奥数-鸡兔同笼问题的四种题型
- 格式:docx
- 大小:122.33 KB
- 文档页数:4
一、判断题:请在正确的说法后面打“√”,在错误的说法后面打“X”。
(1)一个笼子里面有10只鸡,共有20条腿。
()(2)一个笼子里面有10只兔,一共有40条腿。
()(3)一个笼子里面有5只鸡和5只兔,-共有30条腿。
()(4)一个笼子里面有4只鸡和6只兔,一共有28条腿。
()二、应用题1、有鸡和兔共20只,一共有50只脚,求鸡和兔各有多少只?2.一队猎手一队狗,两队并着-起走,数头共-百六,数脚一共三百九。
求有多少位猎手和多少只狗?3.停车场上汽车和摩托车共有24辆,其中每辆汽车有4个轮子,每辆摩托车有两个轮子,所有车辆共有68个轮子。
那么摩托车和汽车各有多少辆?4、大油瓶一瓶装5千克油。
小油瓶两瓶装一干克油,现有100千克油装了110个瓶,那么大小油瓶各有多少个?5.农场工人上山植树,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。
张宁植树这些天一共有几个雨天?已知次数学竞赛一共有五题,答对一题得10分,答错一题倒扣5 分,请在下列正确的说法后面打“√”,错误的说法后面打“X"。
(1)答对三题,齐错两题共得30分。
()(2)答对三题,答错两题共得20分。
()(3)答对四题,答错一题共得35分。
()1、一次口算比赛中,规定:答对一题得8分,答错一题扣5分,张华答了18道题,得了92分。
张华在此次比赛中答错了几道题?2.一个生日宴会上,主人订了100箱啤酒,和托运方协商好每箱运费20元如损坏一箱除不给运费外,还要赔偿损失100元,结果托运方只得到了1400元的运费,求损坏了几箱啤酒。
3.某物流公司运800个花瓶,每个花瓶100元,按合同每个运费5元,每损坏一个除不给运费外,还要赔偿花瓶价格的一半,实收运费3780元。
求损坏了几个花瓶。
4.某数学竞赛一-共有10道题。
每做对一题得10分,每做错一题倒扣两分。
小明得64分。
他做错了多少题?5.小毛参加智力竞赛,共20细题。
“鸡兔同笼”问题最常用的四种解题方法练习题(含答案和解析)鸡兔同笼问题早在1500年前,《孙子算经》中就记载了,小学奥数及小升初考试中经常出现,甚至公务员考试中也会出现。
现面我们就鸡兔同笼相关解法作一简单介绍。
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头15个,腿40条,球鸡和兔子各有多少只?(请用尽量多的方法解答)1、金鸡独立法分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即20只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从20里减去头数15,剩下来的就是兔的头数20-15=5只,鸡有20-5=15只。
2、吹哨法分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有40-15=15只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有25-15=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有15-5=10只。
3、假设法(1)分析:假设全部是鸡,则有15×2=30条腿,比实际少40-30=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为15-5=10只。
(2)分析:假设全部是兔子,则有15×4=60条腿,比实际多60-40=20只,一只兔子变成一只鸡腿减少2条,20÷2=10只,所以需要10只兔子变成鸡,即鸡为10只,兔子为15-10=5只。
4、方程法(1)分析:设鸡的数量为x只,则兔子有(15-x)只,有2x+4(15-x)=40,解出x=10,所以有鸡10只,兔子15-10=5只。
(2)分析:设兔子的数量为x只,则鸡有(15-x)只,有4x+2(15-x)=40.解得x=5,所以兔子有5只,鸡有15-5=10只。
试题答案:第1题:正确答案:B 答案解析:第2题:正确答案:C 答案解析:第3题:正确答案:D 答案解析:第4题:正确答案:D 答案解析:第5题:正确答案:A 答案解析:第6题:正确答案:C 答案解析:。
鸡兔同笼问题的四种题型各种名称的含意(在鸡兔同笼问题的题目中)高价——兔子的腿数低价——鸡的腿数总物——鸡和兔子的总只数原钱数——鸡和兔子的总腿数低价物——鸡的只数(一)高价物与低价物问题:(高价×总物-原钱数)÷(高价-低价)=低价物(原钱数-低价×总物)÷(高价-低价)=高价物例如:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?解一(100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)………兔。
练习与提高:1、现有鸡和兔共35只,合计腿数共100只。
鸡和兔各有多少只?2、21枚5分和2分的硬币共6角,其中5分、2分硬币各几枚?3、一辆汽车从甲地到乙地再开往丙地,共用25小时,甲、丙两地相距900千米,这辆车从甲地到乙地以每小时30千米的速度行驶,从乙地到丙地以每小时40千米的速度行驶,乙地到丙地是多少千米?4、小军要翻过一座山,上午7点上山,每小时行2千米,到达山顶玩了1小时,下山比上山每小时多行3千米。
中午12点到达山下,全程共行了11千米,问上山、下山各行了多少千米?5、一个机关里有14张办公桌,其中有的是一屉桌,有的是二屉桌,有的是三屉桌,这些桌子一共有25个抽屉,一屉桌的张数等于二屉桌和三屉桌的和,三屉桌有多少张?6、某人购买1元、8角、4角的邮票20张,共计15元,其中1元与8角邮票的张数相等。
