10-匀变速直线运动的规律
- 格式:ppt
- 大小:455.00 KB
- 文档页数:28
匀变速直线运动公式、规律一.基本规律:(1)平均速度=1.公式(2)加速度= (1)加速度=(3)平均速度=(2)平均速度=(4)瞬时速度(3)瞬时速度(5)位移公式(4)位移公式(6)位移公式(5)位移公式(7)重要推论(6)重要推论注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:即2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T,加速度为a,连续相等的时间间隔内的位移分别为S1,S2,S3,……SN;则S=S2-S1=S3-S2= …… =SN-SN-1= aT2三.运用匀变速直线运动规律解题的一般步骤。
(1)审题,弄清题意和物体的运动过程。
(2)明确已知量和要求的物理量(知三求一:知道三个物理量求解一个未知量)。
例如:知道、、求解末速度用公式:(3)规定正方向(一般取初速度为正方向),确定正、负号。
(4)选择恰当的公式求解。
(5)判断结果是否符合题意,根据正、负号确定所求物理量的方向。
1.在匀变速直线运动中,下列说法中正确的是()A. 相同时间内位移的变化相同B. 相同时间内速度的变化相同C. 相同时间内加速度的变化相同D. 相同路程内速度的变化相同2.做匀减速直线运动的质点,它的位移随时间变化的规律是s=24t-1.5t2(m),当质点的速度为零,则t为多少()A.1.5s B.8s C.16s D.24s3.某火车从车站由静止开出做匀加速直线运动,最初一分钟内行驶,那么它在最初10s行驶的距离是()A. B. C. D. 15m4.一物体做匀减速直线运动,初速度为/s,加速度大小为/s2,则物体在停止运动前ls内的平均速度为()A./s B./s C.l m/s D./s5. 一辆汽车从车站以初速度为0匀加速直线开出一段时间之后,司机发现一乘客未上车,便紧急刹车做匀减速运动。
专题一 匀变速直线运动的规律及其应用一、匀变速直线运动的规律1.条件:物体受到的合外力恒定,且与运动方向在一条直线上.2.特点:a 恒定,即相等时间内速度的变化量恒定.3.规律:(1)v t =v 0+at (2)s =v 0t +21at 2(3)v t 2-v 02=2as 4.推论:(1)匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即 Δs =s i +1-s i =aT 2=恒量.(2)匀变速直线运动的物体,在某段时间内的平均速度等于该段时间的中间时刻的瞬时速度,即v t /2=v =20t v v + 以上两个推论在“测定匀变速直线运动的加速度”等学生实验中经常用到,要熟练掌握.(3)初速度为零的匀加速直线运动(设T 为等分时间间隔):①1T 末、2T 末、3T 末……瞬时速度的比为:v 1∶v 2∶v 3∶……∶v N =1∶2∶3∶…∶n②1T 内、2T 内、3T 内……位移的比为:s 1∶s 2∶s 3∶…∶s N =12∶22∶32∶…∶n 2③第一个T 内、第二个T 内、第三个T 内…… 位移的比为:s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s N =1∶3∶5∶…∶(2n -1)④从静止开始通过连续相等的位移所用时间的比:t 1∶t 2∶t 3∶…∶t N =1∶(2-1)∶(3-2)∶…∶(n -1-n )1 如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的若干小球摄下照片如图,测得AB=15cm ,BC=20cm ,试求:(1)拍照时B 球的速度;(2)拍摄时s CD =?(3)A 球上面还有几颗正在滚动的钢球2 ,一物体作匀加速直线运动,通过一段位移△x 所用的时间为t 1,紧接着通过下一段位移△x 所用的时间为t 2. 