九年级数学22一元二次方程
- 格式:doc
- 大小:192.50 KB
- 文档页数:5
《22配方法公式法解一元二次方程》教案姓名年级性别教材第课教学课题教学目标1、利用配方法解数字系数的一般一元二次方程。
2、进一步理解配方法的解题思路。
课前检查作业完成情况:优□良□中□差□建议__________________________________________过程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:用配方法解一元二次方程ax²+bx+c=0(a≠0)的一般步骤:(1)移项:将常数项移到方程右边;(2)把二次项系数化为1:方程左右两边同时除以二次项系数(3)配方:方程左右两边同时加上一次项系数一半的平方,把原方程化为2()x m n+=的形式即将2x mx±的式子加上2()2m,可得到完全平方式⇒222()()22m mx mx x±+=±(4)当0n≥时,用直接开方法解变形后方程三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.【例题剖析】【衔接训练】1、一元二次方程230x -=的解是 ( )A 、3x =B 、3x =-C 、123,3x x ==-D 、123,3x x ==- 2、一元二次方程21090x x ++=可变形为 ( )A 、2(5)16x +=B 、2(5)34x +=C 、2(5)16x -=D 、2(5)25x +=5、用配方法解下列方程时,配方有错误的是 ( )A 、22430(2)7x x x --=-=化为 B 、227252730()416x x x -+=-=化为 C 、22525490()33636x x x --=-=化为 D 、22517215()416y y y +=+=化为 6、将二次三项式241x x -+配方后得 ( )A 、2(2)3x -+B 、2(2)3x --C 、2(2)3x ++D 、2(2)3x +-7、(1)226___(__)x x x ++=+; (2)224___(__)3x x x -+=-; (3)228___(__)x x x ++=+ (4)2214___(__)x x x -+=-(5)227___(__)x x x ++=+ (6)223___(__)5x x x -+=- (7)22___(__)x px x ++=+; (8)22___(__)b x x x a++=+;(9)222()___(__)x m n x x -++=- (10)22___(__)x ax x -+=- 8、用配方法解一元二次方程225033x x +-=时,此方程可变形为_____________,解得:12____,____x x == 9、解下列方程:(1)x 2=2 (2)4x 2-1=0 (3)(x +1)2= 2(4)22350x x --= (5) 22410x x --=(6)23(1)50x x +-= (7)(1)(2)12t t --=10、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长。
22.1 一元二次方程
教学目标:
知识与技能:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(≠0),能分清一元二次方程的二次项及系数、一次项及系数、常数项。
2、会用试验的方法估计一元二次方程的解。
数学思考及问题解决:
通过观察,归纳一元二次方程的概念。
情感态度:
在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
重点
一元二次方程的概念及一般形式
难点:
1.会正确识别一般式中的“项”及“系数”和列一元二次方程。
2.理解用试验的方法估计一元二次方程的解的合理性。
教学过程:
教学环节教学内容教师活动
学生活
动
设计意
图
情1.问题一
绿苑小区住宅设计,准备在每
两幢楼房之间,开辟面积为900平
方米的一块长方形绿地,并且长比
宽多10米,那么绿地的长和宽各
为多少?
