2016数学建模停车策略论文
- 格式:doc
- 大小:574.00 KB
- 文档页数:13
车库的车位停泊设计-数学建模作业绍兴文理学院数模竞赛C题近几年我国居民活水平有了显著提高,我校有越来越多的教师购置了汽车,为了解决停车问题,在图书馆前面造了一个地下车库。
车库面积有限,问题是如何利用车库高效地停车,即在保证安全的情况下,尽可能多地停车。
为简单起见,我们假设该车库是一个100x100米的正方形,见下图教师的车都是标准的轿车2x3米,车的最小转弯半径为4米,试设计一个最佳停车方案(只考虑平面)。
论文题目:车库的车位停泊设计姓名1:学号:专业:姓名1:学号:专业:姓名1:学号:专业:年月日目录一.摘要 (1)二.问题的提出 (1)三.问题的分析 (2)四.建模过程 (2)1.模型假设 (2)2.定义符号说明 (3)3.模型建立 (3)(1)单车停放设计 (3)(2)停车场整体布局 (9)五.模型的评价与改进 (12)一.摘要:“车库的车位停泊设计”数学模型是利用数学模型的计算来规划出一种使用更合理、利用率高的车库车位停泊方案。
近几年来,随着人们生活水平的提高,私家车的数量越来越多,汽车的停泊就成为一个越来越重要的问题,如果汽车停泊问题不能合理的解决,将会影响到汽车的使用。
许多大型公司或者是商场门前,都设有自己的停车场,停车场的面积是有限的,而我们希望的就是在这有限的面积内尽可能停放更多的汽车。
当然,停放尽可能多的汽车只是建造停车场时一个需要解决的问题,一个比较成功的停车场还需要具备的就是良好的汽车疏导能力,这就需要在停车场设计时更合理的安排汽车的停放位置。
另外还需要考虑的就是停车场的监控设施和照明设施。
监控设施一方面用来保障停车场的财产安全,另一方面还可以监督车辆出入行驶。
照明设施是停车场必备的设施,但怎样的电灯位置设计才是最合理的呢?这也是停车场在建造的过程中必须解决的问题!由于车库的车位停泊不仅要考虑使车库容纳尽可能多的汽车,又要考虑使停泊在车库中的汽车能方便自由的出入,就需要解决以下三个问题:(1)汽车在车库中的停放姿势。
数学建模论文(车辆的停止距离)数学建模论文车辆的停止距离姓名专业班级学号指导教师日期车辆的停止距离一、情景:正常的驾驶条件对车与车之间的跟随距离的要求是每10英里的速率可以允许一辆车的长度的跟随距离,但是在不利的天气或道路条件下要有更长的跟随距离。
做到这点的一种方法就是利用2秒法则,这种方法不管车速为多少,都能测量出正确的跟随距离。
看着你前面的汽车刚刚驶过的一个高速公路上涂有柏油的地区或立交桥的影子那样的固定点。
然后默数“一千零一,一千零二”;这就是2秒。
如果你在默数完这句话前就到了这个记号处,那么你的车和前面的车靠的太近了。
二、识别问题:行驶中的汽车,在刹车后由于惯性的作用,要继续往前滑行一段距离后才会停下,这段距离就叫刹车距离。
研究刹车距离对于安全行车及分析交通事故责任都有一定的作用。
据此建立车辆的停止距离模型。
三、假设:用关于总的停止距离的一个相当显然的模型:总的停止距离=反应距离+刹车距离来开始进行分析。
我们认为反应距离就是从司机意识到要刹车的时刻到真正刹车的时刻期间车辆所走过的距离。
刹车距离就是刹车后使车辆完全停下来所滑行的距离。
四、模型的建立、求解:首先对反应距离研究一个子模型。
反应距离是许多变量的函数,从列出其中的两个变量开始:反应距离=f(反应时间,速率)反应时间既受个体驾驶因素也受车辆操作系统的影响。
系统时间就是从司机接触到刹车踏板到刹车从机械上起作用之间的时间。
对于现代的车辆来说,大概可以忽略系统时间的影响,因为比之与人的因素,它是相当小的。
不同司机的反应时间取决于诸如反射的本能、警觉程度和能见度等许多事情。
现在假设从司机决定需要停车到刹车起作用的时间里车辆继续以常速行驶,在这个假设下反应距离d只是反应时间t和速度v的乘积:d =t*v画出测量得到的反应距离对速度的图形:反应距离和速率的比例性得到的图形近似于一条过原点的直线,我们就能估计斜率t,从而得到子模型:d=1.1v其次考虑刹车距离,车辆的重量和速率肯定是要考虑的重要因素。
停车距离问题——数学建模案例摘要:汽车在行驶中,为规避险情,常常需要急刹车。
