单片机课程设计完整版pwm直流电动机调速控制系统》
- 格式:docx
- 大小:29.85 KB
- 文档页数:14
第一章:前言Pwm 电机调速原理对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。
不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端EN1 和EN2 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。
此电路中用微处理机来实现脉宽调制,通常的方法有两种:(1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。
(2)硬件实验自动产生PWM 信号,不占用CPU 处理的时间。
这就要用到STC89C52的在PWM模式下的计数器1,具体内容可参考相关书籍。
51 单片机PWM 程序产生两个PWM,要求两个PWM 波形占空都为80/256,两个波形之间要错开,不能同时为高电平!高电平之间相差48/256,PWM 这个功能在PIC 单片机上就有,但是如果你就要用51 单片机的话,也是可以的,但是比较的麻烦.可以用定时器T0来控制频率,定时器T1 来控制占空比:大致的的编程思路是这样的:T0 定时器中断是让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1 是让IO 口输出低电平,这样改变定时器T0 的初值就可以改变频率,改变定时器T1 的初值就可以改变占空比。
前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过 PWM 方式控制直流电机调速的方法就应运而生。
第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的速度在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案1、系统的硬件电路设计与分析电动机PWM驱动模块的电路设计与实现具体电路见下图。
本电路采用的是基于PWM 原理的H型桥式驱动电路。
一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
一、课程设计的主要目标任务直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能[2]。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
传统的控制系统采用模拟元件,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,故系统的运行可靠性及准确性得不到保证,甚至出现事故。
目前,直流电动机调速系统数字化已经走向实用化,伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
二、课程设计系统方案选取1. 直流电动机运行原理脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM 控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 3 要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
直流电动机的转速n 和其他参量的关系可表示为图1:直流电机原理图式中 Ua ——电枢供电电压(V ); Ia ——电枢电流(A ); Ф——励磁磁通(Wb ); Ra ——电枢回路总电阻(Ω); CE ——电势系数, ,p 为电磁对数,a 为电枢并联支路数,N 为导体数。
基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1、1设计要求............................... 41、2 主要技术指标ﻩ52设计过程 (5)2、1 题目分析 (9)2、2 整体构思ﻩ9122、3 具体实现ﻩ3 元件说明及相关计算ﻩ14143、1 元件说明ﻩ3、2 相关计算 (15)164 调试过程ﻩ164、1 调试过程ﻩ214、2 遇到问题及解决措施ﻩ5 心得体会..................................... 22参考文献ﻩ23附录一:电路原理图............................. 24 附录二:程序清单............................... 25设计题目:PWM直流电机调速系统本文设计得PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成得电子产品。
电源采用78系列芯片实现+5V、+15V对电机得调速采用PWM波方式,PWM就是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机得启停、调速、转向得人工控制,LED实现对测量数据(速度)得显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内得方波脉冲个数进行计数,计算出电机得速度,实现了直流电机得反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制得直流电动机PWM 调速控制装置。
1、1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控得PWM波,通过按键改变PWM占空比,控制直流电动机得转速。
目录1系统的方案设计 (1)1.1方案的分析 (1)1.2方案的制定 (2)2硬件的设计 (3)2.1单片机主电路的设计 (3)2.2数码管显示部分 (3)2.3L298N调制电动机电路 (5)2.4单片机驱动L298N模块 (6)3 软件设计 (7)3.1操作键盘设计 (7)3.2转速显示设计 (8)3.3PMW调制 (9)4 仿真截图 (10)4.1电机的正转工作状态 (10)4.2电机的反转工作状态 (11)5设计的体会 (12)参考文献资料 (13)附录 (14)仿真图 (14)原程序代码 (15)1系统的方案设计1.1方案的分析本课题以单片机为控制核心,用PMW控制技术实现对直流电机的速度及转向进行控制。
