 的值为8或9, 故答案为:8或9. 【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理. 9.6或7. 【分析】当m =4或n =4时,即x =4,代入方程即可得到结论,当m =n 时,即△=(﹣6)2﹣4×(k +2)=0,解方程即可得到结论. 【详解】解:∵m 、n 、4分别是等腰三角形(非等边三角形)三边的长, ∴当m =4或n =4时,即x =4, ∴方程为42﹣6×4+k +2=0, 解得:k =6,此时该方程为x 2﹣6x +8=0, 解得:x 1=4,x 2=2,此时三角形的三边为4,4,2,符合题意; 当m =n 时,即△=(﹣6)2﹣4×(k +2)=0, 解得:k =7,此时该方程为x 2﹣6x +9=0, 解得:x 1=x 2=3,此时三角形的三边为3,3,4,符合题意, 综上所述,k 的值等于6或7, 故答案为:6或7. 【点睛】本题考查了根的判别式,一元二次方程的解,等腰三角形的定义以及三角形的三边关系,正确的理解题意是解题的关键. 10.3m ≥ 【分析】根据题意,可分为两种情况进行分析:①2560m m -+=时,有(3)0m --=此时方程无解,可求出m 的值;②2560m m -+≠时,由根的判别式∆<0,即可求出m 的取值范围. 【详解】 解:根据题意,∵关于x 的方程221(56)(3)04m m x m x -+--+=无解, ①当2560m m -+=时,则原方程是一元一次方程,即1(3)04m x --+=; 则有:2560(3)0m m m ⎧-+=⎨--=⎩,解得:3m =;②当2560m m -+≠时,则原方程为一元二次方程, ∴3m ≠,2m ≠,∴221[(3)]4(56)04m m m ∆=---⨯-+⨯<,解得:3m >;综合上述,m 的取值范围是3m ≥; 故答案为:3m ≥.【点睛】本题考查了方程无解问题,根的判别式求参数的取值范围,以及解一元二次方程,解题的关键是熟练掌握方程无解问题,注意运用分类讨论的思想进行解题. 11.(1)54m ≤;(2)1m =,0x = 【分析】(1)根据判别式的意义得到△2(1)4(1)0m =--->,然后解不等式即可;(2)先根据方程的解的定义把1x =代入原方程求出m 的值,则可确定原方程变为20x x -=,然后利用因式分解法解方程得到方程的另一根.【详解】解:(1)根据题意得△2(1)4(1)0m =---≥, 解得54m ≤; (2)把1x =代入原方程得10m -=, 解得1m =,∴原方程变为20x x -=解方程得10x =,21x =, ∴方程的另一个根为0x =.【点睛】本题考查了一元二次方程20(a 0)++=≠ax bx c 的根的判别式△=-24b ac :当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.也考查了解一元二次方程.12.(1)121,1x x ==;(2)1k >- 【分析】(1)把6k =-代入方程得2240x x --=,然后求解即可; (2)根据一元二次方程根的判别式可直接进行求解. 【详解】解:(1)把6k =-代入方程得2240x x --=, ∴2215x x -+=,即()215x -=,解得:121,1x x = (2)∵该方程无实数根,∴()244420b ac k ∆=-=-+<,解得:1k >-.【点睛】本题主要考查一元二次方程的解法及根的判别式,熟练掌握一元二次方程的解法及根的判别式是解题的关键.13.(1)见解析;(2)m =2或m =3【分析】(1)根据根的判别式求出△的值,再进行判断即可;(2)利用公式法求出方程的两个根,再根据方程的两个实数根都为正整数,即可求出m 的值.【详解】解:(1)∵△=(-2m )2-4(m +1)(m -1)=4>0,∴方程总有两个不相等的实数根.(2)∵△=(-2m )2-4(m +1)(m -1)=4>0,m -1≠0,∴x =()2221m m ±-,∴()1221212111m m x m m m ++===+---,()221221m x m -==-, ∵方程的两个实数根都为正整数,且m >1, ∴21m -是正整数, ∴m =2或m =3.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(1)见详解;(2)2030【分析】(1)根据a =1,b =-2m ,c =m 2−1,求出△=b 2−4ac 的值,进而作出判断; (2)把x =2代入方程列出m 的一元二次方程,再整体代入求值,即可.【详解】(1)证明:∵a =1,b =-2m ,c =m 2−1,∴△=b 2−4ac =(-2m )2−4(m 2−1)×1=4>0, ∴对于任意实数m ,方程总有两个不相等的实数根;(2)∵x =2是该方程的一个根,∴22﹣2×2m +m 2﹣1=0,即: m 2-4m =-3, ∴﹣3m 2+12m +2021=-3 (m 2-4m )+2021=9+2021=2030.【点睛】本题主要考查了根的判别式以及代数式求值,解答本题的关键是掌握根的判别式与根个数的关系以及整体代入思想方法,此题难度不大.15.(1)2;(2)12.【分析】(1)先根据正方形的性质可得AC BD =,再利用一元二次方程根的判别式即可得; (2)先解一元二次方程可得1AC BD ==,再利用正方形的面积公式即可得.【详解】解:(1)在正方形ABCD 中,AC BD =,由题意得:关于x 的方程202m xmx 的根的判别式等于0,即220m m -=,解得122,0m m ==,0AC BD =>, 20m ∴=舍去,故m 的值为2;(2)由(1)得:方程为2210x x -+=,解得121x x ==,1AC BD ∴==,则正方形的面积为11111222AC BD ⋅=⨯⨯=. 【点睛】 本题考查了一元二次方程的几何应用、正方形的性质等知识点,熟练掌握一元二次方程根的判别式是解题关键.。
22.2 一元二次方程的解法1 直接开平方法和因式分解法(第1课时)一、基本目标1.理解直接开平方法和因式分解法,掌握用两种方法解一元二次方程的一般步骤,并会根据方程的特点灵活选用方法解一元二次方程.2.通过利用已学知识求解一元二次方程,获得成功的体验,体会转化思想的应用. 二、重难点目标 【教学重点】用直接开平方法和因式分解法解一元二次方程. 【教学难点】根据方程特点选择合适的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P20~P25的内容,完成下面练习. 【3 min 反馈】1.直接开平方法:利用__平方根的定义__解一元二次方程的方法. 2.因式分解法:利用__因式分解__求出方程的解的方法.3.因式分解法的依据:如果两个因式的积等于0,那么两个因式中__至少__有一个等于0.反过来,如果两个因式中有一个等于0,那么__它们的积__就等于0.4.方程(x -1)2=1的解为__x 1=2,x 2=0__.5.用因式分解法解一元二次方程(4x -1)(x +3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x -1=0,则另一个方程是__x +3=0__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】用直接开平方法或因式分解法解下列方程: (1)(x +1)2=2; (2)(2x +1)2=2x +1; (3)-x 2=4x ; (4)12(x +5)2=9.【互动探索】(引发学生思考)观察方程的特点,确定解方程的方法及一般步骤. 【解答】(1)直接开平方,得x +1=±2. 故x 1=2-1,x 2=-2-1.