湖南省邵阳市选修1-1学案 1.1命题及其关系(1)
- 格式:doc
- 大小:125.00 KB
- 文档页数:3
公众号:惟微小筑湖南省邵阳市隆回县第二中学高中数学 1.3四种命题间的相互关系导学案 新人教A 版选修1 -1学习目标1理解四种命题之间的关系;2会利用等价命题来判断命题的真假;3培养分析问题及解决问题能力 .自主学习1:分析以下四个命题之间的关系(1 )假设()f x 是正弦函数 ,那么()f x 是周期函数;(2 )假设()f x 是周期函数 ,那么()f x 是正弦函数;(3 )假设()f x 不是正弦函数 ,那么()f x 不是周期函数;(4 )假设()f x 不是周期函数 ,那么()f x 不是正弦函数.(1 ) (2 )互为 (1 ) (3 )互为 (1 ) (4 )互为 (2 ) (3 )互为2、四种命题的真假性以 "假设2320x x -+= ,那么2x =〞为原命题 ,写出它的逆命题、否命题、逆否命题 ,并判断这些命题的真假并总结其规律性.通过上例真假性可总结如:原命题 逆命题 否命题 逆否命题真真假假四上表可知四种命题的真假性之间有如下关系:(1 ) .(2) .练习:判断以下命题的真假.(1)命题 "在ABC ∆中 ,假设AB AC > ,那么C B ∠>∠〞的逆命题;(2 )命题 "假设0ab ≠ ,那么0a ≠且0b ≠〞的否命题;(3 )命题 "假设0a ≠且0b ≠ ,那么0ab ≠〞的逆否命题;(4 )命题 "假设0a ≠且0b ≠ ,那么220a b +>〞的逆命题.合作探究例1判断命题 "假设220x y += ,那么0x y ==〞是真命题还是假命题 ?例 2 函数()f x 在(,)-∞+∞上是增函数,,a b R ∈,对于命题 "假设0a b +≥ ,那么()()()()f a f b f a f b +≥-+-.〞(1) 写出逆命题 ,判断其真假 ,并证明你的结论.(2) 写出其逆否命题,并证明你的结论.例3: 证明:假设p ² + q ² =2 ,那么p + q ≤ 2.目标检测:A 组1. 命题 "假设0x >且0y > ,那么0xy >〞的否命题是 ( ). 0,0x y ≤≤ ,那么0xy ≤0,0x y >> ,那么0xy ≤,x y 至|少有一个不大于0 ,那么0xy <,x y 至|少有一个小于0 ,或等于0 ,那么0xy ≤2. 命题 "正数a 的平方根不等于0”是命题 "假设a 不是正数 ,那么它的平方根等于0”的( ).3. 用反法证明命题 "23+是无理数〞时 ,假设正确的选项是 ( ). 23是有理数2或3是有理数23+是有理数4. 假设1x > ,那么21x >的逆命题是 否命题是B 组:5.命题 "假设a b > ,那么221a b ≥-〞的否命题为6. ,a b 是实数 ,假设20x ax b ++≤有非空解集 ,那么240a b -≥ ,写出该命题的逆命题、否命题、逆否命题并判断其真假.。
1.1.1 命题(教师用书独具)●三维目标1.知识与技能理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式.2.过程与方法多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.●重点、难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.(教师用书独具)●教学建议命题的概念在初中已经学习过,可以通过回顾初中知识引入,讲清命题概念中的两个问题,判断是否为陈述句,能否判断真假;重点放在命题的形式和判断命题真假的教学中,基于教材内容简单且以前曾经接触过,可以采用提问式、讨论式的教学方法,让学生在讨论、回答问题的过程中学习知识,增长技能,进而突破重难点.●教学流程创设问题情境,引出命题的概念,通过实例形成概念原型.⇒引导学生结合初中学习过的命题概念,比较、分析,揭示命题的特点及构成形式.⇒通过引导学生回答所提问题理解判断命题真假的方法.⇒通过例1及其变式训练,使学生掌握如何判断一个语句是否为命题.⇒通过例2及其互动探究,使学生掌握命题真假的判断方法,并对相关知识进行复习.⇒通过例3及其变式训练,完成对命题形式的认识与巩固,学会对命题进行改写.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第1页)课标解读1.了解命题的概念及构成.(重点)2.会判断命题的真假.(难点、易错点) 命题的概念【问题导思】观察下列实例:①一条直线l,不是与平面α平行就是相交;②4是集合{1,2,3,4}的元素;③若x∈R,方程x2-x+2=0无实根;④作△ABC∽△A′B′C′上述语句中,哪些能判断真假?【提示】①、②、③、④是祈使句不能判断真假.1.定义在数学中,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.分类①真命题:判断为真的语句叫做真命题;②假命题:判断为假的语句叫做假命题.命题的形式【问题导思】1.“同位角相等”是命题吗?如果是命题,是真命题还是假命题?【提示】是命题,为假命题.2.你能把“同位角相等”写成“若……,则……”的形式吗?【提示】若两个角为同位角,则这两个角相等.命题的形式:“若p,则q”,其中命题的条件是p,结论是q.(对应学生用书第1页)命题的判断判断下列语句是否为命题,并说明理由.(1)x-2>0;(2)梯形是不是平面图形呢?(3)若a与b是无理数,则ab是无理数;(4)这盆花长得太好了!(5)若x<2,则x<3.【思路探究】(1)这些语句是陈述句吗?(2)你能判断它们的真假吗?【自主解答】(1)不是命题,因为变量x的值没有给定,不能判断真假.(2)不是命题,疑问句不是命题.(3)是命题,因为此语句是陈述句且是假的.(反例a=b =2)(4)不是命题,感叹句不是命题.(5)是命题,因为此语句是陈述句且是真的.判断一个语句是否为命题的步骤:(1)语句格式是否为陈述句,只有陈述句才有可能是命题.(2)该语句能否判断真假,语句叙述的内容是否与客观实际相符,是否符合已学过的公理、定理,是明确的,不能模棱两可.判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作△ABC∽△A′B′C′.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.命题真假的判定判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【思路探究】语句――→命题定义判定是否是命题――→证明举反例真假命题【自主解答】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4,2x+1>0,是假命题.命题(3)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.1.真假命题的判定方法:(1)真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.2.解决本类问题的难点是对相关知识的理解与掌握.