高中物理电磁感应题型分类
- 格式:docx
- 大小:136.24 KB
- 文档页数:6
高中物理| 4.5电磁感应现象的两类情况详解电磁感应产生电磁感应现象有感生电动势和动生电动势两类问题。
感生电场19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出:变化的磁场在周围空间激发电场,我们把这种电场叫感生电场.感生电动势由感生电场使导体产生的电动势叫感生电动势。
(1)产生如图所示,当磁场变化时,产生感生电场,感生电场的电场线是与磁场垂直的曲线。
如果空间存在闭合导体,导体中的自由电荷就会在电场力作用下定向移动而产生感应电流,或者说导体中产生了感生电动。
(2)方向:闭合环形回路(可假定存在)的电流方向就是感生电动势的方向,根据楞次定律和右手定则确定。
(3)作用感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电。
变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势。
由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用。
动生电动势1.动生电动势:导体在磁场中做切割磁感线运动时产生的电动势。
2.产生原因导体在磁场中做切割磁感线运动时,产生动生电动势,它是由于导体中自由电子受到洛伦兹力作用引起的.使自由电子做定向移动的非静电力就是洛伦兹力。
如图所示,一条直导线CD在匀强磁场B中以速度v向右运动,并且导线CD与B、v的方向互相垂直。
由于导体中的自由电子随导体一起以速度v运动,因此每个电子受到的洛伦兹力为F=evB,F的方向竖直向下,在F的作用下自由电子沿导体向下运动,使导体下端出现过剩的负电荷,导体上端出现过剩的正电荷,结果是C端的电势高于D端的电势,出现由C端指向D端的静电场,此电场对电子的作用力F′是向上的,与洛伦兹力的方向相反。
随着导体两端正、负电荷的积累,场强不断增强,当作用到自由电子上的静电力与洛伦兹力互相平衡时,C、D两端便产生了一个稳定的电势差。
总之:洛伦兹力是产生动生电动势的原因,即洛伦兹力是产生动生电动势的非静电力。
高中物理电磁感应问题解析电磁感应是高中物理中的一个重要内容,也是考试中的热点考点之一。
在解决电磁感应问题时,我们需要掌握一些基本原理和解题技巧。
本文将通过具体题目的举例,来说明电磁感应问题的解析方法和考点,并给出一些解题技巧,以帮助高中学生顺利解决这类问题。
1. 线圈中的感应电动势问题:一个半径为R的圆形线圈,匀速通过一个磁感应强度为B的磁场,线圈的面积为S。
求线圈中感应电动势的大小。
解析:根据电磁感应的基本原理,当一个线圈通过磁场时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的面积有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的面积和磁感应强度的关系。
在计算时,可以将线圈的面积和磁感应强度代入感应电动势的公式中,直接计算出结果。
2. 导体中的感应电流问题:一个导体棒以速度v与一个磁感应强度为B的磁场垂直运动,求导体中感应电流的大小。
解析:当一个导体棒在磁场中运动时,磁场会对导体中的自由电子产生作用力,从而导致电子在导体内部产生漂移,形成感应电流。
根据洛伦兹力的方向,可以确定感应电流的方向。
解题技巧:对于导体中的感应电流问题,需要注意洛伦兹力的方向和感应电流的方向。
当导体棒以速度v与磁场垂直运动时,洛伦兹力的方向与速度和磁场的方向都有关。
可以通过右手定则来确定洛伦兹力的方向,从而确定感应电流的方向。
3. 电磁感应中的能量转化问题:一个半径为r的圆形线圈以角速度ω绕垂直于平面的轴旋转,磁感应强度为B,求线圈中感应电动势的大小。
解析:当一个线圈以角速度ω旋转时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的角速度有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的角速度和磁感应强度的关系。
高考物理电磁感应现象压轴题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。
现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求:(1)线圈进入磁场时的速度 v 。