(2)移项,得(2x +1)2-(2x +1)=0.方程左边分解因式,得(2x +1)(2x +1-1)=0,所以2x +1=0或2x +1-1=0,得x 1=-12,x 2=0.(3)方程可变形为x 2+4x =0.方程左边分解因式,得x (x +4)=0,所以x =0或x +4=0,得x 1=0,x 2=-4.(4)方程两边同时乘2,得(x +5)2=18.直接开平方,得x +5=±32,所以x 1=32-5,x 2=-32-5.【互动总结】(学生总结,老师点评)(1)用直接开平方法解一元二次方程的一般步骤:①观察方程两边是否符合x 2=b (b ≥0)或(mx +a )2=b (m ≠0,b ≥0)的形式;②直接开平方,得到两个一元一次方程;③解这两个一元一次方程,得到原方程的两个根.(2)用因式分解法解一元二次方程的一般步骤:①移项,将方程的右边化为0;②将方程的左边分解成两个一次因式的积的形式;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,得到原方程的两个根.活动2 巩固练习(学生独学)1.一元二次方程x 2-16=0的根是( D ) A .x =2 B .x =4 C .x 1=2,x 2=-2D .x 1=4,x 2=-42.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2-b 2,根据这个规则,方程(x +1)﹡3=0的解为__x 1=2,x 2=-4__.【教师点拨】根据新定义,由(x +1)﹡3=0,得(x +1)2-32=0. 3.解下列方程: (1)4x 2=25; (2)x (x +2)=x +2.解:(1)方程可化为x 2=254.直接开平方,得x =±52,所以x 1=52,x 2=-52.(2)移项,得x (x +2)-(x +2)=0.方程左边分解因式,得(x +2)(x -1)=0,所以x +2=0或x -1=0,得x 1=-2或x 2=1.活动3 拓展延伸(学生对学)【例2】由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试:分解因式:x 2+6x +8=(x +__2__)(x +__4__); (2)应用:请用上述方法解方程:x 2-3x -4=0.【互动探索】理解“十字相乘法”的含义→对方程左边因式分解(十字相乘法)→解方程.【解答】∵x 2-3x -4=0,即x 2+(-4+1)x +(-4)×1=0,∴(x -4)(x +1)=0,则x +1=0或x -4=0,解得x 1=-1,x 2=4.【互动总结】(学生总结,老师点评)解此类题时,要把握新定义的内涵,抓住关键词语,合理套用求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)直接开平方法⎩⎪⎨⎪⎧定义依据:平方根的定义形式:方程x 2=a (a ≥0)的根为x 1=a ,x 2=-a因式分解法⎩⎪⎨⎪⎧定义依据:若ab =0,则a =0或b =0方法:提公因式、完全平方公式、平方差公式请完成本课时对应练习!2 配方法(第2课时)一、基本目标1.理解配方法解一元二次方程的含义,并掌握用配方法解一元二次方程的一般步骤. 2.经历利用完全平方公式推导配方法的过程,掌握新的解一元二次方程的方法——配方法.二、重难点目标 【教学重点】用配方法解一元二次方程. 【教学难点】把一元二次方程通过配方转化为(x ±h )2=k (k ≥0)的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P25~P27的内容,完成下面练习. 【3 min 反馈】1. (1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=⎝⎛⎭⎫x -!!!!__12__####2; (3)4x 2+4x +__1__=(2x + __1__)2.2.配方法:通过方程的简单变形,将左边配成一个含有未知数的__完全平方式__,右边是一个__非负常数__,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用配方法解下列方程: (1)x 2-4x -12=0; (2)22x 2+4x -6=0.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么? 【解答】(1)原方程可化为x 2-4x =12. 配方,得x 2-4x +4=16,即(x -2)2=16. 直接开平方,得x -2=±4, 所以x 1=-2,x 2=6. (2)移项,得22x 2+4x =6. 两边同除以22,得x 2+211x =311.配方,得x 2+211x +⎝⎛⎭⎫1112=311+⎝⎛⎭⎫1112,即⎝⎛⎭⎫x +1112=34121. 直接开平方,得x +111=±3411,所以x 1=-1+3411,x 2=-1-3411.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的一般步骤:(1)变形:将方程化为一般形式ax 2+bx +c =0(a ≠0);(2)移项:将常数项移到方程的右边;(3)系数化为1:方程的两边同除以二次项的系数,将二次项系数化为1;(4)配方:在方程的两边各加上一次项系数绝对值的一半的平方,把原方程化为(x ±h )2=k 的形式;(5)求解:若k ≥0,则利用直接开平方法求解;若k <0,则原方程无实数根.活动2 巩固练习(学生独学)1.用配方法解下列方程,配方正确的是( D ) A .2y 2-4y -4=0可化为(y -1)2=4 B .x 2-2x -9=0可化为(x -1)2=8 C .x 2+8x -9=0可化为(x +4)2=16 D .x 2-4x =0可化为(x -2)2=42.用配方法解下列方程,其中应在方程左右两边同时加上4的是( C ) A .x 2-2x =5 B .2x 2-4x =5 C .x 2+4x =3D .x 2+2x =53.用配方法解方程2x 2-x =4,配方后方程可化为⎝⎛⎭⎫x -142=__3316__. 4.用配方法解下列方程:(1)x 2+6x +1=0; (2)2x 2-3x +12=0.解:(1)x 1=22-3,x 2=-22-3. (2)x 1=5+34,x 2=-5+34. 活动3 拓展延伸(学生对学)【例2】试用配方法说明:无论x 取何值,代数式x 2-4x +5的值总是正数,并指出当x 取何值时,这个代数式的值最小,最小值是多少?【互动探索】这是一个二次三项式的最值问题→对x 2-4x +5进行配方→确定代数式的最小值.【解答】x 2-4x +5=(x -2)2+1. ∵(x -2)2≥0, ∴(x -2)2+1≥1,∴不论x 为何值,代数式x 2-4x +5的值总是正数,且当(x -2)2=0,即x =2时,代数式x 2-4x +5有最小值,最小值为1.【互动总结】(学生总结,老师点评)已知代数式是一个关于x 的二次三项式且含有一次项,在求它的最值时,通常用配方法将原代数式变形为一个完全平方式加一个常数的形式,再根据一个数的平方是非负数求出原代数式的最值.环节3 课堂小结,当堂达标 (学生总结,老师点评)配方法⎩⎪⎨⎪⎧定义依据:完全平方公式:a 2±2ab +b 2=(a ±b )2形式:方程(x ±h )2=k (k ≥0)的根为x 1=k ±h ,x 2=-k ±h请完成本课时对应练习!3 公式法(第3课时)一、基本目标1.理解求根公式的推导过程,能正确推导出一元二次方程的求根公式.2.理解b 2-4ac ≥0是求根公式使用的前提条件和重要的组成部分,当b 2-4ac <0时,方程无解.3.