在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4时,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.命题的形式及改写把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)两个周长相等的三角形面积相等;(2)已知x,y为正整数,当y=x+1时,y=3,x=2;(3)当m>1时,x2-2x+m=0无实根;(4)当abc=0时,a=0且b=0且c=0.【思路探究】(1)这些命题的条件与结论分别是什么?(2)第2小题中大前提“已知x、y为正整数”该怎样处理?【自主解答】(1)若两个三角形周长相等,则这两个三角形面积相等,假命题;(2)已知x,y为正整数,若y=x+1,则y=3,x=2,假命题;(3)若m>1,则x2-2x+m=0无实根,真命题;(4)若abc=0,则a=0且b=0且c=0,假命题.1.解决本例问题的关键是找准命题的条件和结论,进而化成“若p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)奇数不能被2整除;(2)当(a-1)2+(b-1)2=0时,a=b=1;(3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.【解】(1)若一个数是奇数,则它不能被2整除,是真命题;(2)若(a-1)2+(b-1)2=0,则a=b=1,是真命题;(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.(对应学生用书第4页)因知识欠缺,导致对命题真假判断失误判断下列命题的真假.(1)若a >b ,则1a <1b; (2)x =1是方程(x -1)(x -2)=0的一个根.【错解】 (1)真命题. (2)假命题.【错因分析】 (1)误认为“两数比较大小时,大数的倒数反而小”,而忽视a 、b 的条件,当a >0,b <0时,a >b 但1a >1b. (2)因为方程的根为x =1或x =2,解题时误认为x =1不全面,而没有分析清逻辑关系.【防范措施】 平时学习时一定要对每一个基础知识理解透彻.【正解】 (1)假命题 (2)真命题1.判断一个语句是否是命题要注意两点:(1)是不是陈述句;(2)能否判断真假.2.命题的真假判断要结合已有知识,进行严格的逻辑推理,对于描述较为简洁的命题可以分清条件和结论后改写成“若p ,则q ”的形式再加以判断.(对应学生用书第4页)1.下列语句中是命题的是( )A.π2是无限不循环小数 B .3x ≤5C .什么是“温室效应”D .《非常学案》真好呀! 【解析】 疑问句和祈使句不是命题,C 、D 不是命题,对于B 无法判断真假,只有A 是命题.【答案】 A2.下列命题中是假命题的是( )A .5是15的约数B .对任意实数x ,有x 2<0C .对顶角相等D .0不是奇数 【解析】 对任意实数x ,有x 2≥0,所以B 为假命题.A 、C 、D 均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p ,则q ”的形式为________.【答案】 若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)求证:2是无理数.(2)若G 2=ab ,则a 、G 、b 成等比数列.(3)末位数字是0的整数能被5整除.(4)你是高二的学生吗? 【解】 (1)不是命题,(2)假命题,(3)真命题,(4)不是命题.一、选择题1.(2013·郑州高二检测)在空间,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行【解析】 A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D 为真命题.【答案】 D2.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A .这个数能被2整除B .这个数能被3整除C .这个数既能被2整除,也能被3整除D .这个数是6的倍数【解析】 “若p ,则q ”的形式:若一个数是6的倍数,则这个数既能被2整除,也能被3整除.【答案】 C3.下列命题中,是真命题的是( )A .{x ∈R |x 2+1=0}不是空集B .若x 2=1,则x =1C .空集是任何集合的真子集D .若1x =1y,则x =y 【解析】 A 中方程在实数范围内无解,故为假命题;B 中,若x 2=1,则x =±1,也为假命题;因为空集是任何非空集合的真子集,故C 为假命题,D 为真.【答案】 D4.给出命题:方程x 2+ax +1=0没有实数根,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3【解析】 方程无实根应满足Δ=a 2-4<0即a 2<4,故当a =0时适合条件.【答案】 C5.有下列命题:①若xy =0,则|x |+|y |=0;②若a >b ,则a +c >b +c ;③矩形的对角线互相垂直. 其中真命题共有( )A .0个B .1个C .2个 【解析】 ①由x ·y =0得到x =0或y =0,所以|x |+|y |=0不正确,是假命题;②当a >b 时,有a +c >b +c 成立,正确,所以是真命题;③矩形的对角线不一定垂直,不正确.是假命题.【答案】 B二、填空题6.把“正弦函数是周期函数”写成“若p ,则q ”的形式是________.【答案】 若函数为正弦函数,则此函数是周期函数.7.如果命题“若x ∈A ,则x +1x≥2”为真命题,则集合A 可以是________.(写出一个即可)【解析】 当x >0时,有x +1x≥2,故A 可以为{x |x >0}. 【答案】 {x |x >0}8.下列命题:①若xy =1,则x ,y 互为倒数,②平行四边形是梯形,③若a >b ,则ac 2>bc 2,④若x 、y 互为相反数,则x +y =0,其中真命题为________.【解析】 ①是真命题,②平行四边形不是梯形,假命题,③若a >b ,则ac 2≥bc 2,故为假命题,④为真命题.【答案】 ①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断真假:(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac >bc 时,a >b ;(4)角的平分线上的点到角的两边的距离相等.【解】 (1)若一个数是实数,则它的平方是非负数,真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac >bc ,则a >b ,假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等,真命题.10.判断下列命题的真假并说明理由.(1)合数一定是偶数;(2)若ab >0,且a +b >0,则a >0且b >0;(3)若m >14,则方程mx 2-x +1=0无实根. 【解】 (1)假命题.例如9是合数,但不是偶数.(2)真命题.因为ab >0,则a 、b 同号.