三种邮票各几张? 7、某人买四种物品共36件,总共花了100元,这四种物品的单价分别是1元、2元、3元、5元,已知单价1元的物品的件数等于5元的件数,单价2元的件数等于3元的件数。
问买四种物品各几件?8、蜘蛛有8条腿,没有翅膀;蝉有6条腿,1对翅膀;蜻蜓有6条腿,2对翅膀。
现在这三种昆虫共有36只,236条腿和40对翅膀。
鸡兔同笼问题全汇总“鸡兔同笼”是一个古老而有趣的数学问题,常常出现在小学奥数和数学教材中。
它看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,让我们对鸡兔同笼问题来个全面的汇总。
一、鸡兔同笼问题的基本形式通常,鸡兔同笼问题会这样描述:在一个笼子里,有若干只鸡和兔。
从上面数,有若干个头;从下面数,有若干只脚。
问鸡和兔各有多少只?例如:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有 26 只脚。
问鸡和兔各有几只?二、常见的解题方法1、假设法假设全是鸡,那么脚的总数就应该是头的数量乘以 2。
如果总脚数比这个假设的脚数多,多出来的就是兔子比鸡多的脚数。
因为每只兔子比每只鸡多2 只脚,所以用多出来的脚数除以2 就得到兔子的数量,再用总数减去兔子的数量就是鸡的数量。
以刚才的例子来说,假设 8 个头全是鸡,那么脚应该有 8×2 = 16 只。
但实际有 26 只脚,多出来 26 16 = 10 只脚。
这 10 只脚就是兔子多出来的,每只兔子比鸡多 2 只脚,所以兔子有 10÷2 = 5 只,鸡就有8 5 = 3 只。
假设全是兔的方法也是类似的,先算出假设全是兔时的脚数,与实际脚数比较,少的部分除以 2 就是鸡的数量。
2、方程法设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量和脚的数量可以列出两个方程:x + y = 8 (头的总数)2x + 4y = 26 (脚的总数)通过解方程组,可以求出 x 和 y 的值,从而得到鸡和兔的数量。
3、列表法依次列举鸡和兔可能的数量组合,计算对应的脚数,直到找到符合条件的组合。
这种方法比较繁琐,但对于数量较小的情况还是可行的。
三、鸡兔同笼问题的变形1、已知头和脚的数量差比如:笼子里鸡和兔共有 30 个头,鸡脚比兔脚少 20 只,问鸡和兔各有多少只?这种情况下,可以先假设鸡和兔的脚数一样多,然后根据脚数差逐步调整鸡和兔的数量。
2、已知脚和头的数量比例如:笼子里鸡和兔的脚数比是 2:3,头共有 20 个,问鸡和兔各有多少只?可以根据脚数比得出鸡和兔数量的关系,再结合头的数量求解。
小学数学鸡兔同笼知识点总结一、鸡兔同笼问题这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
二、数量关系第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)三、解题思路解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
四、鸡兔同笼问题五种基本题型1、小学奥数应用题鸡兔同笼:已知总头数和总脚数(两数之和)已知总头数和总脚数(两数之和)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
【例1】一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?【解】我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面的公式:"兔"数=(30-3×7)÷(5-3)=4.5,"鸡"数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.【例2 】今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?【解】:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.2、小学奥数应用题鸡兔同笼:已知总头数和鸡兔脚数的差数首先,请先弄明白上面三个算式的由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢?当你进入初中,有了负数的概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举的所有例子都是同一件事.(1)当鸡的总脚数比兔的总脚数多时:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
第一类鸡兔同笼:1、长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
问鸡与兔各有多少只?2、2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?3、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元,问作业本和日记本各买了几本?第二类鸡兔同笼:4、鸡兔共有100只,鸡的脚比兔子的脚多80只,问鸡与兔各有多少只?5、有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚三人吃1个馍,问大小和尚各有多少人?6、某班级有学生68人,分成了14个学习小组,这些小组有的3人,有的5人,有的7人。
而且3人组与5人组的组数相同。
三种学习小组各有几组?7、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜓有多少只?8、期中考试卷上共有20道数学题,做对一道题得5分,做错一道题倒扣1分,不做得0分。