1.(单选)如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t 的变化关系如图乙所示.在0﹣2T 时间内,直导线中电流向上,则在2T﹣T 时间内,线框中感应电流的方向与所受安培力情况是( )A .感应电流方向为顺时针,线框受安培力的合力方向向左B .感应电流方向为逆时针,线框受安培力的合力方向向右C .感应电流方向为顺时针,线框受安培力的合力方向向右D .感应电流方向为逆时针,线框受安培力的合力方向向左答案及解析:.C 解:在﹣T 时间内,直线电流方向向下,根据安培定则,知导线右侧磁场的方向垂直纸面向外,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生顺时针方向的感应电流.根据左手定则,知金属框左边受到的安培力方向水平向右,右边受到的安培力水平向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属框所受安培力的合力水平向右.故C 正确,A 、B 、D 错误.故选:C .2.(单选)如图所示,a 、b 、c 三个线圈是同心圆,b 线圈上连接有直流电源E 和电键K ,则下列说法正确的是( )A .在K 闭合的一瞬间,线圈a 中有逆时针方向的瞬时电流,有收缩趋势B .在K 闭合的一瞬间,线圈c 中有顺时针方向的瞬时电流,有收缩趋势C .在K 闭合电路稳定后,再断开K 的一瞬间,线圈c 中有感应电流,线圈a 中没有感应电流D .在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势答案及解析:.D 解:A 、K 闭合时线圈b 中顺时针的电流,根据右手定则可知内部有向里增大的磁场,则a 线圈产生阻碍原磁通量变化的电流;根据楞次定律可知,电流方向为逆时针,线圈受到向外的安培力,故有扩张的趋势;故A 错误;B 、根据楞次定律可知,c 中感应电流为逆时针且有收缩的趋势;故B 错误;C 、在K 闭合电路稳定后,再断开K 的一瞬间,两线圈中均有磁通量的变化,故线圈中均有感应电流;故C 错误D 、在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势;故D 正确;故选:D .3.(多选)如图所示,一电子以初速度v 沿与金属板平行方向飞入MN 极板间,突然发现电子向M 板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是( )A .开关S 闭合瞬间B .开关S 由闭合后断开瞬间C .开关S 是闭合的,变阻器滑片P 向右迅速滑动D .开关S 是闭合的,变阻器滑片P 向左迅速滑动答案及解析:AD 解:电子向M 板偏转,说明电子受到向左的电场力,两金属板间的电场由M 指向N ,M 板电势高,N 板电势低,这说明:与两金属板相连的线圈产生的感应电动势:左端电势高,与N 板相连的右端电势低;A 、开关S 闭合瞬间,由安培定则可知,穿过线圈的磁通量向右增加,由楞次定律知在右侧线圈中感应电流的磁场方向向左,产生左正右负的电动势,电子向M板偏振,A正确;B、开关S由闭合后断开瞬瞬间,穿过线圈的磁通量减少,由楞次定律知在右侧线圈中产生左负右正的电动势,电子向N板偏振,B错误;C、开关S是闭合的,变阻器滑片P向右迅速滑动,变阻器接入电路的电阻增大,电流减小,穿过线圈的磁通量减小,由楞次定律知在上线圈中产生左负右正的电动势,电子向N偏振,C错误;D、开关S是闭合的,变阻器滑片P向左迅速滑动,滑动变阻器接入电路的阻值减小,电流增大,穿过线圈的磁通量增大,由楞次定律知在上线圈中感应出左正右负的电动势,电子向M偏振,D 正确.故选:AD.4.(单选)如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d答案及解析:B解:由静止释放到最低点过程中,磁通量减小,且磁场方向向上,由楞次定律,感应电流产生磁场也向上,再由右手螺旋定则可知,感应电流的方向:d→c→b→a→d;同理,当继续向右摆动过程中,向上的磁通量增大,根据楞次定律可知,电流方向是d→c→b→a→d;故选:B.5.(单选)如图甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内电容器()A.上极板带正电,所带电荷量为012)( t BB CS-B.上极板带正电,所带电荷量为012)(t BBC-C.上极板带负电,所带电荷量为012)( t BB CS-D.上极板带负电,所带电荷量为012)(t BBC-答案及解析:.A解:根据法拉第电磁感应定律,电动势E=,电容器两端的电压等于电源的电动势,所以电容器所带的带电量.根据楞次定律,在环形导体中产生的感应电动势的方向为逆时针方向,所以电容器的上极板带正电.故A正确,B、C、D错误.故选A.6.(单选)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣21Bl 2ω,金属框中无电流D .U bc =21Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a 答案及解析:.C 解:AB 、导体棒bc 、ac 做切割磁感线运动,产生感应电动势,根据右手定则,感应电动势的方向从b 到c ,或者说是从a 到c ,故U a =U b <U c ,磁通量一直为零,不变,故金属框中无电流,故A 错误,B 错误; CD 、感应电动势大小=Bl ()=Bl 2ω,由于U b <U c ,所以U bc =﹣Bl 2ω,磁通量一直为零,不变,金属框中无电流,故C 正确,D 错误;故选:C .7.(多选)如图所示,一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出.