怎样实施刹车操作,最大限度地规避险情,保障司乘人员、车辆、障碍物的安全呢?在交通事故发生后,交管部门对事故现场的勘探,也常常需要还原驾驶人员刹车的操作是否规范?车辆是否在事故发生时超速行驶?以便公正、公平地进行事故责任认定。
所以,研究汽车刹车问题就具有现实意义。
本文旨在通过对行驶中的汽车刹车距离问题的探索,用数学模型刻画影响汽车刹车距离的关键因素,及各因素之间的数量关系。
为驾驶人的安全驾驶及交管部门的事故责任认定,提供有价值的参考。
关键词:距离、速度、参数、假设、检验、线性回归、数学建模。
一、符号说明驾驶人在实施刹车前,要根据险情判断何时开始刹车及刹车力度。
从做出判断到实施刹车这段时间,我们定义为反应时间,记作,这段时间汽车滑行的速度记作,滑行的距离定义为反应距离,记作;从汽车刹车到汽车停车滑行的这段时间,定义为制动时间,记作,这段时间汽车滑行距离定义为制动距离,记作;从做出需要刹车得判断到汽车停止滑行的这段时间定义为停车时间,记作,这段时间汽车滑行的距离定义为停车距离,记作;汽车刹车时,车辆轮胎与路面的滚动摩擦力记作;汽车的质量记作;刹车时汽车滑行的加速度记作。
二、基本假设2.1.在反应时间段内,驾驶人在判断需要刹车时,一般都会松开油门踏板。
此时,汽车滑行仅受轮胎与地面滚动摩擦力的较小影响,我们假设这期间汽车保持油门踏板松开的那一时刻的瞬时速度匀速行驶。
由于在现实生活中,因人而异,很难确定的具体数值,因此,最终只能确定与成正比。
2.2.在制动时间段内,驾驶人在实际操作中,刹车受力大小一般是由小逐渐快速增大的,增大的速度也并不均匀,在汽车停止滑动的瞬间,受力又突然变为零。
车辆的防抱死系统也是为了避免急刹车时,因驾驶人瞬间踩死刹车,使车辆仅受轮胎与路面的巨大滑动摩擦力控制,造成更大的危险(如爆胎、侧翻、方向盘失灵等)。
这里,我们仅研究假设这期间刹车受力F的大小为定值,其近似等于车辆轮胎与路面的滚动摩擦力。
停车场车位分配问题【摘要】本文基于蒙特卡罗模拟法、正态总体、随机概率、线性规划等方法对停车场车位分配问题做了探讨。
根据已有的30天停车流量数据,分析其规律,最终达到合理分配车位,使得停车收益达到最大。
针对问题1:由于题目中统计资料以及相关数据较少,建立一个准确的数据模型比较困难,因此我们使用了蒙特卡罗模拟法,建立了蒙特卡罗模型。
同时我们以17:00—18:00为例说明,使用正态分布函数进行模拟,给出了100天的停车流量的模拟解;再计算其规律时,我们继续计算各时段的均值、标准差、偏度、峰度的统计量,观察这些数据我们有以下结论:1.停车量的高峰期出现在8:00到18:00的时间段里,值得注意的是9:00到12:00出现了停车量的最高峰;2.标准差也和停车量一样出现两边低中间高的情形,并且也是在9:00到12:00出现最大的标准差,进而说明在这三个小时内停车量很大同时汽车的流通量也很大,是一天当中最为繁忙的时间段。
3.偏度和峰度基本上比较接近,说明这些天之内出现停车流量忽高忽低的情况还是比较少的,停车流量还是比较平稳的。
针对问题2:本题基于随机概率中的正态总体的区间估计中的t 分布检验对各个时间段中满足冲突概率05.0<α的最大售卡量N 进行了探讨,结果如下时间段6:00-7:007:00-8:008:00-9:009:00-10:0010:00-11:0011:00-12:0012:00-13:0013:00-14:0014:00-15:00N 19291067339278300278311334327时间段15:00-16:0016:00-17:0017:00-18:0018:00-19:0019:00-20:0020:00以后N3293373896119561268由此得到最大收卡量N 为278。
针对问题3:我们建立数学线性规划模型解决该问题,并将停车流量分为包年或者包月停车流量和临时停车流量两类,建立目标函数以及约束条件,同时利用Lingo 软件求出当1214,,M Y Y Y ⋯(分别表示包年或者包月的停车流量值,6:00-7:00、7:00-8:00……19:00-20:00的临时停车流量值)取以下值时,会使得停车场的受益最大:M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 2521848027733372932355597110由此,我们还求出了最大收益为1789元/天。