则物体运动的加速度为A .1212122()()x t t t t t t ∆-+ B.121212()()x t t t t t t ∆-+ C .1212122()()x t t t t t t ∆+- D .121212()()x t t t t t t ∆+-3 .某质点P 从静止开始以加速度a 1做匀加速直线运动,经t (s )立即以反向的加速度a 2做匀减速直线运动,又经t (s )后恰好回到出发点,试证明a 2=3a l .4,一个质点从静止开始做匀加速直线运动,已知它在第4s 内的位移是14m ,求它前72m 所用的时间.5 每隔一定时间,从车站以同一加速度沿一笔直的公路开出一辆汽车,当第五辆车开始起动时,第一辆车已离站320m .此时第四辆车与第三辆车的距离是多大?6 一列火车有n 节相同的车厢,一观察者站在第一节车厢的前端,当火车由静止开始做匀加速直线运动时( )A .每节车厢末端经过观察者时的速度之比是1∶2∶3∶…∶nB .每节车厢经过观察者所用的时间之比是1∶(12-)∶(23-)∶…∶(1--n n )C .在相等时间里,经过观察者的车厢节数之比是1∶2∶3∶…∶nD .如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车经过观察者的过程中,平均速度为v /n7,物体沿某一方向做匀变速直线运动,在t (s )内通过的路程为s ,它在s 2处的速度为v 1,在中间时刻的速度为v 2,则v 1和v 2的关系应是( )A .当物体做匀加速直线运动时,v l >v 2B .当物体做匀减速直线运动时,v l >v 2C .当物体做匀速直线运动时,v l =v 2D .当物体做匀减速直线运动时,v l <v 28 某车队从同一地点先后从静止开出n 辆汽车,在平直的公路上沿一直线行驶,各车均先做加速度为a 的匀加速直线运动,达到速度v 后做匀速直线运动,汽车都匀速行驶后,相邻两车距离均为s ,则相邻两车启动的时间间隔为 ( )A .av 2 B .a v 2 C .υ2s D .υs 9.如图1-2-2所示的光滑斜面上,一物体以4m/s 的初速度由斜面底端的A 点匀减速滑上斜面,途经C 和B ,C 为AB 中点,已知v A ∶v C = 4∶3,从C 点到B 点历时(23-)S ,试求:(1)到达B 点的速度?(2)AB 长度?10,有一个物体开始时静止在O 点,先使它向东作匀加速直线运动,经过5秒钟,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5秒钟,又使它加速度方向改为向东,但加速度大小不改变,如此重复共历时20秒,则这段时间内( )A .物体运动方向时而向东时而向西B .物体最后静止在O 点C .物体运动时快时慢,一直向东运动D .物体速度一直在增大11,物体沿光滑斜面匀减速上滑,加速度大小为4 m /s 2,6 s 后又返回原出发点.那么下述结论正确的是( ).A .物体开始沿斜面上滑时速度为12 m /sB .物体开始沿斜面上滑时速度是10 m /sC .物体沿斜面上滑的最大位移是18 mD .物体沿斜面上滑的最大位移是15 m12 ,为了安全,在公路上行驶的汽车之间应保持必要的距离。
匀变速直线运动规律匀变速直线运动规律:匀变速直线运动是物体沿直线运动,速度恒定不变的一种运动规律。
它包括物体在任意时刻应具有恒定的速度,且连续变化。
1、位移s与时间t的关系:在匀变速直线运动中,物体在每一小段时间内的位移都是一样的,比如说物体的速度为v(m/s),那么每一小段的速度也是一样的。
所以,在某一时刻t的位移s等于t时刻之前的位移s0 加上t时刻之间时间内的位移,即:s = s0 + v*t 。
2、速度v与时间t的关系:关于速度与时间的关系可以从第一条关系s = s0 + v*t 来理解,由于物体在每一小段时间内的位移都是一样的,而这一小段时间的位移取决于当前的速度与时间的乘积,所以我们可以推出速度与时间的关系v = (s-s0) / t。