又a +b >0故a 、b 不能同负,故a 、b 只能同正,即a >0且b >0.(3)真命题.因为当m >14时,Δ=1-4m <0; ∴方程无实根.11.若命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围.【解】 因为ax 2-2ax -3>0不成立,所以ax 2-2ax -3≤0恒成立.(1)当a =0时,-3≤0成立;(2)当a ≠0时,应满足⎩⎪⎨⎪⎧ a <0,Δ≤0,解之得-3≤a <0.由(1)(2),得a 的取值范围为[-3,0].(教师用书独具)下列四个命题:①若向量a ,b 满足a·b <0,则a 与b 的夹角为钝角;②已知集合A ={正四棱柱},B ={长方体},则A ∩B =B ;③在平面直角坐标系内,点M (|a |,|a -3|)与N (cos α,sin α)在直线x +y -2=0的异侧;④规定下式对任意a ,b ,c ,d 都成立.⎝ ⎛⎭⎪⎫a b c d 2=⎝ ⎛⎭⎪⎫a b c d ·⎝ ⎛⎭⎪⎫a b c d =⎝ ⎛⎭⎪⎫a 2+bc ab +bd ac +cd bc +d 2,则⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫1 00 1. 其中真命题是________(将你认为正确的命题序号都填上).【解析】 当a 与b 的夹角为π时,有a·b <0,但此时的夹角不为钝角,所以①是错误的;因为正四棱柱的底面是正方形,所以A ∩B =A ,故②也是错误的;因为|a |+|a -3|-2≥|a -a +3|-2=1>0,cos α+sin α-2=2sin ⎝⎛⎭⎪⎫α+π4-2<0,所以点M ,N 在直线x +y -2=0的异侧,故③是真命题;根据题意有⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α·⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α =⎝ ⎛⎭⎪⎫-sin α2+cos 2α -sin αcos α+cos αsin α-sin αcos α+cos αsin α cos 2α+sin 2α=⎝ ⎛⎭⎪⎫1 001, 所以④是真命题,故填③④.【答案】 ③④把下面命题补充完整,使其成为一个真命题.若函数f (x )=3+log 2x (x >0)的图象与g (x )的图象关于x 轴对称,则g (x )=________.【解析】 设g (x )图象上任一点(x ,y ),则它关于x 轴的对称点为(x ,-y ),此点在f (x )的图象上,故有:-y =3+log 2x 成立,即y =-3-log 2x (x >0).【答案】 -3-log 2x (x >0)。
第一章常用逻辑用语1.1命题及其关系(夏琳)一、教学目标1.核心素养培养数学抽象,形成逻辑推理能力.2.学习目标(1)了解命题及其逆命题、否命题与逆否命题.(2)命题的四种形式.3.学习重点了解命题及其逆命题、否命题与逆否命题.4.学习难点明白四种命题之间的关系,会利用两个命题互为逆否命题的关系判别命题的真假.二、教学设计(一)课前设计1.预习任务任务:阅读教材P1-P4,思考:如何判断命题的真假?四种命题之间有什么关系?2.预习自测1.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)对数函数是增函数吗?(3)2x<15;解:(1)真命题(2)疑问句,不是命题(3)不能判断真假,不是命题2.将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.解:(1)若两条直线相交,则有且只有一个交点;(2)若两个角是对顶角,则这两个角相等;(3)若两个三角形全等,则它们的面积相等.3.命题“若a>b,则a-1>b-1”的逆否命题是()A.若a-1≤b-1,则a≤bB.若a<b,则a-1<b-1C.若a-1>b-1,则a>bD.若a≤b,则a-1≤b-1答案:A解析:命题“若p,则q”的逆否命题为“若q,则p”.(二)课堂设计1.知识回顾在生活中,我们接触了哪些具体的命题?请大家阅读教材P2中所列举的6个命题例子,并试着列举生活与学习中的命题例子.2.问题探究问题探究一命题的含义1.什么是命题?思考:三位科学家由伦敦去苏格兰参加会议,越过边境不久发现了一只黑羊.“真有意思,苏格兰的羊都是黑的”天文学家谈论道.“这种推断不可靠”数学家应道.我们只能得出”在苏格兰有一些羊是黑色的”这样的结论.逻辑学家马上接着说我们真正有把握的不过是”在苏格兰至少有一个地方有至少一只黑羊”如何判断这些话的真假呢?阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3>12;(3)3>12吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.探究:学生自我举出一些命题,并判断它们的真假.想一想:请大家根据以上结论,思考什么叫做命题?一般地,在数学中用语言、符号或式子表达的,可以__________________叫做命题(proposition),其中判断为真的语句叫做__________(true proposition),判断为假的语句叫做__________(false proposition).说明:(1)并不是任何语句都是命题,只有那些能判断真假的语句才是命题.一般来说,疑问句、祈使句、感叹句都不是命题;也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.。
高中数学选修1-1《命题及其关系》教案High school mathematics elective 1-1 "proposition and its relat ionship" teaching plan高中数学选修1-1《命题及其关系》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文档下载后内容可按需编辑修改及打印。
一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:三、练习:教材 P4 1、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案课题 1.1.1命题及其关系(一)课型新授课教学目标1)知识方法目标了解命题的概念,2)能力目标会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5) ;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成“若,则”的形式.③例2:将下列命题改写成“若,则”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3.小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。