理解和掌握用公式法解一元二次方程的一般步骤,并能正确运用公式法解一元二次方程.二、重难点目标 【教学重点】用公式法解一元二次方程. 【教学难点】 求根公式的推导过程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P31的内容,完成下面练习. 【3 min 反馈】 1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是x =__-b ±b 2-4ac 2a(b 2-4ac ≥0)__.将一元二次方程中系数a 、b 、c 的值,直接代入这个公式,就可以求得方程的根.这种解一元二次方程的方法叫做__公式法__.2.用公式法解方程2x 2-3x -1=0时,a =__2__,b =__-3__,c =__-1__,则b 2-4ac =__17__,代入求根公式,得x =__3±174__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用公式法解下列方程:(1)5x 2-4x -1=0; (2)3x 2+5(2x +1)=0.【互动探索】(引发学生思考)用公式法解一元二次方程的一般步骤是什么? 【解答】(1)∵a =5,b =-4,c =-1,∴b 2-4ac =(-4)2-4×5×(-1)=16+20=36, ∴x =-b ±b 2-4ac 2a =4±362×5=4±610,∴x 1=1,x 2=-15.(2)将方程化为一般形式,得3x 2+10x +5=0. ∵a =3,b =10,c =5,∴b 2-4ac =102-4×3×5=100-60=40, ∴x =-b ±b 2-4ac 2a =-10±402×3=-5±103,∴x 1=-5+103,x 2=-5-103.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值;(4)判断b 2-4ac 的符号.当b 2-4ac ≥0时,把a 、b 及b 2-4ac 的值代入求根公式,求出x 1、x 2;当b 2-4ac <0时,b 2-4ac 无意义,此时方程无解.活动2 巩固练习(学生独学)1.以x =b ±b 2+4c2为根的一元二次方程可能是( D )A .x 2+bx +c =0B .x 2+bx -c =0C .x 2-bx +c =0D .x 2-bx -c =02.方程3x 2-5x +1=0的解,正确的是( B ) A .x =-5±136B .x =5±136C .x =-5±133D .x =5±1333.用公式法解下列方程: (1)3x 2-6x -1=0; (2)(x -1)(x +3)=12; (3)x 2-x +3=0.解:(1)x 1=3+233,x 2=3-233.(2)x 1=-5,x 2=3. (3)方程没有实数解. 活动3 拓展延伸(学生对学)【例2】我们规定一种运算:⎪⎪⎪⎪a b c d =ad -bc ,例如:⎪⎪⎪⎪24 35=2×5-3×4=10-12=-2.按照这种运算的规定,当x 取何值时,⎪⎪⎪⎪x 1 0.5-x 2x =0?【互动探索】理解新定义的规则→转化所求式子形式→得一元二次方程→利用公式法解方程.【解答】由⎪⎪⎪⎪x 1 0.5-x 2x =0,得2x 2-1×(0.5-x )=0. 整理,得4x 2+2x -1=0,则a =4,b =2,c =-1,∴b 2-4ac =22-4×4×(-1)=20, ∴x =-2±202×4=-1±54,∴当x =-1+54或-1-54时,⎪⎪⎪⎪x 1 0.5-x 2x =0.【互动总结】(学生总结,老师点评)这是一个关于二元一次方程的新定义问题,解这类题的关键是根据新定义得到方程,再解方程即可.环节3 课堂小结,当堂达标 (学生总结,老师点评)公式法⎩⎪⎨⎪⎧定义—求根式公:-b ±b 2-4ac 2a(b 2-4ac ≥0)推导过程—配方法一般形式—方程ax 2+bx +c =0(a ≠0)的根为x =-b ±b 2-4ac 2a(b 2-4ac ≥0)请完成本课时对应练习!4 一元二次方程根的判别式(第4课时)一、基本目标1.了解根的判别式,掌握由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况.2.经历思考、探究一元二次方程ax 2+bx +c =0(a ≠0)的根的过程,学会合作交流,并掌握代数学习的常用方法——分类讨论法.二、重难点目标 【教学重点】由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况. 【教学难点】推导一元二次方程ax 2+bx +c =0(a ≠0)的b 2-4ac 的符号与其根的关系.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的__b2-4ac__叫做一元二次方程根的判别式,通常用符号“__Δ__”来表示.2.一元二次方程ax2+bx+c=0(a≠0)根的情况:当Δ__>0__时,方程有两个不相等的实数根;当Δ__=0__时,方程有两个相等的实数根;当Δ<0时,方程__没有__实数根.3.一元二次方程x2-5x-78=0根的情况是__有两个不相等的实数根__.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】不解方程,判定下列方程的根的情况:(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.【互动探索】(引发学生思考)不解方程,要判断方程的根的情况,结合一元二次方程ax2+bx+c=0(a≠0)中Δ的符号与根的关系,各个方程的Δ与0的大小关系是什么?相应的方程根的情况是什么?【解答】(1)原方程可变形为16x2+8x+3=0,则a=16,b=8,c=3.∵Δ=b2-4ac=82-4×16×3=64-192=-128<0,∴方程没有实数根.(2)a=9,b=6,c=1.∵Δ=b2-4ac=62-4×9×1=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8.∵Δ=b2-4ac=(-9)2-4×2×8=81-64=17>0,∴方程有两个不相等的实数根.(4)a=1,b=-7,c=-18.∵Δ=b2-4ac=(-7)2-4×1×(-18)=49+72=121>0,∴方程有两个不相等的实数根.【互动总结】(学生总结,老师点评)不解一元二次方程,由Δ确定方程根的情况的一般步骤:(1)将原方程化为一般形式;(2)确定a、b、c的值;(3)计算b2-4ac的值;(4)判断b2-4ac与0的大小;(5)得出结论.活动2巩固练习(学生独学)1.一元二次方程x2+3x+5=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C .没有实数根D .无法判断2.若关于x 的一元二次方程x 2+x -m =0有实数根,则m 的取值范围是( B ) A .m ≥14B .m ≥-14C .m ≤14D .m ≤-14【教师点拨】若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,则b 2-4ac ≥0. 3.已知方程x 2+px +q =0有两个相等的实数根,则p 与q 的关系是__p 2=4q __. 4.不解方程,试判断下列方程的根的情况: (1)2+5x =3x 2;(2)x 2-(1+23)x +3+4=0. 解:(1)方程有两个不相等的实数根. (2)方程没有实数根.5.