3、加速度a与时间t的关系:加速度a与时间t的关系也是可以从第一条关系s = s0 + v*t 来推出的,我们可以将该关系展开后得到:s = s0 + v0*t + 1/2 * a*t^2 ,这里的a就是物体变化的加速度,因此可以推出:a = 2*(s-s0 - v0*t)/t^2 。
4、位移s与速度v的关系:在匀变速直线运动中,物体的速度恒定不变,所以可以简单得知:s = s0 + v*t 。
5、加速度a与速度v的关系:从加速度a与时间t的关系可以得到:a = 2*(s-s0 - v0*t)/t^2 ,因此可以推出:v = v0 + a*t 。
总结而言,匀变速直线运动的规律就是:物体的速度是恒定的,其位移、速度、加速度之间存在着密切的关系,利用上述关系可以得出物体的位移、速度、加速度随时间的变化情况,从而得出物体的完整的运动轨迹。
第二节 匀变速直线运动的规律【规律及公式】1、匀变速直线运动的基本公式 速度公式:v t =v 0+at ①位移公式:2021at t v x += ②速度位移公式:ax v v2202=- ③平均速度公式:0t/20+===+22v v t v v atv ④ tx=(任何运动都适用) 注意:①匀变速直线运动中涉及到v 0、v t 、a 、s 、t 五个物理量,其中只有t 是标量,其余都是矢量。
上述四个公式都是矢量式。
通常选定v 0的方向为正方向,其余矢量的方向依据其与v 0方向相同或是相反分别用正、负号表示。
如果某个矢量是待求的,就假设其为正,最后根据结果的正负确定其实际方向。
②解题中常选用公式=s vt 及只有匀变速直线运动才成立的平均速度公式0+=2tv v v ,会使计算大为简化。
2、匀变速直线运动的三个推论(1)在连续相等的时间间隔(T)内的位移之差等于一个恒量,即Δx=aT 2(或者2)(aT n m x x n m -=-) ⑤(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度,即:02+==2ttv v v v ⑥ (3)某段位移内中间位置的瞬时速度v 中与这段位移初、末速度v 0和v t 关系:220=2t v v v +中 ⑦注意:无论匀加速还是匀减速总有2tv =v =20t v v +<2x v =2220t v v +4、初速度为零的匀加速直线运动的一些特殊比例式(从t =0开始),设T 为时间单位,则有: ①1T 末、2T 末、3T 末……瞬时速度之比为v 1∶v 2∶v 3∶……=1∶2∶3∶……②第一个T 内,第二个T 内,第三个T 内……位移之比:x Ⅰ∶x Ⅱ∶x Ⅲ∶……=1∶3∶5∶…… ③1T 内、2T 内、3T 内……位移之比为x 1∶x 2∶x 3∶……=12∶22∶32…… ④通过连续相同的位移所用的时间之比:t 1∶t 2∶t 3……=5、应用速度或位移公式应注意的几个问题: (1)速度公式v t =v 0+at 和位移公式2021at t v x +=的适用条件必须是物体做匀变速直线运动,否则不能应用上述公式,所以,对以上两公式应用时,必须首先对运动性质和运动过程进行判断和分析。
第二章 匀变速直线运动的规律1.匀变速直线运动(1)定义:在任意相等的时间内速度的变化量相等的直线运动。
(2)特点:轨迹是直线,加速度a 恒定。
当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。
2.匀变速直线运动的规律 (1)基本规律①速度时间关系:at v v +=0 ②位移时间关系:2021at t v x += (2)重要推论①速度位移关系:ax v v 2202=- ②平均速度:22t v v v v =+=③做匀变速直线运动的物体在连续相等的时间间隔的位移之差:Δx =x n+1-x n =aT 2。
3.自由落体运动(1)定义:物体只在重力的作用下从静止开始的运动。
(2)性质:自由落体运动是初速度为零,加速度为g 的匀加速直线运动。
(3)规律:与初速度为零、加速度为g 的匀加速直线运动的规律相同。
学法指导一、用匀变速直线运动规律解题的一般思路运动学规律具有条件性、相对性和矢量性。
利用运动学规律解决运动学问题的一般思路是:1.对物体进行运动情况分析,画出运动过程示意图。