1.1.1命题及其关系学案(一)学习目标:能说出一个语句是不是命题,会判断一个命题的真假,并会将一个命题改写成“若p ,则q ”的形式.学习重点:命题的改写.学习方法:学生自主学习,探究合作法一、新旧知识连接:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等; (2)312>; (3)312>吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点; (6)他是个高个子.二、我能自学:1.认识命题的概念:①命题:可以 叫做命题. 也就是说,判断一个语句是不是命题关键是看它是否符合“ ”和“ ”这两个条件.所以上述6个语句中,(1)(2)(4)(5)是命题.②真命题: 叫做真命题;假命题: 做假命题.上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a 是素数,则a 是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x <;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)2. 将一个命题改写成“若p ,则q ”的形式:①例1中的(2)就是一个“若p ,则q ”的命题形式,我们把其中的p 叫做 ,q 叫做 . ③例2:将下列命题改写成“若p ,则q ”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的认识,会判断一个命题的真假,并会将命题改写“若p ,则q ”的形式.三、达标训练:(学生自练→个别回答→教师点评)1. 课堂练习:教材 P4 2、32. 课后作业:教材P8 A 组 第1题1. 1.2 四种命题及其关系学案(二)学习目标:能写出原命题的逆命题、否命题与逆否命题,学习重点:四种命题的概念及相互关系.一、新旧知识连接:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;条件: ;结论: .二、我可以自学:1. 阅读教材后写出下表中四种命题的形式:教材P6探究结论原命题逆命题 否命题 逆否命题 ①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析→学生说出答案→教师点评②例1:类比①写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练→个别回答→教师点评)③讨论:(教材P7探究)与同学讨论并写出原命题:“若2320x x -+=,则2x =”的逆命题、否命题、逆否命题,同时判断出各自的真假间.④总结③得出结论一: ;(教材P7)结论二: .⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)2. 小结:四种命题的概念及相互关系.三、达标训练:(学生自练→个别回答→教师点评)1. 课堂练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+;(3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 课后作业:教材P8页 第2(2)题 第3(1)题1.2 充分条件和必要条件学案学习目标:针对具体命题,能说出命题的充分条件、必要条件;学习重点: 对命题条件的充分性、必要性的判断.学习方法:师生共研讨、生生互助。
湖南省邵阳市隆回县第二中学高中数学 1.1命题导学案新人教A版选修1-1 学习目标:1.了解命题的概念;假命题与真命题;几种语句2.回忆旧知识,重现旧知识,感受普通语句中的命题概念3.否定之否定原理,抓主要矛盾自主学习:1.在数学中,我们把用、、或表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题练习:下列语句中:(1)若直线//a b,则直线a和直线b无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x=,则1x=;(5)两个全等三角形的面积相等;(6)3能被2整除.其中真命题有,假命题有2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的 .合作探究例1:下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(5)2-=;(2)2(6)15x>.命题有,真命题有假命题有 .例2 指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:(2)条件p:结论q:变式:将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.目标检测:A组1.指出下列哪些是命题:(1)三角函数是周期函数吗?(2)但愿每个三次方程都有三个实数根。
(3)指数函数图象真漂亮!(4)每个不小于6的偶数都可以表示成两个奇素数之和。
(5)难道对数函数的真数不大于0?(6)这是一幅美丽的画卷。
2.指出下列命题的真假(1)lg100=2(2)所有无理数都是实数(3)垂直同一个平面的两条直线平行(4)函数y=2x+1是单调增函数(5)设a,b,c,d是任意实数,如果a>b,c>d,则ac>bd(6)Sin(α+β)=sinα+sinβ(α,β为任意角)B组1.指出下列命题中的条件p和结论q:(1)等腰三角形两腰的中线相等;(2)偶函数的图像关于y轴对称;(3)垂直于一个平面的两个平面平行。
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,会写出某命题的逆命题、否命题和逆否命题.2.认识四种命题之间的关系以及真假性之间的关系.3.利用命题真假的等价性解决简单问题.预习提示:1.给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角;你能说出命题(1)与其他三个命题的条件与结论有什么关系吗?2.为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题,否命题,逆否命题该如何表示?3.原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?4.1的中四个命题的真假性是怎样的?5.如果原命题是真命题,它的逆命题是真命题吗?它的否命题呢?它的逆否命题呢?课堂探究:例1、把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【自主解答】变式训练:分别写出下列命题的逆命题、否命题和逆否命题.(1)负数的平方是正数;(2)若a>b,则ac2>bc2.例2、写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【自主解答】变式训练:下列命题中正确的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.A.①②③B.①③C.②③D.①例3、若a2+b2=c2,求证:a,b,c不可能都是奇数.变式训练:“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”,判断其逆否命题的真假.