已知关于x 的方程kx 2-6x +9=0,问k 为何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)当k <1且k ≠0时,方程有两个不相等的实数根. (2)当k =1时,方程有两个相等的实数根. (3)当k >1时,方程没有实数根. 活动3 拓展延伸(学生对学)【例2】已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.若方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.【互动探索】方程有两个相等的实数根→得出a 、b 、c 的数量关系→确定三角形的形状. 【解答】△ABC 是直角三角形.理由如下:∵关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0有两个相等的实数根, ∴Δ=0,即(2b )2-4(a +c )(a -c )=0, ∴a 2=b 2+c 2,∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)解此类题时,先根据根的情况得到判别式的符号,再推出系数之间的关系,进而解决问题.【例3】如果关于x 的方程mx 2-2(m +2)x +m +5=0没有实数根,试判断关于x 的方程(m -5)x 2-2(m -1)x +m =0的根的情况.【互动探索】方程mx 2-2(m +2)x +m +5=0没有实数根→确定m 的取值范围→分类讨论确定方程(m -5)x 2-2(m -1)x +m =0的根的情况.【解答】∵方程mx 2-2(m +2)x +m +5=0没有实数根,∴Δ=[-2(m +2)]2-4m (m +5)=4(m 2+4m +4-m 2-5m )=4(4-m )<0,∴m >4.对于方程(m -5)x 2-2(m -1)x +m =0,当m =5时,方程有一个实数根;当m ≠5时,Δ1=[-2(m -1)]2-4m (m -5)=12m +4.∵m >4,∴Δ1=12m +4>0,∴此时方程有两个不相等的实数根.综上,当m =5时,方程(m -5)x 2-2(m -1)x +m =0有一个实数根;当m >4且m ≠5时,方程(m -5)x 2-2(m -1)x +m =0有两个不相等的实数根.【互动总结】(学生总结,老师点评)解此题时,不要忽略对方程(m -5)x 2-2(m -1)x +m =0是否为一元二次方程进行讨论,此方程可能是一元一次方程.环节3 课堂小结,当堂达标(学生总结,老师点评)一元二次方程根的判别式⎩⎪⎨⎪⎧ 定义——Δ=b 2-4ac 与ax 2+bx +c =0(a ≠0)实数根的关系⎩⎪⎨⎪⎧ Δ>0↔有两个不相等的实数根Δ=0↔有两个相等的实数根Δ<0↔没有实数根请完成本课时对应练习!5 一元二次方程的根与系数的关系(第5课时)一、基本目标1.理解并掌握一元二次方程的根与系数的关系.2.能利用一元二次方程根与系数的关系解决相关问题.二、重难点目标【教学重点】一元二次方程两根之和及两根之积与方程系数之间的关系.【教学难点】一元二次方程的根与系数的关系的推导及其应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P33~P35的内容,完成下面练习.【3 min 反馈】1.一元二次方程根与系数的关系:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则有x 1+x 2=__-b a __,x 1x 2=__c a __. 特殊形式:若x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=__-p __,x 1x 2=__q __.2.已知x 1、x 2是一元二次方程x 2-6x -15=0的两根,则x 1+x 2=__6__,x 1x 2=__-15__.3.已知实数x 1、x 2满足x 1+x 2=11,x 1x 2=30,则以x 1、x 2为根的一元二次方程是__x 2-11x +30=0__.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知x 1、x 2是方程x 2+6x +3=0的两实数根,不解方程,求下列代数式的值.(1)(x 1-x 2)2; (2)x 2x 1+x 1x 2. 【互动探索】(引发学生思考)方程x 2+6x +3=0的根与系数的关系怎样?所求代数式与它们的关系有什么联系?【解答】∵x 1、x 2是方程x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3.(1)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-6)2-4×3=24.(2)x 2x 1 + x 1x 2=x 22 + x 21x 1x 2=(x 1 + x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10. 【互动总结】(学生总结,老师点评)(1)解此类题时,先根据根与系数的关系得到两根和与两根积,再把所求代数式变形,最后利用整体代入法计算即可.(2)常见的与一元二次方程根的和、积有关系的代数式变形:①x 21 + x 22=(x 1 + x 2)2-2x 1x 2; ②(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;③1x 1+1x 2=x 1+x 2x 1x 2; ④x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ⑤(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2;⑥|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.活动2巩固练习(学生独学)1.方程x2-6x+10=0的根的情况是(C)A.两个实根和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是(C) A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x+2=0 D.x2-2x+3=03.已知关于x的方程5x2+kx-6=0的一个根2,则k=__-7__,另一个根为__-35__.4.设a、b是方程x2+2x-2019=0的两个不相等的实数根.(1)a+b=__-2__,ab=__-2019__,2a2+4a=__4038__;(2)求代数式a2+3a+b的值.解:a2+3a+b=a2+2a+a+b=2019-2=2017.5.请利用一元二次方程的根与系数关系解决下列问题:(1)若x2+bx+c=0的两根为-2和3,求b和c的值;(2)设方程2x2-3x+1=0的两根为x1、x2,不解方程,求1x1+1x2的值.解:(1)b=-1,c=-6.(2)1x1+1x2=3.活动3拓展延伸(学生对学)【例2】设一元二次方程x2-6x+k=0的两根分别为x1、x2.(1)若x1=2,求x2的值;(2)若k=4,且x1、x2分别是Rt△ABC的两条直角边的长,试求Rt△ABC的面积.【互动探索】(1)已知方程一根→利用根与系数的关系得方程的另一个根.(2)分析法:Rt△的面积→与两直角边的乘积相关,即x1x2的乘积关系→根与系数的关系,确定x1x2的值.【解答】(1)∵x1、x2是一元二次方程x2-6x+k=0的两根,且x1=2,∴x1+x2=-(-6),即2+x2=6,∴x2=4.(2)∵x1、x2是一元二次方程x2-6x+k=0的两根,k=4,∴x1·x2=k=4.又∵x1、x2分别是Rt△ABC的两条直角边的长,∴S Rt△ABC=12x1·x2=12×4=2.【互动总结】(学生总结,老师点评)求(2)问时,弄清直角三角形的面积与方程两实根的关系是解决问题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程的根与系数的关系:ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a. 特殊地,x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=-p ,x 1x 2=q .请完成本课时对应练习!。