小华得了76分,请问他做对了几道题?9、松鼠妈妈采松籽,晴天可以采20个,雨天每天只能采12个。
它一连几天采了112个松籽,平均每天采14个。
问这几天当中有几在雨天?10、小明买来3元、4元、5元的电影票共400张,用去1560元。
其中4元和5元张数一样多。
每种票各买了多少张?11、公猴、母猴、小猴共38只,每天共摘桃266个,一只公猴每天摘桃10个,一只母猴每天摘桃8个,一只小猴每天摘桃5个,又知公猴比母猴少4只,这群猴子中公猴、母猴、小猴各多少只?12、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?13、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
问:鸡、兔各几只?方阵问题:14、有一个3层中空方阵,最外边一层有10人,求全方阵人数。
15、小军用棋子排成一个实心方阵,最外面一层共用棋子36枚,小军摆这个方阵共用了多少枚棋子?16、有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共有多少人?17、一堆棋子摆成实心正方形,多余4个棋子,若正方形横竖两个方向各增加一排,则缺少9个棋子,问有多少个棋子?18、某鲜花队有若干人,正好排成一个实心方阵。
鸡兔同笼(17年1月19日)题目一(简单):鸡兔共笼,鸡和兔子总共60只,共有脚160只,鸡兔各几只?题目二(中等难度)鸡兔共笼,鸡比兔子多20只,共有脚160只.问鸡与兔各几只?题目三(进阶思考)有一辆货车运输1000只玻璃瓶,运费计算方式为:完好的瓶子每只2角,如有破损,破损瓶子不仅不给运费,还要每只赔偿1元.结果得到运费176元,问这次搬运中玻璃瓶破损了几只?鸡兔同笼问题(17年12月25日)今天的目标是不用方程解如下问题:足球比赛中,赢一场得3分,平一场得1分,负1场得0分。
有一只足球队,比赛了20场,得分45分,已知该队平的场次和负的场次一样多。
请问:该队赢了多少场?答案:14分析:该问题不用方程很难思考,但由于平和负的场次一样多,问题中其实是两个因素,赢的场次和平的场次。
让人想起鸡兔问题,其实,这道题实质也是鸡兔问题。
先看最原始的鸡兔同笼问题:一个笼子里有一些兔和鸡,共有20个头,56只脚。
请问鸡和兔各有多少只?一个经典的解法是这样的:步骤1:让鸡和兔全部抬起2只脚,共抬起了40只脚;步骤2:剩下16只脚,全部是兔子的,且每个兔子剩2只;所以,兔子有8只,鸡12只。
这个经典的解法中,第一步的实质是假设全部是鸡;第二步的实质是差额部分是兔子造成的。
因此,所有鸡兔问题的解法是这样的:第一步假设全部是其中一个;第二步计算差额部分;最后对照差额做除法。
回到文章开始的题目:考虑赢与平两个种类,第一步:假设全部赢了,得分应是60分;第二步:实际得分45分,差额是15分;由于每平1场就伴随着负1场,得分为1,如果这2场都赢了,得分就是6,因此每平1场,总得分就减少5。
故,平的场次是3=15/5,所以,赢的场次是20-3-3=14。
鸡兔问题(18年2月1日)某商场打折,单价4元的钢笔买3支送1支,单价5元的笔记本买4本送1本。
小明花了400元,得到钢笔和笔记本共118件。
请问其中钢笔和笔记本各多少?答案:钢笔73支,笔记本45本。
鸡兔同笼是我国古代著名趣题之一,记载于《孙子算经》之中。
鸡兔同笼问题,是小学奥数的常见题型。
是指已知鸡与兔的总头数和总足数,求鸡和兔各是多少只的应用题。
1、列表法。
2、画图法,画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
3、金鸡独立法,让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍。
4、吹哨法。
5、假设法,假设全部是鸡。
6、假设法,假设全部是兔子。
7、特异功能法,鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。
假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿。
8、特异功能法,假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的。
9、特异功能法,假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚。
10、砍足法,假如把每只砍掉1只脚、每只兔砍掉3只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。
基本概念:鸡饭同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来:基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲•样):②假设后,发生了和题目条件不同的差,找出这个差是多少:③每个事物造成的差是固定的,从而找出出现这个差的原因:④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数X总头数一总脚数)子(兔脚数一鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数X总头数)子(兔脚数一鸡脚数)关犍问题:找出总量的差与单位量的差。
解决鸡兔同笼一般用“假设法”来求解。
即假设全是鸡或是全是兔,然后根据出现的足数差,推算出鸡或兔的只数。
鸡兔同笼问题的四种题型
(一)常规题
例如:有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?