已知匀强磁场区域的宽度L 大于线框的高度h ,那么下列说法中正确的是( )A .线框只在进入和穿出磁场的过程中,才有感应电流产生B .线框从进入到穿出磁场的整个过程中,都有感应电流产生C .线框在进入和穿出磁场的过程中,都是机械能变成电能D .整个线框都在磁场中运动时,机械能转变成内能答案及解析:AC 解:A 、B 、线框在进入和穿出磁场的过程中,穿过线框的磁通量发生变化,有感应电流产生,而整个线框都在磁场中运动时,线框的磁通量不变,没有感应电流产生.故A 正确,B 错误.C 、线框在进入和穿出磁场的过程中,产生感应电流,线框的机械能减小转化为电能.故C 正确.D 、整个线框都在磁场中运动时,没有感应电流产生,线框的重力势能转化为动能,机械能守恒.故D 错误.故选:AC .8.(多选)如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止):( )A .感应电流所做的功为2mgdB .线圈的最小速度可能为22L B mgR C .线圈的最小速度一定是)(2d L h g -+D .线圈穿出磁场的过程中,感应电流为逆时针方向答案及解析:.ABC解:A、据能量守恒,研究从cd边刚进入磁场到cd边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q=mgd.cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以从cd边刚穿出磁场到ab边离开磁场的过程,线框产生的热量与从cd边刚进入磁场到ab边刚进入磁场的过程产生的热量相等,所以线圈从cd边进入磁场到ab边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.B、线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg=,解得可能的最小速度v=,故B正确.C、因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg(h+L)=Q+,解得最小速度v=,故C正确.D、线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D错误.故选:ABC.9.(单选)在竖直方向的匀强磁场中,水平放置一个矩形的金属导体框,规定磁场方向向上为正,导体框中电流的正方向如图所示,当磁场的磁感应强度B随时间t如图变化时,下图中正确表示导体框中感应电流变化的是()A.B.C.D.答案及解析:.C解:根据法拉第电磁感应定律有:E=n=n s,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B﹣t图象中的斜率成正比,由图象可知:0﹣2s,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针(俯视)即为正值,而在2﹣4s斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变;根据楞次定律,向上的磁场先减小,再向下磁场在增大,则感应电流方向为逆时针,即为负方向,故ABD错误,C正确.故选:C.10.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流顺时针方向为正、竖直边cd所受安培力的方向水平向左为正.则下面关于感应电流i和cd所受安培力F随时间t变化的图象正确的是()A.B.C.D.答案及解析:.AC解:A、0~2s内,磁场的方向垂直纸面向里,且逐渐减小,根据楞次定律,感应电流的方向为顺时针方向,为正值.根据法拉第电磁感应定律,E==B0S为定值,则感应电流为定值,.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据楞次定律,感应电流方向为顺时针方向,为正值,大小与0~2s 内相同.在3~4s内,磁感应强度垂直纸面向外,且逐渐减小,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.故A正确,B错误.C、在0~2s内,磁场的方向垂直纸面向里,且逐渐减小,电流恒定不变,根据F A=BIL,则安培力逐渐减小,cd边所受安培力方向向右,为负值.0时刻安培力大小为F=2B0I0L.在2s~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据F A=BIL,则安培力逐渐增大,cd 边所受安培力方向向左,为正值,3s末安培力大小为B0I0L.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向右,为负值,第4s初的安培力大小为B0I0L.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向左,6s末的安培力大小2B0I0L.故C正确,D错误.故选AC.11.(单选)圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向外,磁感应强度B随时间变化规律如图示,若规定逆时针方向为感应电流i的正方向,下列图中正确的是()A.B.C.D.