停车场泊车位的优化设计与效度评价:随着汽车消费量剧增,“停车难”已经成为一个较为严重的社会问题。
我们以某小区露天停车场为背景,用排队论对该服务系统进行了分析,并通过建立整数规划模型对其泊车位布置进行了优化设计,最后用模糊综合评价法对停车场效度进行了度量。
在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间和马路空间并入车辆所在的空间的方式,形成新的“空间单元矩形”,因其可以在空间无间隙密铺从而简化分析过程。
同时设定了“最大内接矩形”作为优先标准,建立了整数规划模型,对“最大内接矩形”空间内的车位进行了优化设计,用LINGO 软件编程处理,而对其余的区域采用观察法和穷举法进行设计,最终的设计方案总共能够提供102个泊车位,空间利用效率较高。
在对停车场效度评价的模型中,我们选择的是模糊综合评价方法,同时采用层次分析法构建指标体系并确定指标权重,然后基于稳健性打分原则,对各指标进行打分,在形成评判集的基础上进行了综合评价。
用MATLAB软件编程处理,结果显示综合评价值为4.85,停车场的效度处于较好的状态。
在对车位优劣进行评价时,我们援用了目标规划的思路,用四个依次优先级递增的指标进行评价。
在筛选车位时我们又援用了决策理论中淘汰“次优方案”的思路,根据优先级逐渐把“次劣”泊车位排除,最后发现在采用我们设计的泊车方案的前提上,整个停车场右下角的车位是最劣车位,最不受欢迎。
关键词:泊位设计排队论整数规划多目标规划模糊综合评价法层次分析法一、问题的重述随着我国的汽车消费增长并逐渐普及开来,“停车难”的问题已经越来越凸显出来,成为了困扰人们正常生活和交通秩序的重要因素。
究其本质,“停车难”问题的根源在于停车位供给短缺和停车位需求旺盛之间的供需矛盾,真正意义上解决这个难题有待于车辆停放设施的增加速度跟上车辆的迅猛增加。
但是在短期内难以改变车辆停放设施数目的情况下,通过优化设计提高停车场的运行效率,对于局部缓解“停车难”的现状有着重大的意义。
西南交通大学峨眉校区2016年全国大学生数学建模竞赛第二次预选赛试题题目(A题自动倒车策略)姓名吴佩伦何青霞学号7182专业14级机电14级铁道运输联系电话自动倒车策略摘要本文针对自动泊车系统的研究,参考生活中人工入库的实际情况,对整个倒车过程车辆运动规律进行深入分析之后,运用了几何学相关知识求出了车辆在各段泊车的位置,列出了相关不等式并采用数形结合的方法,求解出了泊车起始点范围,并根据车辆在泊车点附近安全行驶的区域范围及泊车最终停靠位置的合理性,列出约束条件,通过构建多目标非线性规划模型,很好的解决了安全倒车入库的起始点位置问题和最佳泊车策略问题,最后运用了Matlab软件对模型进行求解。
问题一中,题目要求寻找能够安全倒车入库的起始点位置所在的区域范围,首先我们要明确的是影响汽车安全入库的因素就是车库周围物体的阻碍,然后我们将汽车倒车入库的过程划分为三个阶段,仔细分析汽车倒车入库的过程之后我们考虑这三段过程中可能会发生的接触车库警戒线,列出约束条件,建立数学模型,并采用数形结合的方法对模型进行求解,最终求出汽车能够安全入库的起始点位置范围为下列曲线6.747513.25; 2.47 5.27;<<-<<y x8.990.45( 2.47,3.97);y x x <++∈-22( 2.8)(9.22) 2.47,(3.97,5.27);x y x -+-<∈222( 3.97)(0.6) 6.44,(2.05,3.97)x y x -+-<∈所包络的不规则区域。
问题二中,题目要求设计出从任意倒车入库起始点开始的最佳泊车策略,并求出采用最佳策略时的前轮转角和后轮行驶距离。
我们应该在汽车能够安全倒车入库并停在最恰当位置的前提下寻求满足前轮转角之和最小和后轮行驶距离最短的最佳泊车策略,先针对设任意起始点00(,)x y 分析,对问题一中所构建的模型稍加改动,增加了对最终停车位置的约束条件,并针对前轮转角和后轮行驶距离构建双目标函数,由几何问题转化为多目标非线性规划问题,因为00(,)x y 非具体值,无法通过软件直接求解,通过任意选取多个具体00(,)x y 的值,运用Matlab 软件的fgoalattain 函数对该双目标非线性规划问题求解,得到多个起始点的最佳泊车策略,并进行了比较分析。