解一(100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)………鸡。
解二(4×36-100)÷(4-2)
=22(只)………鸡; 36-22=14(只)………兔。
练习与提高:
1、现有鸡和兔共35只,合计腿数共100只。
鸡和兔各有多少只?
2、2、21枚5分和2分的硬币共6角,其中5分、2分硬币各几枚?
3、某人购买1元、8角、4角的邮票20张,共计15元,其中1元与8角邮票的张数相等。
三种邮票各几张?
(二)得失问题(鸡兔问题的推广题):
例如:某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分。
他做对了几道题?
解一(72+4×15)÷(8+4)=11(道)……对题数; 15-11=4(道)……………错题数。
解二(8×15-72)÷(8+4)=4(道)………错题数; 15-4=11(道)……………对题数。
练习与提高:
1、一次智力测验有10道题,每答对一道得3分,每答错一道扣2分,小红答完了10道题,只得了20分。
她答对了几道题?
2、南城区举行小学数学竞赛共15道题,每做对一题得8分,做错一题倒扣4分,李明共得84分,他做对了几道题?
3、给商店运货,规定每件商品运费是4元,如果搬运时损坏商品,每损坏一件不但不给运费还要罚款5元。
结果运了100件商品,得运费220元。
问损坏了多少件商品?
(三)巧用和倍解“头和腿差的问题“(总头数和鸡兔脚数的差):
例如:鸡兔同笼,它们一共有100只,而鸡足比兔足多80只。
鸡兔各有多少只?解一:80÷2=40(只)(100-40)÷(2+1)=20(只)…………………………兔; 100-20=80(只)…………………………鸡。
练习与提高:
1、鸡、兔共60只,鸡脚比兔脚多60只。
问:鸡、兔各多少只?
2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只? 19、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 20、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?
(四)巧用和差解“鸡兔互换问题”(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题)
例如:有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?分析:如果将对调前后的鸡兔放在一起,那么鸡与兔的个数相等,即它们都是原来鸡兔的个数和;而脚一共是(44+52)只。
因为1只鸡与1只兔的脚是(2+4)只,所以鸡兔原来一共有(44+52)÷(2+4)=16(只)。
一只兔换成鸡脚要减少2只,而一只鸡换成兔脚要增加2只,鸡和兔的数量相同互换后腿的总数不变。
由于将鸡换成兔,兔换成鸡后,总的脚数增加了,说明原来的鸡比兔多.多多少呢?脚的总只数相差了52-44=8(只),因为一只兔子和一只鸡相差2只脚,所以鸡和兔相差了(52-44)÷(4-2)=4(只).
解:…(52+44)÷(4+2)+(52-44)÷(4-2)‟÷2=20÷2=10(只)…………………鸡…(52+44)÷(4+2)-(52-44)÷(4-2)‟÷2=12÷2=6(只)…………………………兔
练习与提高:
1、共有脚100只.若将鸡换成兔,兔换成鸡,则共有脚92只.求鸡兔各有多少只?
2、鸡.兔共有脚68只,若将鸡兔只数互换,则脚有112只,鸡兔原来各有几只? 27、兔共有脚48只,若将鸡兔只数互换,则脚有42只,鸡兔原来各有几只?
3、鸡兔同笼,共有140条腿,若将鸡的只数与兔的只数互换,则腿数变为160条,问原有鸡,免各多少只?。