答案及解析:C解:由B﹣t图象可知,0﹣1s内,线圈中磁通量增大,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向,故BD错误;由楞次定律可知,1﹣2s内电路中的电流为顺时针,为正方向,2﹣3s内,电路中的电流为顺时针,为正方向,3﹣4s内,电路中的电流为逆时针,为正方向,A错误,C正确;故选:C.12.(单选)一正三角形导线框ABC(高度为a)从图示位置沿x轴正向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、方向相反、垂直于平面、宽度均为a.图乙反映感应电流I与线框移动距离x的关系,以逆时针方向为电流的正方向.图象正确的是()A.B.C.D.答案及解析:.C解:A、x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AC边在左侧磁场中切割磁感线,产生的感应电动势E2增大,两个电动势串联,总电动势E=E1+E2增大.故A错误;B、x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故B错误;CD、在2a~3a,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故C正确,D错误.故选:C.13.(多选)如图,A、B为两个完全相同的灯泡,L为自感线圈(自感系数较大;直流电阻不计),E为电源,S为开关.下列说法正确的是()A.闭合开关稳定后,A、B一样亮B.闭合开关的瞬间,A、B同时亮,但A很快又熄灭C.闭合开关稳定后,断开开关,A闪亮后又熄灭D.闭合开关稳定后,断开开关,A、B立即同时熄灭答案及解析:.BC解:A、B刚闭合S的瞬间,电源的电压同时加到两灯上,由于L的自感作用,L瞬间相当于断路,所以电流通过两灯,两灯同时亮.随着电流的逐渐稳定,L将A灯短路,所以A灯很快熄灭,B灯变得更亮,故A错误,B正确.C、D闭合S待电路达到稳定后,再将S断开,B灯立即熄灭,而L与A灯组成闭合回路,线圈产生自感电动势,相当于电源,A灯闪亮一下而后熄灭,故C正确,D错误.故选:BC14.(单选)如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同的灯泡,S 是控制电路的开关、对于这个电路,下列说法中不正确的是()A.刚闭合S的瞬间,通过D1、D2的电流大小相等B.刚闭合S的瞬间,通过D1、D2的电流大小不等C.闭合S待电路达到稳定后,D1熄灭,D2比S刚闭合时亮D.闭合S待电路达到稳定后,再将S断开的瞬间,D1不立即熄灭,D2立即熄灭答案及解析:.B解:A、S闭合瞬间,由于自感线圈相当于断路,所以两灯是串联,电流相等,故A正确,B错误;C、闭合开关S待电路达到稳定时,D1被短路,D2比开关S刚闭合时更亮,C正确;D、S闭合稳定后再断开开关,D2立即熄灭,但由于线圈的自感作用,L相当于电源,与D1组成回路,D1要过一会在熄灭,故D正确;本题选择错误的,故选:B.15.(单选)如图所示的电路中,A1、A2是完全相同的灯泡,线圈L的自感系数较大,它的电阻与定值电阻R相等.下列说法正确的是()A.闭合开关S,A1先亮、A2后亮,最后它们一样亮B.闭合开关S,A1、A2始终一样亮C.断开开关S,A1、A2都要过一会才熄灭D.断开开关S,A2立刻熄灭、A1过一会才熄灭答案及解析:C解:A、闭合开关S,电阻R不产生感应电动势,A2立即发光.线圈中电流增大,产生自感电动势,根据楞次定律得知,自感电动势阻碍电流的增大,电流只能逐渐增大,A1逐渐亮起来,所以闭合开关S,A2先亮、A1后亮,最后它们一样亮.故AB错误.C、D断开开关S时,A2灯原来的电流突然消失,线圈中电流减小,产生感应电动势,相当于电源,感应电流流过A1、A2和R组成的回路,所以A1、A2都要过一会才熄灭.故C正确,D错误.16.(多选)如图所示,相同电灯A和B的电阻为R,定值电阻的阻值也为R,L是自感线圈.当S1闭合、S2断开且电路稳定时,A、B亮度相同.再闭合S2,待电路稳定后将S1断开.下列说法中正确的是()A.A灯将比原来更亮一些后再熄灭B.B灯立即熄灭C.没有电流通过B灯D.有电流通过A灯,方向为b→a答案及解析:.BCD解:A、由于自感形成的电流是在L原来电流的基础上逐渐减小的,并没有超过A灯原来电流,故A灯虽推迟一会熄灭,但不会比原来更亮,故A错误.B、S1闭合、S2断开且电路稳定时两灯亮度相同,说明L的直流电阻亦为R.闭合S2后,L与A灯并联,R与B灯并联,它们的电流均相等.当断开后,L将阻碍自身电流的减小,即该电流还会维持一段时间,在这段时间里,因S2闭合,电流不可能经过B灯和R,只能通过A灯形成b→A→a→L→c→b的电流,所以BCD正确;故选:BCD.17.(多选)如图中甲、乙两图,电阻R和自感线圈L的阻值都较小,接通开关S,电路稳定,灯泡L发光,则()A.在电路甲中,断开S,L逐渐变暗B.在电路甲中,断开S,L突然亮一下,然后逐渐变暗C.在电路乙中,断开S,L逐渐变暗D.在电路乙中,断开S,L突然亮一下,然后逐渐变暗答案及解析:AD解:A、在电路甲中,断开S,由于线圈阻碍电流变小,导致L将逐渐变暗.