当堂达标:1.已知a,b∈R,命题“若a+b=1,则a2+b2≥12”的否命题是()A.若a2+b2<12,则a+b≠1B.若a+b=1,则a2+b2<12C.若a+b≠1,则a2+b2<12D.若a2+b2≥12,则a+b=12.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.无关命题3.命题“常用对数不是1的数不是10”的逆否命题为________,是________命题(填真、假).4.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若mn<0,则方程mx2-x+n=0有实数根;(2)若ab=0,则a=0或b=0.[答案]预习提示:1.【提示】命题的(1)条件和结论与命题(2)的条件和结论恰好互换了.命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.2.【提示】逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.3.【提示】互逆、互否、互为逆否.4.【提示】(1)真命题,(2)假命题,(3)假命题,(4)真命题.5.【提示】原命题为真,其逆命题不一定为真,其否命题不一定为真,其逆否命题一定是真命题.课堂探究:例1、【自主解答】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等.逆命题:若两个三角形三边对应相等,则这两个三角形全等.否命题:若两个三角形不全等,则这两个三角形三边对应不全相等.逆否命题:若两个三角形三边对应不全相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0,逆命题:若x2-3x+2=0,则x=2,否命题:若x≠2,则x2-3x+2≠0,逆否命题:若x2-3x+2≠0,则x≠2.变式训练:【解】(1)原命题可以改写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.(2)逆命题:若ac2>bc2,则a>b;否命题:若a≤b,则ac2≤bc2;逆否命题:若ac2≤bc2,则a≤b.例2、【自主解答】(1)逆命题:若一个四边形的对角线互相垂直,则它是菱形,是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直,是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形,是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高,是真命题.否命题:若两个三角形不等高,则这两个三角形不全等,是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.变式训练:[解析]①原命题的否命题为“若x2+y2=0,则x,y全为零”.真命题.②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.假命题.③原命题的逆否命题为“若x2+x-m=0无实根,则m≤0”.∵方程x2+x-m=0无实根,∴判别式Δ=1+4m<0,m<-1 4.故m≤0,为真命题.故正确的命题是①,③,选B.[答案] B例3、【自主解答】若a,b,c都是奇数,则a2,b2,c2都是奇数,所以a2+b2为偶数,而c2为奇数,即a2+b2≠c2.即原命题的逆否命题为真命题,故原命题为真,所以若a2+b2=c2,则a、b、c不可能都是奇数.变式训练:【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.∴Δ=(2a+1)2-4(a2+2)<0,则4a-7<0,解得a<7 4.因此a<2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题. 当堂达标:1.[解析]“a+b=1”,“a2+b2≥12”的否定分别是“a+b≠1”,“a2+b2<12”,故否命题为:“若a+b≠1,则a2+b2<12”.[答案] C2.[解析]从两种命题的形式来看是条件与结论换位,因此为逆命题.[答案] A3.[解析]命题“常用对数不是1的数不是10”的逆否命题为“10的常用对数是1”,是真命题.[答案]10的常用对数是1真4.【解】(1)逆命题:若方程mx2-x+n=0有实数根,则mn<0.假命题;否命题:若mn≥0,则方程mx2-x+n=0没有实数根.假命题;逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0且b≠0,则ab≠0.真命题.。
1.1.1 命题学习目标:1.了解命题的概念.(难点)2.理解命题的构成形式,能将命题改写为“若p ,则q ”的形式.(重点)3.能判断一些简单命题的真假.(难点,易错点)[自 主 预 习·探 新 知]1.命题的定义与分类(1)命题的定义:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.(3)分类命题⎩⎪⎨⎪⎧真命题:判断为真的语句假命题:判断为假的语句思考1:(1)“x -1=0”是命题吗?(2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗? [提示] (1)“x -1=0”不是命题,因为它不能判断真假.(2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.2.命题的结构(1)命题的一般形式为“若p ,则q ”.其中p 叫做命题的条件,q 叫做命题的结论. (2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式. 思考2:命题“实数的平方是非负数”的条件与结论分别是什么? [提示] 条件是“一个数是实数”,结论是:“它的平方是非负数”.[基础自测]1.思考辨析(1)一个命题不是真命题就是假命题. ( ) (2)一个命题可以是感叹句. ( ) (3)x >5是命题.( )[解析] 根据命题的定义知(1)正确,(2)、(3)错误. [答案] (1)√ (2)× (3)× 2.下列语句是命题的是( ) ①三角形内角和等于180°;②2>3; ③一个数不是正数就是负数;④x >2; ⑤2018央视狗年春晚真精彩啊! A .①②③B .①③④C.①②⑤ D.②③⑤A[①、②、③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④、⑤不是命题.]3.下列命题中,真命题共有( )【导学号:97792000】①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1个B.2个C.3个D.4个A[①、②、④是假命题,③是真命题.][合作探究·攻重难]A.x2-1=0 B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.