2.问题二
学校图书馆去年年底有图书5
分析:对于问题一,设长
方形绿地的宽为x米,不难列出
方程x(x+10)=900
整理可得x2+10x-900=0.(1)
对于问题二,设这两年的年
平均增长率为x,我们知道,去
年年底的图书数是5万册,则今
年年底的图书数是5(1+x)万
册;同样,明年年底的图书数又
让学生
通过列
方程,感
受到有a
.。
22.2.4一元二次方程根的判别式基础知识1.一元二次方程根的判别式△=b 2-4ac 叫做一元二次方程02=++c bx ax (c b a a 、、,0≠是常数)的根的判别式。
2、△>0⇔有两个不相等的实数根; △=0⇔有两个相等的实数根; △<0⇔没有实数根; △≥0⇔有实数根.【提醒】应用根的判别式时,其前提条件为二次系数不为0.不解方程,判断方程根的情况时,须做到:(1)明确方程是常数系数方程还是字母系数;(2)确定二次方程中的a ,b ,c ;(3)求出b 2-4ac 的值,利用判别式的性质进行判断. 例题例1.已知:关于x 的方程2230x kx k ++-=.(1)试说明无论k 取何值时,方程总有两个不相等的实数根: (2)若5k =,请解此方程. 【答案】见解析;(2)x 1=12-,x 2=-2【分析】(1)由△=k 2-4×2(k -3)=k 2-8k +24=(k -4)2+8>0可得结论; (2)将k =5代入方程得2x 2+5x +2=0,利用配方法解方程即可. 【详解】解:(1)∵△=k 2-4×2(k -3)=k 2-8k +24=(k -4)2+8>0, ∴无论k 取何值时,方程总有两个不相等的实数根; (2)当k =5时,原方程为:2x 2+5x +2=0, ∴(2x +1)(x +2)=0, ∴x 1=12-,x 2=-2.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;也考查了配方法.例2.关于x 的一元二次方程2320mx x -+=有两个实数根. (1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.【答案】(1)98m ≤且0m ≠;(2)11x =,22x =【分析】(1)根据一元二次方程的定义及根的判别式列不等式组求解即可; (2)根据(1)得到m 的值,求出方程的解. 【详解】解:(1)∵2=(3)42m ∆--⨯=98m -,依题意,得0980m m ≠⎧⎨-≥⎩,解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为2320x x -+=. 解得11x =,22x =.【点睛】此题考查一元二次方程的定义,一元二次方程根的判别式,解一元二次方程,熟练掌握本章知识并应用解决问题是解题的关键. 练习1.下列一元二次方程中,没有实数根的是( ) A .2210x x -+= B .2210x x -+= C .2210x x --=D .220x x -=2.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是( ) A .13a >-B .13a <-C .13a >-且0a ≠D .13a ≥-且0a ≠3.如果关于x 的一元二次方程()222110k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠4.一元二次方程4x 2+1=﹣4x 的根的情况是( ) A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根6.一元二次方程2414x x +=的根的情况是______.7.如果关于x 的一元二次方程()21230k x kx k -+++=有实数根,则k 的取值范围是______________.8.若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为______.9.已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2620x x k -++=的两个根,则k 的值等于______________.10.若关于x 的方程221(56)(3)04m m x m x -+--+=无解,则m 的取值范围是______. 11.已知关于x 的一元二次方程210x x m -+-=有两个实数根. (1)求m 的取值范围;(2)若此方程的一个实数根为1,求m 的值及方程的另一个实数根.12.已知关于x 的一元二次方程0222=++-k x x . (1)若6k =-,求此方程的解;(2)若该方程无实数根,求k 的取值范围.13.已知:关于x 的一元二次方程2(1)210(1)m x mx m m --++=>. (1)求证:方程总有两个不相等的实数根.(2)m 为何整数时,此方程的两个实数根都为正整数.14.已知关于x 的方程x 2﹣2mx +m 2﹣1=0.