多功能光栅光谱仪的使用及实验 -PPT课件
- 格式:pptx
- 大小:392.50 KB
- 文档页数:24
光栅光谱仪的使用技巧与光谱解读光栅光谱仪是一种常用的光学仪器,用于分析物质的光谱特性。
它可以通过光的折射、反射等现象将光分解成不同波长的颜色,并用光栅进行分光,最终得到光谱图。
本文将介绍光栅光谱仪的使用技巧以及如何解读光谱图。
一、光栅光谱仪的使用技巧1. 准备工作在使用光栅光谱仪之前,首先需要对仪器进行准备工作。
检查仪器是否正常运行,保证光源的光强和稳定性,调整光栅的位置和角度等。
还需要清洁仪器,确保光学元件的透明度和表面平整度。
2. 光谱采集光谱采集是使用光栅光谱仪的关键步骤。
在进行光谱采集时,应选择合适的光源和样品,并将样品固定在光路中。
根据需要,可以选择透射光谱或者反射光谱进行测量。
在光谱采集过程中,需要注意光栅的选取和调整。
光栅的刻线数目和刻线间距会影响到光谱的分辨能力和精确度。
此外,还需根据样品的性质和所需的测量范围,选择合适的光栅波长范围。
3. 数据处理光栅光谱仪采集到的光谱数据通常是以图像或光强数据显示的。
对于图像数据,可以通过图像处理软件对图像进行分析和处理。
对于光强数据,可以使用光谱分析软件进行分析。
在数据处理过程中,需要进行背景校正和信号平滑处理,以提高数据的准确性和可靠性。
此外,还可以进行峰识别和峰拟合,以获得更详细的光谱信息。
二、光谱解读光谱是物质相互作用后产生的一种特征性信息,通过对光谱的解读可以获取样品的成分、结构和性质等信息。
1. 波长和强度光谱中的波长和强度是光谱解读的基本要素。
波长可以用来确定光的颜色及其对应的频率和能量,不同波长的光在相互作用后会有不同的行为。
强度则反映了光的辐射能力,可以用来确定样品吸收、发射或散射光的强弱。
通过对波长和强度的分析,可以了解样品的能级结构、激发态和基态等信息。
2. 谱线和峰光谱图中的谱线和峰是光谱解读的重要指标。
谱线是指光谱图中产生的光谱线条,可以用来确定样品中的特定成分或物理现象。
峰则是光谱图中的波峰,表示光强的峰值。
峰的位置、高度和形状都可以提供关于样品的信息。
实验四 光栅光谱仪实验一、实验目的1、了解光栅光谱仪的工作原理2、掌握利用光栅光谱仪进行测量的技术二、实验仪器WDS 系列多功能光栅光谱仪, 计算机系统三、实验原理光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。
光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。
它由入射狭缝S 1、准直球面反射镜M 1、衍射光栅G 、聚焦球面反射镜M 2、输出狭缝S 2/S 3以及光电倍增管PMT/电荷耦合器件CCD 等光电接收转换器件构成。
图1光栅光谱仪示意图 图2 光栅转动系统示意图衍射光栅是光栅光谱仪的核心色散器件,是在一块平整的玻璃或金属材料表面(可以是平面或凹面)刻画出一系列平行、等距的刻线,然后在整个表面镀上高反射的金属膜或介质膜,就构成一块反射试验射光栅。
相邻刻线的间距d 称为光栅常数,通常刻线密度为每毫米数百至数十万条,刻线方向与光谱仪狭缝平行。
入射光经光栅衍射后,相邻刻线产生的光程差Δs = d (sin α ± sin β),α为入射角,β为衍射角,则可导出光栅方程:(sin sin )d m αβλ±= (1.1)该方程将某波长的衍射角和入射角通过光栅常数d 联系起来,λ为入射光波长,m 为衍射级次,取0, ±1, ±2, ····· 等整数。
式中的“±”号选取规则为:入射角和衍射角在光栅法线的同侧时取正号,在法线两侧时取负号。
如果入射光为正入射α=0,光栅方程变为d sin β = m λ。
衍射角度随波长的变化关系,称为光栅的角色散特性,当入射角给定时,可以由(1.1)导出 d d cos m d βλβ= (1.1) 复色入射光进入狭缝S 1后,经M 2变成复色平行光照射到光栅G 上,经光栅色散后,形成不同波长的平行光束并以不同的衍射角度出射,M2将照射到它上面的某一波长的光聚焦在出射狭缝S 2上,再由S 2后面的电光探测器记录该波长的光强度。
光栅光谱仪的使用实验预习报告学院机械工程班级物流1602学号41604561姓名潘菁一、实验目的与实验仪器【实验目的】1)了解平面反射式闪耀光栅的分光原理及主要特性。
2)了解光栅光谱仪的结构,学习使用光栅光谱仪。
3)测量钨灯和汞灯在可见光范围的光谱。
4)测定光栅光谱仪的色分辨能力。
5)测定干涉滤光片的光谱透射率曲线。
【实验仪器】WDS-3平面光栅光谱仪,汞灯,钨灯&氘灯组件,干涉滤光片等。
二、实验原理1.平面反射式闪耀光栅原理(1)平面反射式光栅与光栅方程平面反射式光栅是在衬底上周期地刻划很多细微的刻槽,表面涂有一层高反射率金属膜,其横断面如图所示。