2.选择合适的运动学规律,选取正方向,列式求解。
二、利用图象分析解决运动学问题1.速度-时间图象的信息点(1)横坐标表时间,纵坐标表速度。
图线表示速度随时间的变化关系。
(2)斜率表示加速度的大小和方向。
切线的斜率表示某时刻物体加速度的大小和方向。
(3)图线与坐标轴围成的面积表示位移的大小和方向(横轴上方为正,下方为负)。
(4)横、纵截距的含义。
2.位移-时间图象的信息点(1)横坐标表示时间,纵坐标表示位移。
图线表示物体的位移随时间的变化关系,不表示轨迹。
(2)斜率表示速度的大小和方向。
切线的斜率表示某时刻物体速度的大小和方向。
(3)横截距表示物体出发的时刻,纵截距表示零时刻物体的出发位置。
3.利用图象分析和解决问题时必须把图象与具体的物理情景相联系,能写出横、纵坐标之间关系式的,最好写出关系式,并把式子与图象相结合。
匀变速直线运动的规律一、匀变速直线运动1.定义:沿着一条直线,且加速度不变的运动.二、匀变速直线运动的规律1.匀变速直线运动的速度与时间的关系v t=v0+at.2.匀变速直线运动的位移与时间的关系s=v0t+12at23.匀变速直线运动的位移与速度的关系v2t-v20=2as.4.由平均速度求匀变速直线运动的位移s=v0+v t 2t考点一初速度为零(或末速度为零)的匀变速直线运动做匀变速直线运动的物体,如果初速度为零,各物理量间的比例关系:1.前1 s、前2 s、前3 s、…内的位移之比为1∶4∶9∶…2.第1 s、第2 s、第3 s、…内的位移之比为1∶3∶5∶…3.前1 m、前2 m、前3 m、…所用的时间之比为1∶2∶3∶…4.第1 m、第2 m、第3 m、…所用的时间之比为1∶(2-1)∶(3-2)∶…1.Δs=aT2,即任意相邻相等时间内的位移之差相等.可以推广到s m-s n=(m-n)aT22.=v0+v t2,某段时间的中间时刻的瞬时速度等于该段时间内的平均速度.v =v20+v2t2,某段位移的中间位置的瞬时速度不等于该段位移内的平均速度.可以证明,无论匀加速还是匀减速,都有v v题型一匀变速直线运动基本规律的应用例1 一个氢气球以4 m/s2的加速度由静止从地面竖直上升,10 s末从气球中掉下一重物,此重物最高可上升到距地面多高处?此重物从氢气球中掉下后,经多长时间落回到地面?(忽略空气阻力,g取10 m/s2)解析 下面分三个阶段来求解.向上加速阶段: s 1=12a 1t 21=12×4×102 m =200 m v 1=a 1t 1=40 m/s 竖直上抛上升阶段:s 2=v 212g=80 m t 2=v 1g =4 s自由下落阶段:s 1+s 2=12gt 23得:t 3=2(s 1+s 2)g =56 s =7.48 s 所以,此重物距地面最大高度 s max =s 1+s 2=280 m 重物从掉下到落地的总时间 t =t 2+t 3=11.48 s.2. 从斜面上某一位置,每隔0.1 s 释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如图1所示,测得s AB =15 cm ,s BC =20 cm ,求: (1)小球的加速度; (2)拍摄时B 球的速度; (3)拍摄时s CD 的大小; (4)A 球上表面滚动的小球还有几颗.解析 (1)由a =ΔsT 2得小球的加速度 a =s BC -s ABT2=5 m/s 2 (2)B 点的速度等于AC 段上的平均速度,即 v B =s AC2t=1.75 m/s(3)由相邻相等时间内的位移差恒定,即s CD -s BC =s BC -s AB ,所以 s CD =2s BC -s AB =0.25 m(4)设A 点小球的速度为v A ,由于 v A =v B -at =1.25 m/s所以A 球的运动时间为t A =v Aa =0.25 s ,所以在A 球上方滚动的小球还有2颗.自由落体和竖直上抛考点一 自由落体运动的规律与推论 1.