故A正确;B、在电路甲中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比电阻的电流小,当断开S,L将不会变得更亮,但会渐渐变暗.故B错误;C、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故C错误;D、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故D正确;故选:AD.18.(单选)如图所示装置中,cd杆光滑且原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左匀速运动答案及解析:.B解:A、ab杆向右匀速运动,在ab杆中产生恒定的电流,该电流在线圈L1中产生恒定的磁场,在L2中不产生感应电流,所以cd杆不动.故A错误.B、ab杆向右加速运动,根据右手定则,知在ab杆上产生增大的a到b的电流,根据安培定则,在L1中产生向上增强的磁场,该磁场向下通过L2,根据楞次定律,在cd杆上产生c到d的电流,根据左手定则,受到向右的安培力,向右运动.故B正确.C、ab杆向左加速运动,根据右手定则,知在ab杆上产生增大的b到a的电流,根据安培定则,在L1中产生向下增强的磁场,该磁场向上通过L2,根据楞次定律,在cd杆上产生d到c的电流,根据左手定则,受到向左的安培力,向左运动.故C错误.D、ab杆向左匀速运动,根据右手定则,知在ab杆上产生不变的b到a的电流,根据安培定则,在L1中产生向下不变的磁场,该磁场向上通过L2,因此没有感应电流,则没有安培力,所以不会移动.故D错误.故选:B.20.截面积为0.2m 2的100匝圆形线圈A 处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按t B ∆∆=0.02T/s 的规律均匀减小,开始时S 未闭合.R 1=4Ω,R 2=6Ω,C=30µF ,线圈内阻不计.求:(1)S 闭合后,通过R 2的电流大小;(2)S 闭合后一段时间又断开,则S 切断后通过R 2的电量是多少?解:(1)磁感应强度变化率的大小为=0.02 T/s ,B 逐渐减弱, 所以E=n S=100×0.02×0.2 V=0.4 V I== A=0.04 A , (2)R 2两端的电压为U 2=E=×0.4 V=0.24 V所以Q=CU 2=30×10﹣6×0.24 Q=7.2×10﹣6 C .21.如图,两足够长的平行粗糙金属导轨MN ,PQ 相距d=0.5m .导轨平面与水平面夹角为α=30°,处于方向垂直导轨平面向上、磁感应强度B=0.5T 的匀强磁场中,长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,导体棒质量m=0.lkg ,电阻R=0.lΩ,与导轨之间的动摩擦因数μ=63,导轨上端连接电路如图,已知电阻R 1与灯泡电阻R L 的阻值均为0.2R ,导轨电阻不计,取重力加速度大小g=10m/s 2,(1)求棒由静止刚释放瞬间下滑的加速度大小a ;(2)假若导体棒有静止释放向下加速度运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 及棒的速率v .解:(1)金属棒刚刚开始时,棒受到重力、支持力和摩擦力的作用,垂直于斜面的方向:N=mgcosα沿斜面的方向:mgsinα﹣μN=ma 代入数据解得:a=0.25g=2.5m/s 2(2)当金属棒匀速下滑时速度最大,达到最大时有mgsinα﹣μN=F 安又 F 安=Bid I= R 总=Ω联立以上方程得金属棒下滑的最大速度为:v m ==m/s=0.8m/s电动势:E=Bdv m =0.5×0.5×0.8=0.2V 电流: A灯泡两端的电压:U L =E ﹣IR=0.2﹣1×0.1=0.1V 灯泡的功率:W22.如图所示,表面绝缘且光滑的斜面MM′N′N固定在水平地面上,斜面所在空间有一边界与斜面底边NN′平行、宽度为d的匀强磁场,磁场方向垂直斜面.一个质量m=0.15kg、总电阻R=0.25Ω的正方形单匝金属框,放在斜面的顶端(金属框上边与MM′重合).现从t=0时开始释放金属框,金属框将沿斜面下滑.图2给出了金属框在下滑过程中速度v的二次方与对应的位移x的关系图象.取重力加速度g=l0m/s2.求:(1)斜面的倾角θ;(2)匀强磁场的磁感应强度B的大小;(3)金属框在穿过磁场的过程中电阻上生热的功率.解:(1)s=0到s=0.4 m由公式v2=2as,该段图线斜率:,所以有:a==5m/s2,根据牛顿第二定律mgsinθ=ma,得:sinθ=,所以:θ=30°(2)线框通过磁场时,v2=4,v=2 m/s,此时安培力等于重力沿斜面向下的分量:F安=mg sinθ,即:,所以解得: =T(3)由图象可知线框匀速穿过磁场,该过程中线框减少的重力势能转化为焦耳热,所以金属框在穿过磁场的过程中电阻上生热的功率等于重力做功的功率,即:P R=P G=mgsinθ•v=0.15×10×0.5×2W=1.5W23.