(1)求证:对于任意实数m ,方程总有两个不相等的实数根; (2)若x =2是该方程的一个根,求代数式﹣3m 2+12m +2021的值.15.已知正方形ABCD 的对角线AC ,BD 的长是关于x 的方程202m x mx的两个实数根.(1)求m 的值; (2)求正方形的面积.参考答案1.A 【分析】根据一元二次方程根的判别式24b ac ∆=- 逐个求解即可. 【详解】A 、224(1)42170b ac ∆=-=--⨯⨯=-<,没有实数根,故A 正确;B 、224(2)4110b ac ∆=-=--⨯⨯=,有两个相等的实数根,故B 不正确;C 、224(1)42(1)90b ac ∆=-=--⨯⨯-=>,有两个不相等的实数根,故C 不正确;D 、224(2)41040b ac ∆=-=--⨯⨯=>,有两个不相等的实数根,故D 不正确. 故选:A . 【点睛】本题主要考查了一元二次方程根的判别式24b ac ∆=-,解题的关键是熟练运用一元二次方程根的判别式判断一元二次方程根的情况. 2.C 【分析】根据一元二次方程解的情况利用根的判别式可求出a 的取值范围,同时必须考虑0a ≠的情况. 【详解】解:关于x 的方程2230ax x +-= 有两个不相等的实数根,240b ac ∴->,即224(3)0a -⨯⨯->, 解得:13a >-,又a 是二次项系数,0a ∴≠,综上:a 的取值范围为:13a >-且0a ≠,故选:C . 【点睛】本题主要考查根据一元二次方程根的情况运用根的判别式求参,熟知(1)240b ac ->,方程有两个不相等的实数根;(2)24=0b ac -,方程有两个相等的实数根;(3)24<0b ac ,方程无根,是解题关键.3.B 【分析】若一元二次方程有两不等根,则根的判别式△=b 2-4ac >0,建立关于k 的不等式,求出k 的取值范围. 【详解】解:关于x 的一元二次方程()222110k x k x -++=有两个不相等的实数根,∴△>0,△=b 2-4ac =(2k +1)2-4k 2=4k +1>0.又∵方程是一元二次方程, ∴k ≠0,∴k >14-且k ≠0.故选:B . 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义. 4.C 【分析】把方程化为一般形式,计算其判别式,即可求得答案. 【详解】解:方程4x 2+1=-4x 化为一般形式为4x 2+4x +1=0, ∴Δ=42-4×4×1=0, ∴该方程有两个相等的实数根, 故选:C . 【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键. 5.C 【分析】先计算根的判别式得到△=[﹣(p +2)]2﹣4×2p =(p ﹣2)2,再利用非负数的性质得到△≥0,然后可判断方程根的情况.【详解】解:△=[﹣(p +2)]2﹣4×2p =(p ﹣2)2, ∵(p ﹣2)2≥0, 即△≥0,∴方程有两个实数根. 故选:C . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 6.有两个相等的实数根 【分析】根据一元二次方程根的判别式可进行求解. 【详解】解:由一元二次方程2414x x +=可得:24410x x -+=, ∴24164410b ac ∆=-=-⨯⨯=,∴一元二次方程2414x x +=的根的情况是有两个相等的实数根; 故答案为:有两个相等的实数根. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 7.32k ≤且1k ≠ 【分析】当0≥时,一元二次方程有实数根,结合二次项系数不为0,列出不等式求解即可. 【详解】由题意得2(2)4(1)(3)010k k k k ⎧--+≥⎨-≠⎩,解得32k ≤且1k ≠, 故填:32k ≤且1k ≠. 【点睛】本题考查根据一元二次方程根的情况求参数取值范围,熟记0≥时,一元二次方程有实数根是解题的关键,注意一元二次方程的二次项系数不等于0. 8.8或9 【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得. 【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n -+=的一个根, 因此有24640-⨯+=n , 解得8n =,则方程为2680x x -+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n -+=有两个相等的实数根,因此,根的判别式3640n ∆=-=, 解得9n =,则方程为2690x x -+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理; 综上,n 的值为8或9, 故答案为:8或9. 【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理. 9.6或7. 【分析】当m =4或n =4时,即x =4,代入方程即可得到结论,当m =n 时,即△=(﹣6)2﹣4×(k +2)=0,解方程即可得到结论. 