第23章一元二次方程 (2)§23.1 一元二次方程 (3)§23.2 一元二次方程的解法 (4)阅读材料 (13)§23.3 实践与探索 (14)小结 (16)复习题 (17)第23章一元二次方程绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?设宽为x 米,可列出方程900)10(=+x x ,整理得0900102=-+x x .方程0900102=-+x x 中未知数x 的最高次数是2,它是一个一元二次方程.§23.1 一元二次方程问题1绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.设长方形绿地的宽为x 米,不难列出方程x (x +10)=900,整理可得0900102=-+x x . (1)问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.分析设这两年的年平均增长率为x .已知去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即2)1(5)1)(1(5x x x +=++万册.可列得方程2.7)1(52=+x ,整理可得02.21052=-+x x . (2)思考这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?概括上述两个整式方程中都只含有一个未知数,并且未知数的最高次数都是2,这样的方程叫做一元二次方程(quadric equation with one unknown ).通常可化成如下的一般形式:02=++c bx ax (a 、b 、c 是已知数,a ≠0),其中a 、b 、c 分别叫做二次项系数、一次项系数和常数项.练习将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)232=-x x ;(2)2237x x =-;(3)0)2(3)12(=---x x x x ;(4)4)5(3)1(2-+=-x x x .习题23.11.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?2.已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3.根据题意,列出方程(不必求解):(1)学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半.已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.(2)根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台前沿宽20米,问举行文娱会演时主持人应站在何处? §23.2 一元二次方程的解法试一试解下列方程,并说明你所用的方法,与同伴交流.(1)42=x ;(2)012=-x . 概括对于方程(1),有这样的解法:方程 42=x ,意味着x 是4的平方根,所以4±=x ,即 x =±2.这种方法叫做直接开平方法.对于方程(2),有这样的解法:将方程左边用平方差公式分解因式,得(x -1)(x +1)=0,必有 x -1=0或x +1=0,分别解这两个一元一次方程,得1,121-==x x .这种方法叫做因式分解法.思考(1)方程42=x 能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式?(2)方程012=-x 能否用直接开平方法来解?要用直接开平方法解,首先应将它化成什么形式?做一做试用两种方法解方程09002=-x .例1 解下列方程:(1)022=-x ;(2)025162=-x .解 (1)移项,得22=x .直接开平方,得2±=x .即 2,221=-=x x .(2)移项,得25162=x . 方程两边都除以16,得16252=x直接开平方,得45±=x . 即 45,4521=-=x x .例2 解下列方程:(1)0232=+x x ;(2)x x 32=.解 (1)方程左边分解因式,得x (3x +2)=0.所以 x =0或3x +2=0.得 32,021-==x x .(2)移项,得032=-x x .方程左边分解因式,得x (x -3)=0.所以 x =0或x -3=0,得 3,021==x x .练习1.解下列方程:(1)1692=x ;(2)0452=-x ;(3)025122=-y ;(4)022=-x x ;(5)0)1)(2(=+-t t ;(6)05)1(=-+x x x .2.小明在解方程x x 32=时,将方程两边同除以x ,得到原方程的解x =3,这种做法对吗?为什么?例3 解下列方程:(1)04)1(2=-+x ;(2)09)2(122=--x .分析两个方程都可以转化为 a =2的形式,用直接开平方法求解.解(1)原方程可以变形为4)1(2=+x ,直接开平方,得x +1=±2.所以 3,121-==x x .(2)原方程可以变形为____________________,有 ____________________,得 ____________,21==x x .读一读小张和小林一起解方程x (3x +2)-6(3x +2)=0.小张将方程左边分解因式,得(3x +2)(x -6)=0,所以 3x +2=0或x -6=0.得 6,3221=-=x x . 小林的解法是这样的:移项,得 x (3x +2)=6(3x +2),方程两边都除以(3x +2),得x =6.小林说:“我的方法多简便!”可另一个根32-=x 哪里去了?小林的解法对吗?你能解开这个谜吗?练习解下列方程:(1)016)2(2=-+x ;(2)018)1(2=--x ;(3)1)31(2=-x ;(4)025)32(2=-+x .例4解下列方程: (1)522=+x x ;(2)0342=+-x x .思考能否经过适当变形,将它们转化为a =2的形式,用直接开平方法求解?解(1)原方程两边都加上1,得6122=++x x ,_______________________,_______________________,_______________________.(2)原方程化为43442+-=+-x x ,_______________________,_______________________,_______________________. 归 纳上面,我们把方程0342=+-x x 变形为1)2(2=-x ,它的左边是一个含有未知数的完全平方式,右边是一个非负常数,从而能直接开平方求解.这种解一元二次方程的方法叫做配方法.例5用配方法解下列方程:(1)0762=--x x ;(2)0132=++x x . 解(1)移项,得762=-x x .方程左边配方,得32237332+=+⋅⋅-x x ,即 16)3(2=-x .所以 x -3=±4.得 1,721-==x x .(2) 移项,得132-=+x x . 