基本规律由于自由落体运动是初速度为零的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动. (1)速度公式:v =gt(2)位移公式:h =12gt 2(3)位移与速度的关系:v 2=2gh 2.推论(1)平均速度等于中间时刻的瞬时速度,也等于末速度的 一半,即v =v t 2=12gt(2)在相邻的相等时间内下落的高度差Δh =gT 2(T 为时间间隔) 考点二 对竖直上抛运动的理解 1.竖直上抛运动的研究方法(1)分段法:可以把竖直上抛运动分成上升阶段的匀减速直线运动和下降阶段的自由落体运动处理,下降过程是上升过程的逆过程.(2)整体法:从全过程来看,加速度方向始终与初速度的方向相反,所以也可把竖直上抛运动看成是一个匀变速直线运动.3. 如图2所示,一根长为L =10 m 的直杆由A 点静止释放,求它通过距A 点为h =30 m ,高为Δh =1.5 m 的窗户BC 所用的时间Δt .解析 由题意可知,直杆通过窗户BC 所用的时 间是指直杆的上端E 自由下落到窗户的下沿C 所 用的时间与直杆的下端F 自由下落到窗户的上沿 B 所用的时间之差,如题图所示.所以直杆通过窗 户BC 所用的时间为 Δt =t 2-t 1= 2(h +Δh )g- 2(h -L )g=2×31.510 s - 2×(30-10)10s =0.51 s题型三 “临界分析法”解决抛体相遇问题1.临界问题:是指一种物理过程转变为另一种物理过程,或一种物理状态转变为另一种物理状态时,处于两种过程或两种状态的分界处的问题.处于临界状态的物理量的值叫临界值. 2.临界问题的特点(1)物理现象的变化面临突变性.(2)对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点.3.分析方法:解决临界问题,关键是找出临界条件.一般有两种基本方法:(1)以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解;(2)直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解.例3 在h 高处,小球A 由静止开始自由落下,与此同时,在A 的正下方地面上以初速度v 0竖直向上抛出另一小球B ,求A 、B 在空中相遇的时间与地点,并讨论A 、B 相遇的条件(不计空气阻力作用)解析 设相遇时间为t ,相遇点离地面高度为y ,则两球相遇必在同一位置,具有相同的y .所以y =v 0t -12gt 2=h -12gt 2,即v 0t =h .所以相遇时间为t =hv 0. 将t 代入y 的表达式中,y =h -12gt 2=h -12g h 2v 20=h (1-gh2v 20),即为相遇点离地面的高度. 讨论:A 、B 能在空中相遇,则y >0,即h (1-gh 2v 20)>0.所以1-gh2v 20>0,即v 0> gh2为A 、B 在空中相遇的条件. 当在B 球的最高点相遇时,应有12gt 2+v 202g =h ,且t =v 0g ,解得v 0=gh .当gh2<v 0<gh 时,在B 球下降过程中两球相遇;当v 0=gh 时,恰在B 球上升到最高点时两球相遇;当v 0>gh 时,在B 球上升过程中两球相遇.建模感悟 从高处下落的物体与上抛物体的相遇极其类似在水平面上的相遇,所不同的是此类题目两物体的运动均是匀变速直线运动.但处理时要注意相遇可能有两种情形——上抛物体的上升段和下降段,同时注意二者之间的时间关系和位移关系,便可顺利解决此类题目. 4. 如图3所示,A 、B 两棒长均为L =1 m ,A 的下端和B 的上端相距s =20m ,若A 、B 同时运动,A 做自由落体运动,B 做竖直上抛运动,初速度v 0=40 m/s.求:(1)A 、B 两棒何时相遇; (2)从相遇开始到分离所需的时间 解析 (1)设经过时间t 两棒相遇,由1 2gt 2+(vt-12gt2)=s,得t=sv0=2040s=0.5 s.(2)从相遇开始到两棒分离的过程中,A棒做初速度不为零的匀加速运动,B棒做匀减速运动,设从相遇开始到分离所需的时间为t′,则(v A t′+12gt′2)+(vBt′-12gt′2)=2L.