定理2(有界性定理)若数列{ xn }收敛,则{ xn } 必是有界数
列.
若{
xn
}是无界数列,则
{
xn
}发散,即lim
n
xn
不存在.
定理3(保序性定理)设{ xn},{
yn}的极限存在,且 lim
n
xn
lim
n
yn , 则存在正整数
N,当n
N 时,有xn
yn .
推论1(保号性定理)设
{
xn
}的极限存在,且lim
4.数列极限的几何意义.
xn A(n )就是对以 A为中心,以任意小的正数 为半径的邻域U ( A, ),总能找到一个N,从第N 1 项开 始,以后的各项(无限多项)都落在邻域 U ( A, ) 内,而在 U ( A, )外,至多有N项(有限项).
三、数列极限的性质及收敛准则
定理1(唯一性定理)若数列{ xn }收敛,则其极限值必唯一.
n
xn
0
(或
lim
n
xn
0),则存在正整数N,当n
N
时,有xn
0(或
xn
0).
推论2 设{ xn },{ yn}的极限存在,若 xn yn (当n N 时),则
lim
n
xn
lim
n
yn .
特别地,若 xn
0
(或 xn
0
),则lim
n
xn
0
(或 lim
n
xn
0).
注:在推论2中即使是xn
yn
,也只能推出lim
定义2 若数列{ xn}满足 x1 x2 x3 xn ,
则称{ xn}是单调递增数列.如果 x1 x2 x3 xn ,