方程左边配方,得222)23(1)23(232+-=+⋅⋅+x x ,即45)23(2=+x . 所以2523±=+x . 得2523,252321--=+-=x x x .练习1.填空:(1)2x +6x+( )=(x+ )2;(2)2x -8x+( )=(x- )2;(3)x x 232++( )=(x+ )2;(4)42x -6x+( )=4(x- )2=(2x- )2.2.用配方法解下列方程:(1)2x +8x -2=0;(2)2x -5x -6=0.试一试用配方法解方程2x +px +q =0(q p 42-≥0).思考如何用配方法解下列方程?(1)42x -12x -1=0;(2) 32x +2x -3=0.讨论请你和同桌讨论一下: 当二次项系数不为1时,如何应用配方法?探索我们来解一般形式的一元二次方程a 2x +bx +c =0(a ≠0).因为a ≠0,方程两边都除以a ,得02=++ac x a b x . 移项,得ac x a b x -=+2. 配方,得a c a b a b a b x x -=+⋅⋅+222)2()2(22, 即22244)2(a ac b a b x -=+. 因为a ≠0,所以42a >0,当2b -4ac ≥0时,直接开平方,得 aac b a b x 2422-±=+. 所以aac b a b x 2422-±-=, 即aac b b x a ac b b x 24,242221---=-+-=. 由以上研究的结果,得到了一元二次方程a 2x +bx +c =0的求根公式: )04(2422≥--±-=ac b aac b b x . 利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的根.这种解方程的方法叫做公式法.例6 解下列方程:(1)22x +x -6=0;(2)2x +4x =2;(3)52x -4x -12=0;(4)42x +4x +10=1-8x . 解(1)这里a =2,b =1,c =-6,2b -4ac =21-4×2×(-6)=1+48=49, 所以47122491242±-=⨯±-=-±-=a ac b b x , 即23,221=-=x x . (2)将方程化为一般式,得2x +4x -2=0.因为2b -4ac =24, 所以622244±-=±-=x . 即62,6221--=+-=x x .(3) 因为2b -4ac =256, 所以5821016452256)4(±=±=⨯±--=x . 得2,5621=-=x x . (4) 整理,得42x +12x +9=0.因为2b -4ac =0, 所以8012±-=x , 即2321-==x x . 练习 用公式法解下列方程:(1)2x -6x +1=0;(2)22x -x =6;(3)42x -3x -1=x -2;(4)3x (x -3)=2(x -1)(x +1). 思考根据你学习的体会小结一下: 解一元二次方程有哪几种方法?通常你是如何选择的?和同学交流一下.应用现在我们来解决§23.1的问题1:x (x +10)=900,2x +10x -900=0,3755±-=x ,3755,375521+-=--=x x .它们都是所列方程的根,但负数根x1不符合题意,应舍去.取x =3755+-≈25.4,x +10≈35.4,符合题意,因此绿地的宽约为25.4米,长约为35.4米.例7学校生物小组有一块长32m ,宽20m 的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?分析问题中没有明确小道在试验田中的位置,试作出图23.2.1,不难发现小道的占地面积与位置无关.设道路宽为xm ,则两条小道的面积分别为32x 2m 和20x 2m ,其中重叠部分小正方形的面积为2x 2m ,根据题意,得 32×20-32x -20x +2x =540.图23.2.1图23.2.2试一试如果设想把道路平移到两边,如图23.2.2所示,小道所占面积是否保持不变?在这样的设想下,列方程是否符合题目要求?是否方便些?在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决.求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答.练习1.学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的32时较美观,求镶上彩纸条的宽.(精确到0.1厘米)2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=.爆竹点燃后以初速度0v =20米/秒上升,经过多少时间爆竹离地15米?(重力加速度g ≈10米/秒2)例8某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分率相同,求每次降价的百分率.分析 若一次降价百分率为x ,则一次降价后零售价为原来的(1-x )倍,即56(1-x )元;第二次降价百分率仍为x ,则第二次降价后的零售价为56(1-x )的(1-x )倍.解设平均降价百分率为x ,根据题意,得56(1-x )2=31.5.解这个方程,得75.1,25.021==x x .因为降价的百分率不可能大于1,所以75.12=x 不符合题意,符合本题要求的是x =0.25=25%.答: 每次降价百分率为25%.练习1.某工厂1月份的产值是50000元,3月份的产值达到60000元,这两个月的产值平均月增长的百分率是多少?(精确到0.1%)2.据某中学对毕业班同学三年来参加市级以上各项活动获奖情况的统计,初一阶段有48人次获奖,之后逐年增加,到初三毕业时共有183人次获奖.求这两年中获奖人次的平均年增长率.习题23.21.解下列方程: (1)22x -6=0; (2)27=42x ;(3)32x =4x ; (4)x (x -1)+3(x -1)=0; (5)2)1(+x =2;(6)32)5(-x =2(5-x ).2.解下列方程: (1)2)12(-x -1=0; (2)212)3(+x =2; (3)2x +2x -8=0;(4)32x =4x -1;(5)x (3x -2)-62x =0; (6)2)32(-x =2x . 3.求满足下列要求的x 的所有值: (1)32x -6的值等于21;(2)32x -6的值与x -2的值相等. 4.用适当的方法解下列方程: (1)32x -4x =2x ;(2)312)3(+x =1; (3)2x +(3+1)x =0;(4)x (x -6)=2(x -8);(5)(x +1)(x -1)=x 22;(6)x (x +8)=16; (7)(x +2)(x -5)=1;(8)2)12(+x =2(2x +1).5.已知A =22x +7x -1,B =6x +2,当x 为何值时A =B ?6.已知两个连续奇数的积是255,求这两个奇数.7.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.(精确到0.1米)(第7题)8.某商店2月份营业额为50万元,春节过后3月份下降了30%,4月份比3月份有所增长,5月份的增长率又比4月份的增长率增加了5个百分点(即5月份的增长率要比4月份的增长率多5%),营业额达到48.3万元.问4、5两月营业额增长的百分率各是多少? 9.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较合适?阅读材料一元二次方程根的判别式我们在一元二次方程的配方过程中得到22244)2(aac b a b x -=+.(1) 发现当且仅当2b -4ac ≥0时,右式2244a ac b -有平方根.