如图所示,倾角θ为30°的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一匝数n=10匝、质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动.(g=10m/s2).求:(1)ab边刚进入磁场时,线圈所受安培力的大小及方向;(2)ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;(3)线圈穿过磁场过程产生的热量.解:(1)ab边刚进入磁场时线框做匀速运动,对线圈受力分析,如图所示,可知:线圈所受安培力的大小 F安=mgsinθ=0.1N方向沿斜面向上.(2)线框进入磁场前沿斜面向下做匀加速直线运动,设ab边刚进磁场时的速度为v,则由机械能守恒定律得:v2=mgL•sin30°得:v=1m/s线框切割磁感线产生的感应电动势 E=nBLv 线框中的感应电流 I=底边所受的安培力 F安=nBIL由以上各式解得:B=0.2T(3)分析可知线圈穿过磁场的过程中一直匀速运动,由能量守恒可得:Q=2mgL•sin30°=0.01J24.如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场.质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab 相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动.棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8.(1)求棒ab与导轨间的动摩擦因数μ;(2)求当棒ab刚要向上滑动时cd速度v的大小;(3)若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q.解:(1)当ab刚好不下滑,静摩擦力沿导轨向上达到最大,由平衡条件得:mgsin37°=μmgcos37°则μ=tan37°=0.75(2)设ab刚好要上滑时,cd棒的感应电动势为E由法拉第电磁感应定律有 E=BLv设电路中的感应电流为I,由闭合电路欧姆定律有 I=设ab所受安培力为F安,有 F安=BIL此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安cos37°=mgsin37°+μ(mg cos37°+F安sin37°)代入数据解得:F安==mg又F安=代入数据解得 v=(3)设ab棒的运动过程中电路中产生的总热量为Q总,由能量守恒有 F•x﹣2Q=mv2解得Q=F•x﹣mv2=F•x﹣。
一·单棒+磁场模型所需知识:电流定义式、电容定义式、法拉第电磁感应定律、安培力大小公式、能量守恒、动量定理等。
①(有电阻)质量为m 、电阻为r 、长度为L 且质量分布均匀的金属棒置于金属导轨上面,以大小为v 的初速度沿导轨向右运动。
整个装置位于磁感应强度大小为B 、方向竖直向下的匀强磁场中。
金属导轨与大小为R 的电阻相连。
金属导轨电阻不计,不计一切摩擦力。
基本问题:1、求金属棒停止运动时电阻/金属棒产生的热量。
Q Q Q Q mvQ r R R r R R r R 总总总注意是哪部分的热量+=+==.212 2、求金属棒停止运动时通过电阻/金属棒的电荷量。
BLmv q mvBLq tI q mvt BIL v m t F ==∆==∆-=∆-)0( 3、求金属棒停止运动时金属棒的位移。
222222)()0(L B r R mv x xt v mv rR t v L B v m t F rR v L B F rR BLv r R E I BLvE BILF +==∆=+∆-=∆-+=+=+===②(有电容器)一质量为m 、电阻为r 、长度为L 且质量分布均匀的金属棒置于金属导轨上面,以大小为v 的初速度沿导轨向右运动。
整个装置位于磁感应强度大小为B 、方向竖直向下的匀强磁场中。
金属导轨与大小为C 的电容器相连。
金属导轨电阻不计,不计一切摩擦力。
基本问题:1、电容器不带电,求金属棒最终速度。
mC L B mv v v v m Cv L B v v m BLCU v v m BLQ v v m t BIL v v m t F C CU E +=-=-=-=-=∆-=∆-=22'''22'''')()()()()(感最终满足2、电容器上下极板间的电势为E 下极板带正电上极板带负电,若BLv E =求金属棒最终速度。
此时V E 0=总 无电流,故金属棒保持速度v 匀速运动。
高中物理选修3-2第3讲法拉第电磁感应定律题型1(感应电动势的产生条件)1、1823年,科拉顿做了这样一个实验,他将一个磁铁插入连有灵敏电流计的螺旋线圈,来观察在线圈中是否有电流产生。
在实验时,科拉顿为了排除磁铁移动时对灵敏电流计的影响,他通过很长的导线把连在螺旋线圈上的灵敏电流计放到另一间房里。
他想,反正产生的电流应该是“稳定”的(当时科学界都认为利用磁场产生的电流应该是“稳定”的),插入磁铁后,如果有电流,跑到另一间房里观察也来得及。
