《传热学》第十章 传热和换热器
- 格式:pptx
- 大小:2.34 MB
- 文档页数:29
第十章 传 热 和 换 热 器 第一节通过肋壁的传热图10-1 通过肋壁传热Φ = 1h 1A (1f t -1w t ) (1) Φ =δλ1A (1w t -2w t ) (2) Φ = 2h 2A '(2w t -2f t )+2h 2A ''(m w t ,2-2f t ) (3) 肋片效率222,222222,222)()(f w f m w f w f m w f t t t t t t A h t t A h --=-''-''=η (4)Φ= 2h (2A ' +2A ''f η) (2w t -2f t ) = 2h 2A η (2w t -2f t ) (5) 肋壁总效率η=222A A A f η''+' 。
肋壁传热公式: Φ =ηλδ221112111A h A A h t t f f ++- =ηλδ2211211A h A h t t f f ++- 1A W (10-1)Φ = 1k 1A (21f f t t -) W (10-2)1k --光壁面面积1A 为基准的传热系数1k =ηβλδ21111h h ++ W/(2m ·K) (10-3)12A A =β 2k --2A 为基准的传热系数,用2k 表示,即Φ = 2212112211A h A A A h A t t f f ηλδ++- =ηβλδβ212111h h t t f f ++-2A = 2k 2A (21f f t t -) (10-4) 式中: 2k =ηβλδβ21111h h ++ W/(2m ·K) (10-5)对1k 热阻 )(f R +λδ对2k 热阻 βλδ)(f R +第二节复合换热时的传热计算图10-2 复合换热对流与辐射并存的换热称为“复合换热”对流换热: c q = c h (w t -f t ) W/2m (1)辐射换热: r q =εb C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛44100100m a w T T W/2m (2) r q = b C ⋅εfw m a w t t T T -⎥⎦⎤⎢⎣⎡-44)100()100( (w t -f t )=r h (w t -f t ) W/2m (3)r h =εbC 84410-⨯--fw m a w T T T T (10-6)复合换热热:q = c q +r q = (c h +r h )(w t -f t )= h (w t -f t ) (10-7)[例10-3] 计算某寒冷地区中空玻璃窗传热系数,已知数据列表如下:[解]窗的散热过程可分为3段,即(1)热由室内传给双层窗内侧玻璃;(2)通过空气层;(3)由外侧璃窗传给室外。
1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。
2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。
白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。
4.现在冬季室内供暖可以采用多种方法。
就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。
答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
1210.3.1 顺流及逆流换热器的对数平均温差的计算传热方程的一般形式:mt kA ∆=Φ以顺流情况为例,并作如下假设:(1)冷热流体的质量流量q m2、q m1以及比热容c 2,c 1是常数;(2) 传热系数k 是常数;(3)换热器无散热损失;(4)换热面沿流动方向的导热量可以忽略不计。
)(x x A f t =∆3d d t A k ∆=Φ1111111d d d d m m Φq c t t Φq c =-⇒=-2222221d d d d m m Φq c t t Φq c =⇒=1212d d d Δt t t Δt t t =-⇒=-12112211d d d d d m m Δt t t ΦμΦq c q c ⎛⎫=-=-+=- ⎪⎝⎭112211m m μq c q c =+tdA d d ∆-=Φ-=∆k t μμ4tdA d d ∆-=Φ-=∆k t μμdA td k tμ-=∆∆⎰⎰-=∆∆∆'∆x xA t t k t0dAtd μxxkA t μ-='∆∆t ln )exp(t x x kA t μ-'∆=∆xx x 0)dA exp(t 1dA t 1x AAm kA A A t μ-'∆=∆=∆⎰⎰整个换热面的平均温差()1-)exp(t )dA exp(t 1x0kA kAkA A t x Am μμμ-'∆-=-'∆=∆⎰当地温差xx kA t μ-='∆∆t ln kA t μ-='∆''∆t ln A A x =)exp(t kA t μ-='∆''∆t t t t t t t m ''∆'∆''∆-'∆='∆''∆'∆-''∆=⎪⎭⎫⎝⎛'∆''∆'∆''∆'∆=∆t ln t t ln t 1-t t ln t (1)(2)(3)5t t t m ''∆'∆''∆-'∆=∆t ln t 顺流:逆流:d d t A k ∆=Φch