直接开平方,得aacb a b x 2422-±=+. 也就是说,一元二次方程a 2x +bx +c =0(a ≠0)当且仅当系数a 、b 、c 满足条件2b -4ac ≥0时有实数根.观察(1)式我们不难发现一元二次方程的根有三种情况: ① 当2b -4ac >0时,方程有两个不相等的实数根; ② 当2b -4ac =0时,方程有两个相等的实数根ab x x 221-==; ③ 当2b -4ac <0时,方程没有实数根.这里的2b-4ac叫做一元二次方程的根的判别式,用它可以直接判断一个一元二次方程实数根的情况(是否有?如有,两实数根是相等还是不相等?),如对方程2x-x+1=0,可由2b-4ac=1-4<0直接判断它没有实数根;在用公式法解一元二次方程时,往往也是先求出判别式的值,直接代入求根公式.如第27页例6;还可以应用判别式来确定方程中的待定系数,例如:m取什么值时,关于x的方程++-mx-xm22=22()2有两个相等的实数根?求出这时方程的根.§23.3 实践与探索试研究下列问题,并与你的同伴交流、讨论.问题1小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如图23.3.1.图23.3.1(1)如果要求长方体的底面面积为81cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形边长会发生什么在你观察到的变化中,你感到折合而成的长方体的侧面积会不会有最大的情况?先在上面的表格中记录下你得到的数据,再以剪去的正方形的边长为自变量,折合而成的长方体侧面积为函数,并在直角坐标系中画出相应的点.看看与你的感觉是否一致.问题2阳江市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.探索若调整计划,两年后的财政净收入值为原净收入值的1.5倍、1.2倍、……那么两年中的平均年增长率分别应调整为多少? 又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现两年后市财政净收入翻一番?练习1.某花生种植基地原有花生品种的每公顷产量为3000千克,出油率为55%.改用新品种之后,每公顷收获的花生可加工得到花生油2025千克.已知新品种花生的公顷产量和出油率都比原有品种有所增加,其中出油率增加是公顷产量增长率的一半,求两者的增长率(精确到1%).2.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则应进货多少个?定价为多少?(1)本题如何设未知数较适宜?需要列出哪些相关量的代数式? (2)列得方程的解是否都符合题意?如何解释?(3)请你为商店估算一下,若要获得最大利润,则应进货多少?定价是多少?3.某市人均居住面积14.6平方米,计划在两年后达到18平方米.在预计每年住房面积的增长率时,还应考虑人口的变化因素等.请你把问题补充完整,再予解答.问题3解下列方程,将得到的根填入下面的表格中,观察表格中两个根的和与积,它们和原来的方程的系数有什么联系? (1) 2x -2x =0; (2) 2x +3x -4=0; (3) 2x -5x +6=0.一般地,对于关于x 的一元二次方程2x +px +q =0(p 、q 为已知常数,2p -4q ≥0),试用求根公式求出它的两个根1x 、2x ,算一算21x x +、21x x ⋅的值,你能发现什么结论?与上面观察的结果是否一致?习题23.31.一块长30米、宽20米的长方形操场,现要将它的面积增加一倍,但不改变操场的形状,问长和宽各应增加多少米?(精确到0.1米)2.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)3.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级两年来植树数的平均年增长率.(精确到1%)4.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.服装厂向24名家庭贫困学生免费提供.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.问这批演出服共生产了多少套?5.如图,某建筑物地基是一个边长为30米的正六边形.要环绕地基开辟绿化带,使绿化带的面积和地基面积相等.请你给出设计方案.(画图并标注尺寸)(第5题)6.解下列问题,并和同学讨论一下,有哪些不同的解法:(1)已知关于x的方程2x-px+q=0的两个根是0和-3,求p和q的值;(2)已知关于x的方程2x-6x+2p-2p+5=0的一个根是2,求方程的另一个根和p 的值.小结一、知识结构二、概括1.要联系已有的方程知识,在学习中进一步认识“方程是反映现实世界数量关系的一个有效的数学模型”,在解决实际问题中增强学数学、用数学的自觉性.2.掌握一元二次方程的各种解法:直接开平方法、因式分解法、配方法与公式法.着重体会相互之间的关系及其“转化”的思想,并能应用这一思想方法进行自主探索和合作交流.3.在应用一元二次方程解实际问题时,要注重对数量关系的抽象和分析;得到方程的解之后,必须检验是否符合题意.复习题A组1.解下列方程:(1)32x=2x;(2)62x-40=0;(3)x(3x-1)=3-x;(4)y(y-2)=4-y;(5)4x(1-x)=1;(6)t(t-2)-32t=0.2.已知A=22x+7x-1,B=4x+1,分别求出满足下列条件的x的值:(1)A与B的值互为相反数;(2)A的值比B的值大3.3.已知关于x的方程(2x-m)(mx+1)=(3x+1)(mx-1)有一个根是0,求另一个根和m的值.4.已知三个连续奇数的平方和是371,求这三个奇数.5.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分的面积为100平方米.求原正方形广场的边长.(精确到0.1米)6.村里准备修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多0.4米.求灌溉渠横截面上、下底边的长和灌溉渠的深度.7.求出本章习题23.1中第3题小题(2)所列方程解的近似值(精确到0.1米),并在学校举行大型活动时实地观察、比较一下效果.8.如图,某海关缉私艇在点O处发现在正北方向30海里的A处有一艘可疑船只,测得它正以60海里/时的速度向正东方航行,随即调整方向,以75海里/时的速度准备在B处迎头拦截.问经过多少时间能赶上?(第8题)B组9.解下列方程:(1)4(x -2)2-(3x -1)2=0; (2)(2x -1)2+3(2x -1)+2=0; (3)2x +5=x 52;(4)32x 32--x =0.10.解下列关于x 的方程(a 、b 是常数,且ab ≠0): (1)2x +ax -22a =0;(2)ab 2x -(2a -2b )x -ab =0.11.已知x =1是一元二次方程(a -2)2x +(2a -3)x -a +1=0的一个根,求a 的值. 12.已知关于x 的方程22x -4x +3q =0的一个根是1-2,求它的另一个根和q 的值. 13.已知代数式2x -5x +7,先用配方法说明,不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?14.学校原有一块面积为1500平方米的长方形场地,现结合整治环境,将场地的一边增加了5米,另一边减少了5米,结果使场地的面积增加了10%,求现在场地的长和宽.C 组15.试求出下列方程的解:(1)(2x -x )2-5(2x -x )+6=0;(2)112122=+-+x x xx . 16.证明: 不论m 取何值,关于x 的方程(x -1)(x -2)=2m 总有两个不相等的实数根.17.已知xy ≠0,且32x -2xy -82y =0,求yx的值. 18.已知关于x 的方程(m -1)2x -(m -2)x -2m =0.它总是二次方程吗?试求出它的解.19.某产品每件生产成本为50元,原定销售价65元.经市场预测,从现在开始的第一个季度销售价将下降10%,第二个季度又将回升4%.若要使半年以后的销售总利润不变,如果你作为决策者,将采取什么措施?请将本题补充完整并解答.。