就这样,科拉顿开始了实验,然而,无论他跑得多快,他看到的电流计指针都是指在“0”刻度的位置,科拉顿失败了,以下关于科拉顿实验的说法中正确的是(D)A.螺旋线圈中磁通量没有改变B.实验中没有感应电流C.科拉顿的实验装置是错误的D.科拉顿实验没有观察到感应电流是因为跑到另一间房观察时,电磁感应过程已结束2.在匀强磁场中,a、b是两条平行金属导轨,而c、d为串有电流表、电压表的两金属棒,如图所示,两棒以相同的速度向右匀速运动,则以下结论正确的是(D)A.电压表有读数,电流表没有读数B.电压表有读数,电流表也有读数C.电压表无读数,电流表有读数D.电压表无读数,电流表也无读数3.将线圈置于范围足够大、方向竖直向下的匀强磁场B中,各线圈的运动方式如下列图所示,则能够在线圈中产生感应电动势的是(C)A.B.C.D.4.环形线圈放在均匀磁场中,设在第1秒内磁感线垂直于线圈平面向内,若磁感应强度随时间变化关系如图,那么在第2秒内线圈中感应电流的大小和方向是(B)A.感应电流大小恒定,顺时针方向B.感应电流大小恒定,逆时针方向C.感应电流逐渐增大,逆时针方向D.感应电流逐渐减小,顺时针方向5.如图所示,4匝矩形线圈abcd,ab=1m,bc=0.5m,其总电阻R=2Ω,线圈绕OO′轴在匀强磁场中匀速转动,磁感应强度B=1T,角速度ω=20rad/s,当线圈由图示位置开始转过30°时,线圈中的电流强度为(B)A.20A B.0A C.10A D.17.3A6.处在匀强磁场中的闭合金属环从曲面上h高处滚下,又沿曲面的另一侧上升到最大高度,设环的初速度为零,摩擦不计,曲面处在如图所示的磁场中,则此过程中(B)A.环滚上的高度小于hB.环滚上的高度等于hC.由于环在作切割磁感线运动,故环中有感应电流产生D.环损失的机械能等于环产生的焦耳热7.下列说法正确的是(CD)A.一个正电荷与一个负电荷中和后,总电荷量减少了,电荷守恒定律并不成立B.在感应起电的过程中,金属中的正、负电荷向相反的方向移动C.在感应起电的过程中,金属中的负电荷受电场力的作用发生移动D.在感应起电的过程中,金属中正电的原子核不发生定向移动8.用如图所示的实验装置,研究电磁感应现象.当条形磁铁按图示方向插入闭合线圈的过程中,穿过线圈的磁通量的变化情况是(“增加”、“不变”或“减小”).如果条形磁铁在线圈中保持静止不动,灵敏电流表G的示数(“为零”或“不为零”).答案:增大;为零题型2(法拉第电磁感应定律的概念理解)1、将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中缠身的感应电动势和感应电流,下列表述正确的是(C)A. 感应电动势的大小与线圈的匝数无关B. 穿过线圈的磁通量越大,感应电动势越大C. 穿过线圈的磁通量变化越快,感应电动势越大D. 感应电力会产生的磁场方向与原磁场方向始终相同2、自然界中某个量D的变化量∆D,与发生这个变化所用的时间∆t的比值∆D∆t,叫做这个量D的变化率。
电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:(1))()(sin vl t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。
另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。
2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。
对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。
题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。
现用一平行于导轨的恒力F作用在a的中点,使其向上运动。
若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。
金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。
MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。
从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。
t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。
求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。
高中物理电磁感应题型分类
1、电磁感应的图象问题
主要是两种:一是给出电磁感应过程选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应的物理量.
例1、矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图1所示. 若规定顺时针方向为感应电流I的正方向,图2中正确的是()
解析:0~1s内B垂直纸面向里均匀增大,则由楞次定律及法拉第电磁感应定律可知线圈中产生恒定的感应电流,方向为逆时针方向,排除A、C选项;2s~3s内,B垂直纸面向外均匀增大,同理可知线圈中产生的感应电流方向为顺时针方向,排除B选项,D正确.