【详解】解:∵m 、n 、4分别是等腰三角形(非等边三角形)三边的长, ∴当m =4或n =4时,即x =4, ∴方程为42﹣6×4+k +2=0, 解得:k =6,此时该方程为x 2﹣6x +8=0, 解得:x 1=4,x 2=2,此时三角形的三边为4,4,2,符合题意; 当m =n 时,即△=(﹣6)2﹣4×(k +2)=0, 解得:k =7,此时该方程为x 2﹣6x +9=0, 解得:x 1=x 2=3,此时三角形的三边为3,3,4,符合题意, 综上所述,k 的值等于6或7, 故答案为:6或7. 【点睛】本题考查了根的判别式,一元二次方程的解,等腰三角形的定义以及三角形的三边关系,正确的理解题意是解题的关键. 10.3m ≥ 【分析】根据题意,可分为两种情况进行分析:①2560m m -+=时,有(3)0m --=此时方程无解,可求出m 的值;②2560m m -+≠时,由根的判别式∆<0,即可求出m 的取值范围. 【详解】 解:根据题意,∵关于x 的方程221(56)(3)04m m x m x -+--+=无解, ①当2560m m -+=时,则原方程是一元一次方程,即1(3)04m x --+=; 则有:2560(3)0m m m ⎧-+=⎨--=⎩,解得:3m =;②当2560m m -+≠时,则原方程为一元二次方程, ∴3m ≠,2m ≠,∴221[(3)]4(56)04m m m ∆=---⨯-+⨯<,解得:3m >;综合上述,m 的取值范围是3m ≥; 故答案为:3m ≥.【点睛】本题考查了方程无解问题,根的判别式求参数的取值范围,以及解一元二次方程,解题的关键是熟练掌握方程无解问题,注意运用分类讨论的思想进行解题. 11.(1)54m ≤;(2)1m =,0x = 【分析】(1)根据判别式的意义得到△2(1)4(1)0m =--->,然后解不等式即可;(2)先根据方程的解的定义把1x =代入原方程求出m 的值,则可确定原方程变为20x x -=,然后利用因式分解法解方程得到方程的另一根.【详解】解:(1)根据题意得△2(1)4(1)0m =---≥, 解得54m ≤; (2)把1x =代入原方程得10m -=, 解得1m =,∴原方程变为20x x -=解方程得10x =,21x =, ∴方程的另一个根为0x =.【点睛】本题考查了一元二次方程20(a 0)++=≠ax bx c 的根的判别式△=-24b ac :当△0>,方程有两个不相等的实数根;当△0=,方程有两个相等的实数根;当△0<,方程没有实数根.也考查了解一元二次方程.12.(1)121,1x x ==;(2)1k >- 【分析】(1)把6k =-代入方程得2240x x --=,然后求解即可; (2)根据一元二次方程根的判别式可直接进行求解. 【详解】解:(1)把6k =-代入方程得2240x x --=, ∴2215x x -+=,即()215x -=,解得:121,1x x = (2)∵该方程无实数根,∴()244420b ac k ∆=-=-+<,解得:1k >-.【点睛】本题主要考查一元二次方程的解法及根的判别式,熟练掌握一元二次方程的解法及根的判别式是解题的关键.13.(1)见解析;(2)m =2或m =3【分析】(1)根据根的判别式求出△的值,再进行判断即可;(2)利用公式法求出方程的两个根,再根据方程的两个实数根都为正整数,即可求出m 的值.【详解】解:(1)∵△=(-2m )2-4(m +1)(m -1)=4>0,∴方程总有两个不相等的实数根.(2)∵△=(-2m )2-4(m +1)(m -1)=4>0,m -1≠0,∴x =()2221m m ±-,∴()1221212111m m x m m m ++===+---,()221221m x m -==-, ∵方程的两个实数根都为正整数,且m >1, ∴21m -是正整数, ∴m =2或m =3.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.(1)见详解;(2)2030【分析】(1)根据a =1,b =-2m ,c =m 2−1,求出△=b 2−4ac 的值,进而作出判断; (2)把x =2代入方程列出m 的一元二次方程,再整体代入求值,即可.【详解】(1)证明:∵a =1,b =-2m ,c =m 2−1,∴△=b 2−4ac =(-2m )2−4(m 2−1)×1=4>0, ∴对于任意实数m ,方程总有两个不相等的实数根;(2)∵x =2是该方程的一个根,∴22﹣2×2m +m 2﹣1=0,即: m 2-4m =-3, ∴﹣3m 2+12m +2021=-3 (m 2-4m )+2021=9+2021=2030.【点睛】本题主要考查了根的判别式以及代数式求值,解答本题的关键是掌握根的判别式与根个数的关系以及整体代入思想方法,此题难度不大.15.(1)2;(2)12.【分析】(1)先根据正方形的性质可得AC BD =,再利用一元二次方程根的判别式即可得; (2)先解一元二次方程可得1AC BD ==,再利用正方形的面积公式即可得.【详解】解:(1)在正方形ABCD 中,AC BD =,由题意得:关于x 的方程202m xmx 的根的判别式等于0,即220m m -=,解得122,0m m ==,0AC BD =>, 20m ∴=舍去,故m 的值为2;(2)由(1)得:方程为2210x x -+=,解得121x x ==,1AC BD ∴==,则正方形的面积为11111222AC BD ⋅=⨯⨯=. 【点睛】 本题考查了一元二次方程的几何应用、正方形的性质等知识点,熟练掌握一元二次方程根的判别式是解题关键.。