第22章 一元二次方程【基础知识】1.(2011年嘉兴、舟山市)一元二次方程0)1(=-x x 的解是( ) (A )0=x (B )1=x (C )0=x 或1=x (D )0=x 或1-=x2.关于x 的一元二次方程x 2+4x+k=0有实数解,则k 的取值范围是( ) A 、k≥4 B 、k≤4 C 、k >4 D 、k=43.湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1﹣x )2=4000C .4000(1﹣x )2=5500D .4000(1+x )2=55004.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则x 12+3x 1x 2+x 22的值为5.方程2x 2-6x = 9 的二次项系数、一次项系数、常数项分别是( ) A. 6 ,2 ,9 B. 2 , -6 , 9 C. 2 , -6, -9 D. -2, 6, 9 【知识归类】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, bx 叫做一次项,c 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接 的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用 求出方程的解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是=2,1x 12x x =042≥-ac b ).(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3.一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.4.一元二次方程根与系数的关系 根与系数的关系:x 1+x 2= -b a ;x 1x 2=c a【典例精析】考点1 一元二次方程及其解的概念 『例1』(1)下列方程中是关于x 的一元二次方程的是( ) A .2210x x+= B .20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --= (2)(2012贵州安顺)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A . 1 B .﹣1 C . 0 D .无法确定 练习: 1.方程1(1)23m m xx +--=是关于x 的一元二次方程,则有( )A.m=1B. m= -1C. m= 1=±D. m 1≠± 2.已知a 是方程x 2-2014x+1=0的一个根,试求a 2-2013a+220141a +的值。
九九年年级级数数学学2222..11一一元元二二次次方方程程((第第一一课课时时))导导学学案案((高高玉玉华华))
学
习
目
标
1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程
化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点由实际问题列出一元二次方程和一元二次方程的概念。
难点
由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系
数还有常数项。
活动单导学案
[活动1] 探究新知
【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪
去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如
果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多
少?
设剪去的正方形的边长为xcm,你能列出满足条件的方程
吗?你是如何建立方程模型的?动手实验一下,并与同桌交流你
的做法和想法。
列出的方程是
这个问题以前我们曾经接触过,
应该不算陌生,多数学生不用商
量就可以自己解决,但是最主要
的是,让学生们感知到“新”的
地方
[活动2] 自主学习
【做一做】根据题意列出方程:
1、一个正方形的面积的2倍等于50,这个正方形的边长是
多少?
2、一个数比另一个数大3,且这两个数之积为这个数,求
这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则
这三个题就学生的已有水平,都
能列出方程
总结归纳部分在活动单的提示下
也应该难度不大
教师在学生没有说出整式方程的
基础上给学生于点拨。
铁片的长是多少?
观察上述四个方程结构特征,类比一元一次方程的定义,
自己试着归纳出一元二次方程的定义。
[活动3] 展示反馈
【挑战自我】判断下列方程是否为一元二次方程。
【我学会了】
1、只含有个未知数,并且未知数的最高次数
是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中
二次项,是一次项,是常数项,二
次项系数,一次项系数。
【例2】将下列一元二次方程化为一般形式,并分别指出它们
的二次项、一次项和常数项及它们的系数。
(1)81
42=
x(2))2
(5
)1
(
3+
=
-x
x
x
【巩固练习】教材第19页练习
检查不同层次的学生对本节知识
的掌握情况,设计了下列练习
教师巡视,指导
强调符号
[活动4] 达标测评
(A)1、判断下列方程是否是一元二次方程;
(1)0
2
3
3
1
22=
-
-x
x()(2)0
5
22=
+
-y
x ( )
本节知识的综合检测
不同的学生选择不同的题,例如,
你自己能独立完成的或经他人点
拨就能接受的,教师可以个别指
导。
九年级数学22.1一元二次方程(第一课时)活动单
学习目标1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点由实际问题列出一元二次方程和一元二次方程的概念。
难点由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
活动方案
[活动1] 探究新知
【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?
设剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?动手实验一下,并与同
桌交流你的做法和想法。
列出的方程是
[活动2] 自主学习
【做一做】根据题意列出方程:
1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?
2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?
观察上述四个方程结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义
【我学会了】
1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中二次项,是一次项,是常数项,二次项系数,一次项系数。