从而实现在数码管上显示当前转速,分别用按键进行加、减速及正反转控制。
单片机的选取:按单片机机器字长可分为:4位(很少用),8位,16位,32位。
按单片机内核可分为:MCS51、A VR、PIC、MSP、HT、ARM等等。
按单片机厂家分就更多了,MCS51内核的厂家就有多种:如SST、Atmel、STC、winbond等。
由于8位单片机的广泛应用场合及其不错的性性,一直受到小型电路解决方案的首选芯片,本方案采用ATMEL公司的AT89C51芯片做为驱动电机的核心电路模块,其性能足以扩展控制一个电机,而且该单片机支持在线编程并提供上千次的擦写功能。
并以低廉的价格普及于当今市场中。
数码管的选取,数码管分为单个数码管和多个数码管集成在一起。
由于考虑到电机转速能够达到很高,采用多个数码管集成在一起的比较省线,通过扫描动态显示数码管能够节省I./O接口,采用这种方式比较适合。
关于PMW波,PWM(Pulse Width Modulation)——脉冲宽度调制,简称脉宽调制,是一种最初用语无线电通信的信号调制技术,后来在控制领域中(比如电机调速)也得到了很好的应用,于是形成了独特的PWM控制技术。
PWM控制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在功率控制与变换的许多领域中。
单片机控制PWM的直流电机调速系统的设计摘要:在国民生产中,随着现代技术的发展,电力电子技术已得到了全面的发展,其技术已应用到各个领域。
在各类机电系统中,由于直流电机具有良好的启动、制动和调速性能,直流电机调速系统已广泛运用于工业、航天领域的各个方面,最常用的直流调速技术是脉宽调制(PWM)直流调速技术,具有调速精度高、响应速度快、调速范围宽和损耗低的特点.而利用计算机数字控制也成了直流调速的一种手段,数字控制系统硬件电路的标准化程度高,控制软件能够进行复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律,此外还拥有信息存储、数据通信和故障诊断等模拟系统无法实现的功能关键字:AT89C51单片机;PWM技术;编码器;直流电动机The Design Of PWM Controlled DC Motor Speed ControlSystem Based On Single ChipAbstract:In the national production, along with the development of modern technology, electronic technology has been a comprehensive development, the technology has been applied in various fields. In all kinds of mechanical system, due to the dc motor has a good start, brake and the performance of speed, dc motor control system has been widely used in industry, spaceflight, most commonly used dc speed control technology is a pulse width modulation (PWM) dc speed control technology, which has a high precision, fast response time, high speed range and width of the low loss characteristics and use of computer digital control has become a kind of method of dc speed control system, the hardware circuit of a high degree of standardization, control software to carry out complex operation can be realized, different from the general linear optimization and adjustment of the adaptive, nonlinear, intelligent control law, also have information storage, data communication and fault diagnosis cannot achieve such simulation systemKeywords:AT89C51 microcontroller; PWM technology; encoder; DC Motor目录1.引言............................................................................................................ 错误!未定义书签。
单片机控制的PWM直流电机调速系统的设计摘要:当前不仅仅是工业,各行各业都要用到电动机,例如电梯的伺服电机、打印机的步进电机等。
电动机的涉及领域之广就必须考虑到他的调速问题。
本研究运用PWM的方法实现单片机的调速。
首先无线遥控模块或按键电路作为PWM信号的发生电路,将信号传送与单片机,单片机进行内部计算,PWM信号由单片机的IO端口生成,即可输出单片机不用的电压,将电压传送与驱动电路,由L298驱动器来带动电机旋转。
关键词:PID运算;测速发电机;PWM信号一、引言由于社会的快速发展,集成电路制作工艺的快速发展,而且还有控制理论地完善、仿真工具的日愈成熟,就给机电控制行业带来了很多机遇和发展契机。