例2、如图3,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框. 在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域. 以i表示导线框中感应电流的强度,取逆时针
方向为正. 图4表示i-t关系的图示中,可能正确的是()
解析:从正方形线框下边开始进入到下边完全进入过程中,线框切割磁感线的有效长度逐渐增大,所以感应电流也逐渐增大,A项错误;从正方形线框下边完全进入至下边刚穿出磁场边界时,切割磁感线有效长度不变,故感应电流不变,B项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少得稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D项错,故正确选项为C.
2、电磁感应与力学综合
电磁感应与力学的结合,实际上是受力分析中多了一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系. 通过分析物体的受力情况,根据物体在运动过程中所受安培力的情况从运动和力的关系着手,运用牛顿第二定律解决问题. 解决问题的基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二定律列方程求解.
例3、均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m. 将其置于磁感强度为B的水平匀强磁场上方h处,如图5所示. 线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行. 当cd边刚进入磁场时,
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
解析:(1)cd边刚进入磁场时,线框速度
线框中产生的感应电动势
(2)此时线框中电流
cd两点间的电势差
(3)安培力
根据牛顿第二定律由a=0
解得下落高度满足
3、电磁感应与动量、能量的综合
电磁感应与动量和能量的结合经常出现在计算题中,在与动量的结合中主要是运用动量定理或动量守恒定律,应用动量定理可以由动量变化来求解变力的冲量. 在与能量的结合中主要是从能量转化和守恒着手,运用动能定理或能量守恒定律. 解题的基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.
例4、如图6所示,间距为l的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计. 场强为B的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d1,间距为d2. 两根质量均为m、有效电阻均为R的导体棒a和b放在导轨上,并与导轨垂直. (设重力加速度为g)
(1)若a进入第2个磁场区域时,b以与a同样的速度进入第1
个磁场区域,求b穿过第1个磁场区域过程中增加的动能.
(2)若a进入第2个磁场区域时,b恰好离开第1个磁场区域;此后a离开第2个磁场区域时,b又恰好进入第2个磁场区域. 且a、b在任意一个磁场区域或无磁场区域的运动时间均相等. 求a穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q.
(3)对于第(2)问所述的运动情况,求a穿出第k个磁场区域时的速率v.
解析:(1)a和b不受安培力作用,由机械能守恒定律知
(2)设导体棒刚进入无磁场区域时的速度为v1,刚离开无磁场区域时的速度为v2,由能量守恒知:
在磁场区域中,
在无磁场区域中,
解得
(3)在无磁场区域:
根据匀变速直线运动规律
且平均速度
有磁场区域:棒a受到的合力
感应电动势E=Blv 感应电流
解得
根据牛顿第二定律,在t到时间内
则有
解得
联立以上几式解得
4、电磁感应与电容、电路、电场、磁场综合
在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源. 解决电磁感应与电路综合问题的基本思路是:(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)运用闭合电路欧姆定律、串并联电路的性质求解未知物理量.
例5、如图7所示的电路中,三个相同的灯泡a、b、c和电感L1、L2与直流电源连接,电感的电阻忽略不计. 电键K从闭合状态突然断开时,下列判断正确的有()
A. a先变亮,然后逐渐变暗
B. b先变亮,然后逐渐变暗
C. c先变亮,然后逐渐变暗
D. b、c都逐渐变暗
解析:电键K闭合时,电感L1的电流是b的电流和L2的电流之和,三个灯泡的电流均相等,断开电键K的瞬间,电感上的电流突然减小,三个灯泡均处于回路中,故b、c灯泡电流逐渐减小,B、C均错,D对;灯泡a上的电流等于L1的电流,故灯泡a先变亮,然后逐渐变暗,A对.
例6、两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻. 将质量为m的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B的匀强磁场垂直,如图8所示. 除电阻R外其余电阻不计. 现将金属棒从弹簧原长位置由静止释放。
则()
A. 释放瞬间金属棒的加速度等于重力加速度g
B. 金属棒向下运动时,流过电阻R的电流方向为a→b
C. 金属棒的速度为v时,所受的安培力大小为
D. 电阻R上产生的总热量等于金属棒重力势能的减少
解析:在释放的瞬间,速度为零,不受安培力的作用,只受到重力,A对. 由右手定则可得,电流的方向从b到a,B错. 当速度为v时,产生的电动势为E=Blv,受到的安培力为F=BIL,计算可得,C对. 在运动的过程中,是弹簧的弹性势能、重力势能和内能的转化,D错. 故选AC.。