平面反射式光栅衍射如图所示。
()λθksin=sin+id=这是平面反射式光栅的光栅方程,其中d为光栅常数,k是光谱级。
规定衍射角θ恒为正,i 与θ在光栅平面法线的同侧时为正,异侧为负。
在常用的平面光栅光谱仪中,安放光栅的方式使光栅方程转化为λθk d =sin 2从上式可以看出,λk 值相同的谱线,衍射角度θ相同,即在相同的衍射角度θ出现衍射级次为、、、321===k k k …不同波长的光同时出现的情况,这些波长满足32321λλλ==的关系。
(2)闪耀问题图是N=4时的光栅相对光强分布曲线。
从图中可以看到,θααsin sin -曲线是包在θββsin sin sin -N 曲线外面的“包络”,它决定后者在什么地方高、在什么地方低,即决定光谱线的强度。
由此可见,衍射因子决定光谱线的强度,干涉因子决定光谱线的位置。
在常用的平面光栅光谱仪里,所拍摄的光谱满足i =θ,可以推出这时有γθ==i ,有kd γλsin 2=通常把这个波长叫做闪耀波长。
2.平面光栅光谱仪结构与组成本实验所用平面光栅光谱仪外观如图所示。
光栅光谱仪主要由光学系统、电系统和计算机组成。
整套仪器由计算机控制。
(1)光学系统光栅光谱仪光学系统原理如图所示。
光源发出的光进入狭缝S1,S1位于反射式准光镜的焦面上,通过S1射入的光束M1反射成平行光束投向平面光栅G 上,衍射后的平行光经物镜成像在S2上。
一.规格与主要技术指标焦距 500mm波长区间 8A 型:200-660 nm 8型:200-800 nm 相对孔径 D/F =1/7光栅 8A 型:2400l /mm λ闪=250nm 8型:1200l /mm λ闪=250nm 波长范围 200-660nm 波长范围 200-800nm 杂散光 ≤10-3 分辨率 8A 型:优于0.06nm 8型:优于0.1nm 光电倍增管接收 8A 型: 8型: 波长范围 200-660nm 200-800 nm 波长精度 ≤±0.2nm ≤±0.4nm 波长重复性≤0.1nm≤±0.2nmCCD(电荷耦合器件) 接收单元 2048光谱响应区间 8A 型:300-660nm 8型:300-900 nm积分时间 88档 重量25kg图2-1 光学原理图M1反射镜、M2准光镜、M3物镜、G 平面衍射光栅 S1入射狭缝、S2光电倍增管接收、S3 CCD 接收二.基本原理WGD -8A 型组合式多功能光栅光谱仪,由光栅单色仪,接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T 型,如图2-1入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束S1M2M1M3S2GS3投向平面光栅G上,衍射后的平行光束经物镜M3成象在S2上或S3上。
M2、M3 焦距500mm光栅G 8A型:2400l/mm λ闪=250nm 8型:1200l/mm λ闪=250nm波长范围200-660nm 波长范围200-800nm 滤光片工作区间8A型:白片320-500nm 8型:白片320-500nm黄片500-660nm 黄片500-800nm 注:8型和8A型的使用操作方法一致(使用同一软件进入程序后,只要选择相对应光栅数即可)三.安装3.1 开箱打开仪器的包装后,请对照装箱单对仪器的齐套性进行认真清点验收,如发现与装箱单不符或者仪器表面有明显的受损现象请立即与售方联系解决。
光栅光谱仪实验仪器WGD-5 型组合式多功能光栅光谱仪,滤色片一组(红绿蓝黄青品),汞灯,溴钨灯。
预习思考题1.简述工作原理(不可照抄课本),在此基础上画出光栅光谱仪的光路图,。
2.改变光谱仪入射或出射狭缝的大小会对测量结果有什么影响?3.为什么波长校准时光源要选择汞灯?能否用其他的灯,请举例。
4.测量透过率曲线对光源有什么要求?汞灯是合适的光源吗?5.测量时能否第一步就使用“工作方式”中的“透射率”模式?为什么?实验内容一. 测量前的准备(自带U 盘)(1) 记录螺旋尺旋转方向与缝宽变化的关系。
(2) 打开单色仪的电源开关,探测器选用光电倍增管,将倍增管的高压调至400V(不得超过600V)。
(4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。
待系统和波长初始化完成后便可以工作。
二. 单色仪波长校准将汞灯置于入射狭缝前,打开并照亮狭缝,预热5分钟可正常工作。
探测器选用光电倍增管,高压加到400 伏。
在能量模式下测量汞灯光谱。
扫描范围350-750nm,扫描步长选1nm。
用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。
说明:光源:汞灯参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围:350—750nm。