c h t t t t t t d d d -=∆⇒-=∆Φ-=⇒-=Φd 1d d d hmh h h h mh c q t t c q Φ-=⇒=Φd 1d d d cmc c c c mc c q t t c q Φ-=Φ⎪⎪⎭⎫⎝⎛--=∆d d 11d μc mc hmh c q c q t cmc h mh c q c q 11-=μt t t m ''∆'∆''∆-'∆=∆t lnt ,逆流6顺流和逆流的区别在于:顺流:逆流:1212Δt t t Δt t t '''''''''=-=-1212Δt t t Δt t t '''''''''=-=-minmax min max t lnt t t t m ∆∆∆-∆=∆或者我们也可以将对数平均温差写成如下统一形式(顺流和逆流都适用)7算术平均与对数平均平均温差的另一种更为简单的形式是算术平均温差,即2min max ,t t t m ∆+∆=∆算术minmax min max ,t lnt t t t m ∆∆∆-∆=∆对数算术平均温差相当于温度呈直线变化的情况,因此,总是大于相同进出口温度下的对数平均温差,当时,两者的差别小于4%;当时,两者的差别小于2.3%。
815 传热学《传热学》(第四版)或(第五版),章熙民、任泽霈、梅飞鸣编著,中国建筑工业出版社;《传热学》(第三版),杨世铭,陶文铨编著,高等教育出版社基本要求1.掌握热量传递的三种基本方式及传热过程所遵循的基本规律,学会对传热过程进行分析和计算的基本方法。
2.掌握导热的基本规律。
能对无内热源的简单几何形状物体,在常物性条件下的稳态导热和传热过程进行熟练的分析计算。
较深刻地了解物体在被持续加热或冷却时的温度场及热流随时间而变化的规律。
能应用集总参数法和诺模图来计算在对流边界条件下的非稳态导热问题。
3.较深刻地了解各种因素对对流换热的影响。
对受迫对流换热、自然对流换热现象的物理特征及有关准则有正确的理解。
对相变换热现象特征有所了解,并能运用准则方程进行计算。
4.掌握热辐射的基本定律。
熟悉由透明介质所隔开的物体表面辐射换热的基本计算方法。
对气体辐射换热的特性和特征有所了解。
5.掌握换热器的两种基本计算方法:对数平均温度差法和传热效率-单元数法。
基本内容绪论1.传热学的研究对象及其应用介绍。
2.热量传递的三种基本方式:导热、对流和辐射。
3.传热过程与传热系数。
第一章导热理论基础1.导热基本概念。
温度场。
温度梯度。
傅里叶定律。
2.导热系数。
3.导热微分方程。
4.导热过程的单值性条件。
第二章稳态导热1.通过单平壁和复合平壁的导热。
2.通过单圆筒壁和复合圆筒壁的导热。
临界热绝缘直径。
3.通过肋壁的导热,肋片效率。
4.通过接触面的导热。
5.二维稳态导热问题。
第三章非稳态导热1.非稳态导热过程的特点。
2.对流换热边界条件下非稳态导热,诺模图,集总参数法。
3.常热流通量边界条件下非稳态导热。
第四章导热问题数值解1.泰勒级数法和热平衡法。
2.导热问题的数值计算,节点方程的建立及求解。
3.非稳态导热问题的数值计算,显式差分格式及其稳定性,隐式差分格式。
第五章对流换热分析1.对流换热过程和影响对流换热的因素。
对流换热过程微分方程式。
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学第十章传热过程和换热器计算热力学是研究能量转换和能量传递的学科,传热学是热力学的一个重要分支。
传热过程是指热量从一个物体传递到另一个物体的过程,它是通过传导、对流和辐射三种方式进行的。
换热器则是用来实现热量传递的设备。
一、传热过程1.传导:传导是指热量通过物质内部的微观振动和相互碰撞传递的过程。
物体的导热性质取决于其热导率和导热面积。
传导的热流量可用傅里叶传热定律表示。
2.对流:对流是指液体或气体中的分子通过传递热量的方式。
对流的热流量可用牛顿冷却定律表示。
3.辐射:辐射是指热能以电磁波的形式传递的过程。
辐射热量的传递与物体的温度和表面特性有关,可以用斯特藩—玻尔兹曼定律表示。
换热器是用来实现热量传递的设备,广泛应用于工业生产和能源系统中。
换热器的设计和计算需要考虑换热面积、传热系数、传热温差等参数。
1.换热面积:换热面积是换热器的一个重要参数,它表示传热过程中热量通过的表面积。
换热面积可以通过传热方程计算得出。
2.传热系数:传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。
传热系数的大小与换热器的结构、工作条件及流体性质等有关。
3.传热温差:传热温差是指热量在换热过程中的温度差异。
传热温差越大,热量传递越快。
换热器的计算包括两个方面:换热面积计算和传热系数计算。
换热面积计算一般根据传热方程进行。
传热方程可以写成Q=UAΔT,其中Q为热量传递量,U为总传热系数,A为换热面积,ΔT为温度差。
通过已知的换热量和温度差,可以计算出换热面积。
传热系数计算一般需要参考实验数据或者经验公式。
传热系数与换热器的结构和工作条件有关,一般通过实验或者估算得到。
在进行换热器计算时,还需要注意换热器的热损失问题。
热损失会影响换热器的热效率,因此需要进行热损失的计算和控制。
总之,传热过程和换热器计算是传热学中重要的内容,它们在工程实践中有着广泛的应用。
通过对传热过程和换热器的深入理解和计算,可以提高工程设备的热效率,实现能源的节约和利用。