[解析](1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.[答案](1)B (2)①④感叹句等都不是命题对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若1.判断下列语句是不是命题,并说明理由.(1)函数f(x)=3x(x∈R)是指数函数;(2)x2-3x+2=0;(3)若x∈R,则x2+4x+7>0.(4)垂直于同一条直线的两条直线一定平行吗?(5)一个数不是奇数就是偶数;(6)2030年6月1日上海会下雨.[解](1)是命题,满足指数函数的定义,为真命题.(2)不是命题,不能判断真假.(3)是命题.当x∈R时,x2+4x+7=(x+2)2+3>0能判断真假.(4)疑问句,不是命题.(5)是命题,能判断真假.(6)不是命题,不能判断真假.改为“若p则q”的形式,则p是________,q是________.【导学号:97792001】(2)把下列命题改写成“若p,则q”的形式,并判断命题的真假.①函数y=lg x是单调函数;②已知x,y为正整数,当y=x+1时,y=3,x=2;③当abc=0时,a=0且b=0且c=0.[思路探究] 解决此类题目的关键是找到命题的条件和结论,然后用适当的形式改写成“若p,则q的形式”.[解析](1)命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.[答案]一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧.(2)①若函数是对数函数y=lg x,则这个函数是单调函数.②已知x,y为正整数,若y=x+1,则y=3,x=2.③若abc=0,则a=0且b=0且c=0.2.把下列命题改写成“若p ,则q ”的形式. (1)当1a >1b时,a <b ;(2)垂直于同一条直线的两个平面互相平行; (3)同弧所对的圆周角不相等. [解] (1)若1a >1b,则a <b ;(2)若两个平面垂直于同一条直线,则这两个平面平行; (3)若两个角为同弧所对的圆周角,则它们不相等.1.如何判断一个命题是真命题?提示:根据命题的条件,利用定义、定理、性质论证命题的正确性. 2.如何判断一个命题是假命题? 提示:举出一个反例即可.给定下列命题: ①若a >b ,则2a >2b;②命题“若a ,b 是无理数,则a +b 是无理数”是真命题; ③直线x =π2是函数y =sin x 的一条对称轴;④在△ABC 中,若AB →·BC →>0,则△ABC 是钝角三角形. 其中为真命题的是________.[思路探究] 命题――――――――→严格的逻辑推理真命题―――――→恰当的反例假命题 [解析] 对于①,根据函数f (x )=2x的单调性知①为真命题.对于②,若a =1+3,b =1-3,则a +b =2不是无理数,因此②是假命题. 对于③,函数y =sin x 的对称轴方程为x =π2+k π,k ∈Z ,故③为真命题.对于④,因为AB →·BC →=|AB →||BC →|cos(π-B )=-|AB →||BC →|cos B >0,故得cos B <0,从而得B 为钝角,所以④为真命题.[答案] ①③④1.下列语句不是命题的个数为( )①2<1;②x <1;③若x <1,则x <2;④函数f (x )=x 2是R 上的偶函数. A .0 B .1 C .2 D .3B [语句①、③、④都能判断真假,是命题,语句②不能判断真假,不是命题.] 2.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是( ) A .这个四边形的对角线互相平分 B .这个四边形的对角线互相垂直C .这个四边形的对角线既互相平分,也互相垂直D .这个四边形是平行四边形C [把命题改写成“若p ,则q ”的形式后可知C 正确.故选C.] 3.下列命题是真命题的为( )【导学号:97792002】A .若a >b ,则1a <1bB .若b 2=ac ,则a ,b ,c 成等比数列 C .若|x |<y ,则x 2<y 2D .若a =b ,则a =bC [对于A ,若a =1,b =-2,则1a >1b,故A 是假命题.对于B ,当a =b =0时,满足b 2=ac ,但a ,b ,c 不是等比数列,故B 是假命题. 对于C ,因为y >|x |≥0,则x 2<y 2是真命题.对于D ,当a =b =-2时,a 与b 没有意义,故D 是假命题.]4.命题“关于x 的方程ax 2+2x +1=0有两个不等实数解”为真命题,则实数a 的取值范围为________.(-∞,0)∪(0,1) [由题意知⎩⎪⎨⎪⎧a ≠0Δ=4-4a >0,解得a <1,且a ≠0.]5.把下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)末位数字是0的整数能被5整除; (2)偶函数的图象关于y 轴对称; (3)菱形的对角线互相垂直.【导学号:97792003】[解] (1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题. (2)若一个函数是偶函数,则这个函数的图象关于y 轴对称,为真命题. (3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.。
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
高中数学选修1-1《命题及其关系》教案【教学目标】1. 了解命题的定义和基本性质;2. 掌握命题的简单推理;3. 了解命题的关系,掌握等价命题、逆命题、反命题和充分必要条件的概念。
【教学重点】1. 命题的定义和基本性质;2. 命题的简单推理。
【教学难点】1. 熟练掌握命题间的关系;2. 理解和掌握充分必要条件的概念。
【教学方法】讲授法、示范法、讨论法。
【教学资源】教科书、习题集、课件。
【教学过程】1. 导入:介绍命题的定义引导学生回忆从小学开始学习的命题,如“地球是圆形的”“20大于10”等,提问这些语句是否可以被人们证明或证伪,从而引出命题的定义。
2. 讲解命题的定义和基本性质(1)命题定义:命题是可以判断真假的陈述句。
(2)命题的基本性质:1) 真命题和假命题:命题只有真和假两种情况。
2) 否定命题:将命题否定,得到的命题称为否定命题。
3) 合取命题:将两个命题用“∧”连接起来,得到的命题称为合取命题。
4) 析取命题:将两个命题用“∨”连接起来,得到的命题称为析取命题。
5) 充分条件:假设条件成立,则结论一定成立。
6) 必要条件:若结论成立,则条件一定成立。
3. 操练命题的简单推理(1)合取、析取的运算规律(2)否定命题的推理(3)充分条件和必要条件的推理(4)结合课堂练习进行讲解,让学生完成相应的练习题。
4. 讲解命题的关系(1)等价命题:两个命题具有相同的真值。
(2)逆命题:将条件和结论分别交换位置得到的命题。
(3)反命题:将条件和结论都取否定得到的命题。
(4)充分必要条件(简称“充要条件”):当且仅当条件命题的充分条件成立且必要条件成立时,原命题成立。