利用高性能的微电技术机解决电机控制器不断增加的计算量和速度请求,让其功能不断的强大、维修愈来的方便、适用范围变广又非常的经济。
无刷直流电动机具有出色的启动和制动系统特性,可用于在大范围内实现平稳的变速,也可广泛用于许多必须变速或正反的电动行业。
从操作的角度来看,直流变速箱也是交流和交流拖动系统软件的基础。
初始自动控制系统的很大一部分是基于数字集成电路,包括运算放大器电路,分立系统集成电路芯片和小型数字电路设计。
自动控制系统的部分硬件配置非常复杂,并且功能单一。
二、设计方案(一)总体设计该设计采用STC89C51单片机设计,L298电机驱动器集成了IC、1602LCD液晶显示器、霍尔传感器,通过无线收发射频模块来传输直流电机速度值,其中无线收发芯片中含有频率发生器,都是提高闭环控制系统稳定与准确的关键因素。
(二)控制器选型CPU:这是进行计算和操纵的单片机设计的关键。
内部数据信息存储:STC89C51集成系统有集成RAM模块内部程序存储器:STC89C51在系统内集成了现有的4k存储模块。
定时器:STC89C51芯片中有两个16位计时器。
(三)显示器选型LCD 1602也称为1602字符LCD屏幕。
1602总共有16个引脚,但是编程中使用的三个关键引脚是:RS(数据信息命令选择端子),R/W(读写能力选择端子),E(也可以使用数据信号);编写程序后,关键是围绕这三个引脚进行复位,编写指令和紧密写入数据信息。
基于单片机的PWM直流电机调速系统设计摘要:本文设计了一种基于单片机的PWM调速系统来控制直流电机的转速。
通过使用单片机的IO口产生PWM信号,可以精确地控制电机的转速。
通过对脉宽信号的调节,可以改变电机的转速。
实验结果表明,该系统可以实现精确的电机调速控制,具有较高的可靠性和稳定性。
关键词:单片机,PWM调速,直流电机,转速控制1.引言直流电机广泛应用于家电、机械设备等领域,其转速控制对于实际应用非常重要。
传统的直流电机调速方法主要通过电压调节或者极数切换来实现,但是这种方法调节范围有限。
随着单片机技术的发展,基于单片机的PWM调速系统成为一种较为先进和可靠的调速方法。
2.系统设计2.1硬件设计本系统使用STC12C5A60S2单片机作为控制核心。
单片机的IO口通过驱动电路连接到直流电机,驱动电路包括功率二极管和功率晶体管,用于放大和控制输出电流。
另外,系统还包括电流检测模块和电源模块。
电流检测模块用于实时监测直流电机的工作电流,电源模块提供系统所需的电源电压。
2.2软件设计单片机采用C语言编程,使用定时器中断来产生PWM信号。
首先,根据所需的转速范围确定PWM的占空比范围。
然后,根据转速需求,计算出相应的占空比,并将其输出到IO口。
通过不断改变占空比,可以改变电机的转速。
另外,系统还设置了保护功能,当电机超过设定的电流范围时,系统会自动停止电机运行,以防止电机损坏。
3.实验结果通过实验测试,验证了本系统的可行性和有效性。
当输入设定的转速值后,电机可以精确地调整到相应的转速,并保持稳定。
同时,当电机运行时,系统能够准确地监测电机的工作电流,当电机超过设定范围时,可以及时地停止电机运行。
实验结果表明,基于单片机的PWM调速系统具有较高的可靠性和稳定性。
4.结论本文设计了一种基于单片机的PWM调速系统来控制直流电机的转速。
通过使用单片机的IO口产生PWM信号,可以精确地控制电机的转速。
系统具有较高的可靠性和稳定性,并能够保护电机免受损坏。
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。
设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
(5)*测量并在LED显示器上显示电动机转速(rpm).(6)实现数字PID调速功能。
主要技术指标(1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。
(2)使用定时器产生可控PWM波,定时时间建议为250us。
(3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速;(4)参考Protuse仿真效果图:图(1)图(1)2 设计过程本文设计的直流PWM调速系统采用的是调压调速。
系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。
PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。
由定时器来产生宽度可调的矩形波。
通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。
增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。
本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。
5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。
本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。
图(2)对直流电机转速的控制即可采用开环控制,也可采用闭环控制。
与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范围可以大大提高。
直流电机的速度控制方案如图(3)所示。
1、电阻网络或数字电位器:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。
更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
2、继电器:采用继电器对电动机的开或关进行控制。
这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。
3 、H桥组成的高电压大电流双全桥式驱动芯片:L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