九九年年级级数数学学2222..11一一元元二二次次方方程程((第第一一课课时时))导导学学案案((高高玉玉华华))
学
习
目
标
1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程
化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点由实际问题列出一元二次方程和一元二次方程的概念。
难点
由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系
数还有常数项。
活动单导学案
[活动1] 探究新知
【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪
去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如
果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多
少?
设剪去的正方形的边长为xcm,你能列出满足条件的方程
吗?你是如何建立方程模型的?动手实验一下,并与同桌交流你
的做法和想法。
列出的方程是
这个问题以前我们曾经接触过,
应该不算陌生,多数学生不用商
量就可以自己解决,但是最主要
的是,让学生们感知到“新”的
地方
[活动2] 自主学习
【做一做】根据题意列出方程:
1、一个正方形的面积的2倍等于50,这个正方形的边长是
多少?
2、一个数比另一个数大3,且这两个数之积为这个数,求
这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则
这三个题就学生的已有水平,都
能列出方程
总结归纳部分在活动单的提示下
也应该难度不大
教师在学生没有说出整式方程的
基础上给学生于点拨。
铁片的长是多少?
观察上述四个方程结构特征,类比一元一次方程的定义,
自己试着归纳出一元二次方程的定义。
[活动3] 展示反馈
【挑战自我】判断下列方程是否为一元二次方程。
【我学会了】
1、只含有个未知数,并且未知数的最高次数
是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中
二次项,是一次项,是常数项,二
次项系数,一次项系数。
【例2】将下列一元二次方程化为一般形式,并分别指出它们
的二次项、一次项和常数项及它们的系数。
(1)81
42=
x(2))2
(5
)1
(
3+
=
-x
x
x
【巩固练习】教材第19页练习
检查不同层次的学生对本节知识
的掌握情况,设计了下列练习
教师巡视,指导
强调符号
[活动4] 达标测评
(A)1、判断下列方程是否是一元二次方程;
(1)0
2
3
3
1
22=
-
-x
x()(2)0
5
22=
+
-y
x ( )
本节知识的综合检测
不同的学生选择不同的题,例如,
你自己能独立完成的或经他人点
拨就能接受的,教师可以个别指
导。
九年级数学22.1一元二次方程(第一课时)活动单
学习目标1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点由实际问题列出一元二次方程和一元二次方程的概念。
难点由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
活动方案
[活动1] 探究新知
【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?
设剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?动手实验一下,并与同
桌交流你的做法和想法。
列出的方程是
[活动2] 自主学习
【做一做】根据题意列出方程:
1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?
2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?
观察上述四个方程结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义
【我学会了】
1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中二次项,是一次项,是常数项,二次项系数,一次项系数。