2π 2
r1,解得
1
m
4π 2
3
,设地
地=
1 2 1
4
3π1 3
3
球的半径为 R 地,太阳的半径为 R 太,则地球的体积 V= π地 ,解得 ρ 地= 2 3 ,
3
1 地
同理可得 ρ
3
地
3π2
,故
太=
2 2 太 3
太
=
中条件可知 R 地=kR 月,解得
地
太
1 3 2 2
m 中m
密
度
G
利用运行天
体
r、T、R
m
的
计
算
利用天体表
4
3
中=ρ·πR
3
Gm 中 m
mg=
面重力加速 g、R
度
4 2
=m T 2 r
r2
m
R2
,
4
3
中=ρ·πR
3
表达式
备注
3r 3
ρ=GT 2 R 3
利用近地卫
当 r=R
3g
ρ=4GR
3
时,ρ=GT 2
星只需测出
其运行周期
—
考向一 利用“重力加速度法”计算天体质量和密度
0
ℎ
D.小球到达最大高度所需时间
0
解析
0 2
根据0 =2gh,可知该星球表面的重力加速度大小 g= ,故 A 正确;根据
2ℎ
2
0
G 2 =mg,可得星球质量为
向心力,有
0
G 2
=
0 2 2
m0= 2ℎ ,故
B 错误;近地环绕卫星万有引力提供