其中v A=gt,v B=v0-gt.代入后解得t′=2Lv0=2×140s=0.05 s.专题:运动的图象追及和相遇问题1.对s-t图象的理解(1)物理意义:反映了做直线运动的物体位移随时间变化的规律.(2)图线斜率的意义①图线上某点切线的斜率大小表示物体速度的大小②图线上某点切线的斜率正负表示物体速度的方向3)两种特殊的s—t图象①若s-t图象是一条倾斜的直线,说明物体在做匀速直线运动.②若s-t图象是一条平行于时间轴的直线,说明物体处于静止状态.2.对v-t图象的理解(1)物理意义:反映了做直线运动的物体速度随时间变化的规律.(2)图线斜率的意义①图线上某点切线的斜率大小表示物体运动的加速度的大小②图线上某点切线的斜率正负表示加速度的方向(3)图象与坐标轴围成的“面积”的意义①图象与坐标轴围成的面积表示位移的大小②若此面积在时间轴的上方,表示这段时间内的位移方向为正;若此面积在时间轴的下方,表示这段时间内的位移方向为负题型二追及和相遇问题的处理方法例3 甲车以10 m/s的速度在平直的公路上匀速行驶,乙车以4 m/s的速度与甲车平行同向做匀速直线运动.甲车经过乙车旁边时开始以0.5 m/s2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间.解析(1)当甲车速度减至等于乙车速度时两车的距离最大,设该减速过程所用时间为t,则有v乙=v甲-at,解得t=12 s,此时甲、乙间距离为v甲t-12at2-v乙t=36 m(2)设甲车减速到零所需时间为t1,则有t1=v甲a=20 st1时间内,s甲=v甲2t1=102×20 m=100 m s乙=v乙t1=4×20 m=80 m此后乙车运动时间t2=s甲-s乙v乙=204s=5 s 故乙车追上甲车需t1+t2=25 s.题后感悟(1)在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.(2)分析追及相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.(3)解题思路和方法5.在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度大小为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0满足的条件.解析A、B车的运动过程(如图)利用位移公式、速度公式求解.对A车有s A=v0t+12×(-2a)×t2 v A=v0+(-2a)×t对B车有s B=12at2,vB=at对两车有s=s A-s B追上时,两车不相撞的临界条件是v A=v B联立以上各式解得v0=6as故要使两车不相撞,A车的初速度v0应满足的条件是v0≤6as1.如图6所示,一高为h=2.4 m,倾角为θ=37°的斜面体ABC固定在光滑水平面上.在距C点右侧水平距离为d=5 m的D处固定一竖直挡板.一质量为m=0.1 kg的小物块从斜面体的顶端B 由静止开始下滑,如果小物块与斜面体间的动摩擦因数μ=0.5,小球在运动过程中经过C 点时无机械能损失,(重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)小物块从顶端B 滑至底端C 所需要的时间t ;(2)小物块从开始运动到最终停止的整个过程中在斜面上运动的路程s . 解析 (1)设小物块下滑的加速度为a ,由牛顿第二定律得mg sin θ-μmg cos θ=ma 可得a =g sin θ-μg cos θ=10×0.6 m/s 2-0.5×10×0.8 m/s 2=2 m/s 2 由运动学公式可得t =2hsin θ·a= 2×2.40.6×2s =2 s (2)小物块最终停在斜面底端C 点 由动能定理得mgh -μmg cos θ·s =0 可得s =6 m 10(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。