5. 操练命题的关系(1)判断命题是否等价(2)判断命题是否为相应命题之一(3)完成相关练习。
6. 小结结合本课所学,对命题及其关系进行小结,提高学生对于命题的认识。
【课堂练习】1. 合取式“p∧q”与析取式“p∨q”是否互为等价命题?请说明理由。
1.1命题及其关系1 -1 -1命题的概念和例子1-1-2命题的四种形式学习目标课前自主学案课堂互动讲练1 •通过实例了解命题的概念,会判断命题的真假. 2・了解命题的四种形式,掌握四种命题之间的关系,并会判断四种命题的真假性.3.学会应用命题的等价性来证明命题.温故夯基仁对顶角相等;两直线平行,同位角相等.这两个例子都能判断其真假.2.垂直于同一条直线的两条直线互相平行是错误的.知新益能1.命题可以判断成立乎T密立成立的命题叫竊命题舉命题■的语句叫作命题,-不成立的命题叫思考感悟1.如何理解命题的定义?提示:一个语句是命题,必须具备两个特征①是陈述句,祈使句、疑问句等一般都不是命题;②可以判断真假,这个语句对还是错是唯一确定的,如同元素与集合的关系是明确的, 不能模棱两可.2.四种命题结构思考感悟2.在四种命题中,原命题是固定的吗?提示:不是.原命题是人为指定的,是相对于其原命题:若p 八则q 4否命题:若他三种命题而言的,可以把任何一个命题看作原命题,进而研究它的其他形式.3・四种命题的相互关系4.四种命题的真假性(1) 四种命题的真假性,有且仅有下面四种情况(2) 四种命题的真假性之间的关系①两个命题互为逆否命题,它们禅同的真假性.②两个命题互为逆命题或否命题,它们的真假性没有关系•思考感悟3.在四种命题中,真命题的个数可能会有几种情况?提示:因为原命题和逆否命题,逆命题和否命题互为逆否命题,它们同真同假,所以真命题的个数可能为0,2,4・命题及其真假的判断(1) 判断一个语句是否是真命题,关键在于能否判断其真假.一般地,陈述句“兀是有理数”,反意疑问句"难道矩形不是平行四边形吗?”都是命题;而祈使句“求证边是无理数”,疑问句"兀是无理数吗”,感叹句"向2011年大运会志愿者致敬!”等就不是命题.(2) 判断一个命题的真假时,既可以直接对该命题进行判断,也可以根据命题之间的关系判断.判断下列语句是否是命题,若是, 判断其真假,并说明理由.(1)求证需是无理数;(2)X2+4X+4^0;(3) 你是高一的学生吗?(4) 一个正整数不是质数就是合数;(5)若x+y^Dxy都是有理数,则x、y都是有理数;(6)60x+9>4;(7)若xeR,则x2+4x+7>0.【思路点拨】借助命题的定义“可以判断真假的陈述句叫作命题”来判断.【解】(1)祈使句,不是命题.(2) X2+4X+4=(X+2)2^0,它包括X2+4X+4>0和X2+4X+4=0,对于工WR,可以判断真假,它是命题,且是真命题.(3) 是疑问句,不涉及真假,不是命题.(4) 是假命题,整数1既不是质数,也不是合数.(5) 是假命题,书+(—四)和书X(—书)都是有理数,但书、一书都是无理数.(6) 不是命题,这种含有未知数的语句,未知数的取值能否使不等式成立,无法确定.(7) 是真命题,因为x2+4x+7 = (x+2)2+3 >0,对于XWR,不等式恒成立.【名师点评】(1)在判断一个命题的真假时,要分清原命题的条件和结论.(2)在说明一个命题为真命题时,应进行严格的推理证明;而要说明一个命题是假命题 ,只要举出一个反例即可.自我挑战1判断下列命题的真假:(1) 已知日,b f c, cfeR,若日He或bHd, 则日+bHc+d;(2) 2010年亚运会在中国广州举行;(3) 若则方程x2-2x+m=0无实数根(4)空集是任何集合的真子集;(5) 垂直于同一个平面的两个平面互相平行解:⑴假命题.反例:1H4或5H2,而1 + 5=4+2.(2) 真命题.这是事实.(3)真命题.因为m>1^A=4-4m<0=>方程x2—2x+m=0无实数根・(4) 假命题.空集不是它本身的真子集.(5) 假命题.反例:有可能互相垂直,如墙角.拷点二•命题的结构一般情况下,命题的条件与结论是比较清楚的,但有一部分命题只是一个句子,此时, 应把原命题改写成“若P,贝!的形式,即要分清题目的条件和结论.的形式,并判断命题的真假.(1) ac>bc=^a>b;(2) 已知兀、y为正整数,当j=x+1时, y=3, x=2;⑶当加>丁时,mx2—x+l=0无实根;⑷当abc=0 时,° = 0 或〃=0 或c=0;⑸当X2—2x—3=0时,工=3或兀=—1.【思路点拨】找准命题的条件和结论是解决这类题目的关键,要注意大前提的写法. 【解】⑴若ac>bc,则Q方,假命题.⑵已知兀、y为正整数,若y=x+l f则y=3 且兀=2,假命题.1⑶若加〉a,则mx2—x+l=O无实根,真命题.(4) 若abc=O,则d=0或b=0或c=0,真命题.(5) 若兀彳―2x—3=0,则x=3或工=—1,真命题.【名师点评】(1)把一个命题改写成“若P ,则q”的形式,首先要确定命题的条件和结论,若条件和结论比较隐含,要补充完整・要判断“若P,则q”命题的真假,若能由“矿通过逻辑推理得出“了,则可确定其为真命题;若能举出反例说明由“p”不能推出“了,则该命题是假命题.(2) 若将含有大前提的命题改写为“若p,贝!J q”的形式时,大前提不变,仍作为大前提 ,不能写在条件p中.器种命题及其真假判断由于互为逆否命题的两个命题是等价命题,它们同真同假,所以一个命题的逆命题和它的否命题同真同假,一个命题与它的逆否命题同真同假.当一个命题的真假不易判断时,可以通过判断其逆否命题的真假来判断.w判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,同时判断这些命题的真假.(1)若日>b,贝iac1>bc2・⑵若在二次函数『=ax2+bx+c中,ft2—4ac<0,则该二次函数图象与x轴有公共点【思路点拨】【解】(1)该命题为假.当c=0时,abe2;逆命题:若ac2>dc2,贝!|a>d,为真;否命题:若aWb,贝ija^bc2,为真;逆否命题:若a^bc2,贝UaWb,为假.⑵该命题为假,•・•当夕一4眈<0时,二次方程日x2+bx+c=0没有实数根,因此二次函数『=ax2+bx+ c的图象与x轴无公共点;逆命题:若二次函数y= ax2+bx+c的图象与x轴有公共点,则b2-4ac<0,为假;否命题:若在二次函数y= ax2+bx+c中,b2—4日cMO,则该二次函数的图象与x轴没有公共点,为假;逆否命题:若二次函数y=^x2+bx+c的图象与x轴没有公共点,则俨一4日cMO,为假【名师点评】(1)写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写.(2)在判断原命题及其逆命题、否命题以及逆否命题的真假时,可借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判断. 自我挑战2把下列命题写成“若p,则q” 的形式,并写出它们的逆命题、否命题、逆否命题,然后判断其真假.(1) 正方形的四条边相等;(2) 负数的平方是正数.W:(1)原命题:若一个四边形是正方形,则它的四条边相等,真命题;逆命题:若一个四边形的四条边相等,则它是正方形,假命题;否命题:若一个四边形不是正方形,则它的四条边不相等,假命题;逆否命题: 若一个四边形的四条边不相等, 则它不是正方形,真命题.