狭缝宽度调节,使入射缝与出射缝相匹配。
点击“单程”,单色仪开始扫描。
扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线576.9nm、579.0nm 分开 (以划线谱线作为参照)(汞灯谱线:波长(nm)404.7、407.8、435.8、491.6、546.1、576.9、579.0、623.4、690.7)三. 测量滤色片透过率曲线(每扫描完一条线即存盘)光源:取下高压汞灯(注意避免烫伤),换上溴钨灯,预热5分钟。
1.扫描基线工作方式:模式“基线”,扫描范围(400-700)nm,扫描步长选1nm。
点击“单程”,单色仪开始扫描。
光栅光谱仪的使用实验报告:光栅光谱仪的使用一、引言光谱学作为一门重要的实验科学,为我们研究物质光学性质提供了有力的工具。
其中,光栅光谱仪是一种常见的光谱仪器,通过光栅的光栅结构,能够将经光栅发射的入射光分解成不同波长的光,从而通过测量不同波长光的强度,来分析入射光的光谱分布。
本实验旨在熟悉并掌握光栅光谱仪的使用方法,通过实验测定未知光源的光谱分布曲线,并分析实验结果。
二、实验原理当入射光垂直地照射到光栅上时,入射光经过光栅的衍射和干涉后,会形成多个同心圆环,每个圆环上的光强度与相位有关,而相位与入射光的波长λ有关系,表达式为:d·sinθ = mλ,其中θ为入射角,m为衍射级数。
根据这个关系,我们可以计算出每个级数对应的波长λ。
三、实验步骤1.准备实验仪器,确保光学平台水平放置。
2.将光栅放置在入射光束上,并调整光栅的入射角。
3.打开光栅光谱仪,调节入射光源的位置和强度,使得入射光准直且均匀。
4.调整观察屏与入射光的距离,以获得清晰的光谱。
5.在不同的入射角和波长范围,记录观察屏上的光谱分布图案,注意记录光强度的变化。
6.移动光栅或调整角度,获得更多的光谱数据,并记录。
7.重复以上步骤,完成实验数据的收集。
四、实验数据处理1.根据实验数据绘制光谱分布曲线,横轴为波长λ,纵轴为光强度。
2.分析曲线中的峰值和谷底,确定各峰值对应的波长。
3.通过计算光栅的光栅常数d,可以将波长转换成入射角度。
4.根据衍射公式,计算出光栅的衍射级数m,并结合入射角度计算出入射光波长λ。
五、实验结果与讨论通过实验数据处理,我们得到了未知光源的光谱分布曲线,并通过分析曲线中的峰值和谷底,确定了各峰值对应的波长。
根据光栅的光栅常数和衍射公式,我们计算出了入射光的波长。
实验中可能存在的误差主要来自实验仪器的精度、入射光的均匀性以及人为操作的误差等。
为了减小误差,需要仔细调整实验仪器,保证光学系统的准直和稳定性;在观察光谱时,需要确保观察屏与入射光的距离适当,以获得清晰的光谱图案;在记录光谱数据时,要注意对光强度的准确测量。
如何使用光栅光谱仪测量光波长光谱是研究物质内部结构和性质的重要手段之一。
而测量光谱的波长则是光谱分析的关键步骤之一。
光栅光谱仪是一种常用的测量光波长的设备,本文将介绍如何使用光栅光谱仪进行光波长的测量。
一、光栅原理光栅光谱仪利用光栅的衍射原理测量光波长。
光栅是由等距离的平行光线组成的一条道,道与道之间的间距称为光栅常数。
当光波照射到光栅上时,会发生衍射现象,光波将根据入射角和光栅常数的关系衍射成不同的角度。
测量光栅上不同衍射角度对应的光波长就可以得到光谱。
二、实验准备在进行光波长测量之前,我们需要准备一台光栅光谱仪和一束需要测量波长的光源。
通常情况下,我们会选择使用氢气放电管或氩气离子激光器作为光源,这些光源具有明确的波长和较高的光强。
三、调整仪器在测量之前,我们需要先调整光栅光谱仪的设置。
首先,将光栅光谱仪放置在一个稳定的光学台上,并使其与光源保持一定的距离。
然后,根据需要选择合适的狭缝宽度和入射角度。
狭缝宽度决定了接收到的光强度,过宽或过窄都会影响测量的准确性;而入射角度则影响光波的衍射方向和角度。
四、测量光谱调整好仪器后,我们可以开始进行光波长的测量了。
首先,打开光栅光谱仪的电源,并让其预热一段时间。
接下来,将光源对准光栅光谱仪的入射口,并根据光源的强度调整仪器的增益和曝光时间,使得接收到的光信号处于合适的范围内。
然后,通过调节光栅的倾角和位置,使得光谱在光栅上形成清晰的衍射图案。
可以通过观察不同波长的光线在不同位置的衍射角度,来测量波长。
在实际操作中,常常需要使用一个标准样品来校准光栅光谱仪,以确保测量结果的准确性。
五、数据处理测量完成后,我们需要对测得的光谱数据进行处理。
一般情况下,光栅光谱仪会提供一个软件界面,可以将测得的光强和角度数据转化为波长数据。
如果使用的仪器没有提供相应的软件,我们可以使用一些数据处理软件,如Excel或Python进行数据处理。
通过插值和拟合等方法,可以得到较为准确的光谱波长数据。