桥型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。
兼于上述三种方案调速特性优良、调整平滑、调速范围广、过载能力大,因此本设计采用方案三。
二、以下是PWM脉宽的3种调制方式:调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。
采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在采用单片机产生PWM脉冲的软件实现上比较方便。
最后再以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。
在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。
三、驱动电路设计单片机输出的电机控制PWM信号接在ENA端口,IN1和IN2端口控制电机正反转,通过一个非门实现。
对应的OUT1和OUT2输出接在直流电机两端。
如图(4)所示。
图(4)题目分析在进行单片机控制系统设计时,除了系统硬件设计外,大量的工作就是如何根据每个生产对象的实际需要设计应用程序。
因此,软件设计在控制系统设计中占重要地位。
键盘向单片机输入相应控制指令,由单片机通过输出与转速相应的PWM脉冲,另一口输出高电平,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
电动机所处速度级以速度档级数表示。
速度分4档,快慢与电动机所处速度级快慢一一对应。
在程序中通过软件产生,送出预设占空比的波形。
PWM(脉冲宽度调制)是一系列周期固定、占空比可调的脉冲系列,由于每个脉冲的高电平时间和低电平时间之和必须等于周期数,所以输出电平的维持时间必须由定时器来控制。
整体构思本系统采用AT89C51作为控制核心,用按钮来调节电机转速和数码管来显示设定转速和测量转速。
由上述提供的方案和最后选择结果,则用H桥组成的高电压大电流双全桥式驱动芯片L298作为本系统的驱动电路和用带有测速计的电机模型来取得电机的实际转速。
如图(5)所示。
(图(6)主程序流程图‘具体实现定时中断处理程序实现采用定时方式1,因为单片机使用12M晶振,可产生最高约为的延时。
对定时器置初值0xFF9C可定时100us。
当100us定时时间到,定时器溢出则响应该定时中断处理程序,完成对定时器的再次赋值。
PWM脉宽控制实现一个脉冲周期可以由高电平持续时间系数c16TimeH和低电平持续时间系数c16TimeL 组成,本设计中采用的脉冲频率为10000Hz,可得c16TimeH+c16TimeL=65536,占空比为c16TimeH/(c16TimeH+c16TimeL),因此要实现定频调宽的调速方式,只需通过程序改变全局变量c16TimeH,c16TimeL的值。
其程序流程框如图(7):图(7)3 元件说明及相关计算元件说明:电动机:选择电动机参数:额定电压:6V 额定转速:6000rpm 减速比:1:空载转速:128rpm 10ms/转单片机选择:AT89C52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含8kbytes 的可反复擦写的只读程序存储器(PEROM)和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8052产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C52单片机适合于许多较为复杂控制应用场合。
主要性能参数:·与MCS-51产品指令和引脚完全兼容·8k字节可重擦写Flash闪速存储器·1000次擦写周期·全静态操作:0Hz-24MHz·三级加密程序存储器·256×8字节内部RAM·32个可编程I/O口线·3个16位定时/计数器·8个中断源·可编程串行UART通道·低功耗空闲和掉电模式功能特性概述:AT89C52提供以下标准功能:8k字节Flash闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C52可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
L298电机驱动:L298是一款单片集成的高电压、高电流、双路全桥式电机驱动,设计用于连接标准TTL逻辑电平,驱动电感负载(诸如继电器、线圈、DC和步进电机)。
L298提供两个使能输入端,可以在不依赖于输入信号的情况下,使能或禁用L298器件。
LED显示屏PROTEUS设计与仿真平台相关计算:在程序中通过软件产生,送出预设占空比的波形。
PWM(脉冲宽度调制)是一系列周期固定、占空比可调的脉冲系列,由于每个脉冲的高电平时间和低电平时间之和必须等于周期数,所以输出电平的维持时间必须由定时器来控制。
设PWM周期为T,高电平时间为TH,低电平时间为TL,电压为VCC,则输出电压的平均值为:UAV =VCC*TH/(TH+TL)=VCC*TH/T=aVCC,当VCC固定时,其值取决于波形的占空比a,而的占空比由单片机软件内部用于控制输出的寄存器值决定。
PWM脉宽控制实现一个脉冲周期可以由高电平持续时间系数c16TimeH和低电平持续时间系数c16TimeL组成,本设计中采用的脉冲频率为10000Hz,可得c16TimeH+c16TimeL=65536,占空比为c16TimeH/(c16TimeH+c16TimeL),因此要实现定频调宽的调速方式,只需通过程序改变全局变量c16TimeH,c16TimeL的值。
4 调试过程调试过程:1、初始状态,未调试之前,仿真图如下图(8)。
图(8)2、启动仿真后,手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
LED显示屏上显示电机转速的设定值和电机转速实际值。
如下图(9)图(10)图(11)所示。
图(9)启动仿真后图(10)加速调节电机转速图(11)减速调节电机转速3、示波器显示PWM方波,状态(电机高速挡反转),显示如下图(12)。