(2)原命题:若一个数是负数,则这个数的平方是正数,真命题;逆命题:若一个数的平方是正数,则这个数是负数,假命题;否命题:若一个数不是负数,则这个数的平方不是正数,假命题;逆否命题:若一个数的平方不是正数,则这个数不是负数,真命题.由于原命题和它的逆否命题有相同的真假性 ,即互为逆否命题的命题具有等价性,所以 我们在直接证明某一个命题为真命题有困难 时,可以通过证明它的逆否命题为真命题, 来间接地证明原命题为真命题・Ji 等价命题的应用O 判断命题“已知日,X为实数,若关于X的不等式x2+(2a+1)x+a2+2^ 0的解集非空,贝怙却”的逆否命题的真假.【思路点拨】写出逆否命题—判断真假【解】 法一:原命题的逆否命题:已知日,X 为实数,若日V1,则关于X 的不等 式x2+(2a+1 )x+ a 2+2 WO 的解集为空集• 判断其真假如下: 抛物线 y=x 2+(2a+1)x+a 2+2 开口 向上, 判别式A=(2日+1尸一4(护+2)=4日一7・ 因为日v*l,所以4a —7<0. 即抛物线 命题真假 原命题与逆杏命题同真同假 得出逆否命 题的真假y=x2+(2a+l)x+a2+2与x 轴无交点.所以关于x的不等式x2+(2a+l)x+a2 +2W0的解集为空集.故原命题的逆否命题为真.法二:先判断原命题的真假:因为a, x为实数,且关于x的不等式x2+(2a+l)x+a2+2^0的解集非空,所以A=(2a + l)2-4(«2+2)^0,即4a—7N0,7 7解得j.因为所以所以原命题为真. 又因为原命题与其逆否命题等价, 所以逆否命题为真.【名师点评】命题的问题可以和其他很多知识相结合,例如本题就是一道有关集合, 不等式的解集,二次函数的图象,四种命题的关系的综合题.要求对这几方面的内容非常熟练,且要有一定的分析推理能力,通过一题多解,培养学生创新的能力.1. 四种命题的理解(1)原命题:它是相对其他三种命题而言人为指定的命题,不是固定不变的,可以把任意一个命题看成原命题,进而研究它的其他形式.(2)逆命题,把原命题的条件作为结论,而原命题的结论作为条件,得到的命题称为原命题的逆命题.(3) 否命题:将原命题中的条件和结论同时加以否定后得到的命题称为原命题的否命题(4) 逆否命题:将原命题的条件加以否定,作为结论,而原命题的结论加以否定作为条件得到的新命题称为原命题的逆否命题.2. 四种命题的真假判断(1)原命题为真,它的逆命题可以为真, 可以为假.(2) 原命题为真,它的否命题可以为真,也可以为假.(3) 原命题为真,它的逆否命题一定为真・(4) 互为逆否的命题同真同假,同一个命题的逆命题和否命题是一对互为逆否的命题, 所以它们同真同假.综合上述四条可知,在同一个命题的四种命题中,真命题的个数要么是0,要么是2,要么是4・。
新课程标准数学选修1—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1).3、(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n +∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x y y ∈是有理数}.6、(1)32≠; (2)54≤; (3)00,0x R x ∃∈≤;(4)存在一个正方形,它不是平行四边形.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.。
【学习目标】
1. 掌握命题、真命题及假命题的概念;
2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题.。
【自主学习】(阅读教材P2—P6,完成下列填空)
一、课前准备
复习1:什么是陈述句?
.
复习2:什么是定理? 什么是公理?
.
二、知识点:
1.在数学中,我们把用、、或
表达的,可以的叫做命题.其中的语句叫做真命题,的语句叫做假命题
2.命题的数学形式:“若p,则q”,命题中的p叫做命题的,q叫做命题的.
3.四种命题的概念
(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做,其中一个命题叫做
原命题为:“若p,则q”,则逆命题为:“
”.
(2) 一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定, 我们把这样的
两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定, 我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,则q”,则否命题为:“”
【合作探究】
1、教材例1
练习1:判断下列命题的真假:
(1)能被6整除的整数一定能被3整除;
(2) 若一个四边形的四条边相等,则这个四边形是正方形;
(3) 二次函数的图象是一条抛物线;
(4) 两个内角等于45︒的三角形是等腰直角三角形.
2、 教材例2、例3
练习2:把下列命题改写成“若p ,则q ”的形式,并判断它们的真假.
(1) 等腰三角形两腰的中线相等;
(2) 偶函数的图象关于y 轴对称;
(3) 垂直于同一个平面的两个平面平行.
练习3:写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:
(1)若一个整数的末位数是0,则这个整数能被5整除;
(2)若一个三角形的两条边相等,则这个三角形的两个角相等;
(3)奇函数的图像关于原点对称.
【目标检测】
A 组:
1.下列语名中不是命题的是 ( ).
A.2是奇数
B.正弦函数是周期函数
C.{1,2,3,4,5}x ∈
D.125>
2.设M 、N 是两个集合,则下列命题是真命题的是 ( ).
A.如果M N ⊆,那么M N M ⋂=
B.如果M N N ⋂=,那么M N ⊆
C.如果M N ⊆,那么M N M ⋃=
D.M N N ⋃=,那么N M ⊆
3.下面命题已写成“若p ,则q ”的形式的是 ( ).
A.能被5整除的数的末位是5
B.到线段两个端点距离相等的点在线段的垂直平分线上
C.若一个等式的两边都乘以同一个数,则所得的结果仍是等式
D.圆心到圆的切线的距离等于半径
4.下列语句中:(1)2+2)1002是个大数(3)好人一生平安(4)968能被11
整除,其中是命题的序号是
5.将“偶函数的图象关于y 轴对称”写成“若p ,则q ”的形式,
p : ,q :
B 组:
1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假
(1)若,a b 都是偶数,则a b +是偶数;
(2)若0m >,则方程20x x m +-=有实数根.
2.把下列命题改写成“若p ,则q ”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:
(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;
(2)矩形的对角线相等.
【作业布置】
任课教师自定。