小区开放对道路通行影响评价模型摘要本文主要研究了封闭式小区开放对其周围路段交通通行影响的问题,针对不同方面产生的影响建立了相应评价指标,使用VISSIM仿真、MATLAB软件计算,得出了不同条件下小区开放对周围道路交通的定量影响。
针对问题一,本文采用主成分分析方法,选取路段情况、路网情况、交通便捷性和网络脆弱性四个评价机制下的12个评价指标作为小区开放对周围道路影响的分析因子。
基于北京10个小区的抽样调查,用MATLAB进行计算分析,通过其贡献率高低的排序筛选出综合评价的标准,即得到完整的评价指标体系。
针对问题二,本文选取整体评价机制中评价交通流量优劣的出行时间总和评价模型,来对比研究小区开放前后对于车辆通行的影响。
本文又选择了长沙一小区的开放前附近交通量数据,并按照其内部改造规划和网络流分配原理用VISSIM仿真出了开放后交通量的数据,使用出行时间总和评价模型比较前后总的车行时间和,得出该小区的开放改建是有利于提高周边道路通行速度的。
针对问题三,本文将小区结构、周边道路结构和车流量分别抽象为小区开放不同数量的出入口、小区位于节点度不同的路网和具备不同复杂程度的内部结构三个参数,并赋予它们相互关联的数值。
利用VISSIM仿真软件在控制变量的基础上进行数据分析,并使用节点度方差指标评价仿真的结果。
将不同小区开放后内外整体网络脆弱性高低的指标作为对道路通行影响的评价机制,得出以下结论:小区结构对周围交通的影响依赖于道路结构;小区周围道路的结构越简单,对小区开放后周围交通运行更有利;车流量越小对小区开放后的周围交通越有利,且一定阈值内交通性能提升与开放程度正相关。
本文所建立的各模型之间联系紧密,且理论性强,涵盖面广,能体现真实情况,也保证了一定的可靠性。
对城市道路的评价及交通出行研究都具有一定的参考价值。
关键词:封闭小区开放主成分分析网络流节点度方差交通仿真1.问题的简述1.1题目所给的信息封闭住宅小区的逐步开放,对交通情况的改善能力如何,成为当今的热点话题之一。
自动泊车系统数学建模【摘要】随着汽车产业及科技的高速发展,智能驾驶汽车成为了国内外公认的未来汽车重要发展方向之一。
而在汽车智能化进程中,自动泊车是一项非常具有挑战性和实用性的技术。
自动泊车系统可通过各类传感器获取车位相对汽车的距离,通过控制汽车前轮转角和瞬时速度控制车辆行驶。
若考虑系统控制容易性,参考人工倒车入库,当车辆位于与车位垂直的任意位置时,先通过前行或后退到达理想停车起始点后,再确定前进转角和后退转角,使车身与车位在同一直线上后,直接倒车完成入库,即“一进二退”。
这种两段式倒车模式提高了泊车过程中车辆行驶的紧凑性,同时减少了泊车行驶空间。
考虑奇瑞汽车公司的QQ3,长3550mm ,宽1495mm ,轴距2340mm ,前轮距1295mm ,后轮距1260mm ,目标车库为小型汽车库标准大小长6m ,宽2.8m ,车库周围情况如图。
关键字:转乘次数 广度优先算法 查询效率 实时系统一 问题的重述1) 建立模型,按照车辆与车位之间的距离把车辆位置进行分组,给出每一组对应的倒车理想起始点,a=400mm ,b=8000mm ,c=300mm 。
2)建立模型,给出由理想起始点到倒车入库的泊车策略,包括车速、前轮转角、后轮行驶距离。
二 符号说明i L :第i 条公汽线路标号,i=1,2 …10400,当i 520≤时, i L 表示上行公汽路线, 当i 520>时, i L 表示与上行路线i 520L -相对应的下行公汽路线;i ,g S :经过第i 条公汽路线的第g 个公汽站点标号;j T :第j 条地铁路线标号, j=1,2;j ,h D:经过第j 条地铁线路的第h 个地铁站点标号;n L S :转乘n 次的路线;k T :选择第k 种路线的总时间;k N 1:选择第k 种路线公汽换乘公汽的换乘次数;k N 2:选择第k 种路线地铁换乘地铁的换乘次数;k N 3:选择第k 种路线地铁换乘公汽的换乘次数;k N 4:选择第k 种路线公汽换乘地铁的换乘次数;k ,m W :第k 种路线、乘坐第m 辆公汽的计费方式,其中:k,m W 1=表示实行单一票价,k,m W 2=表示实行分段计价; k,m CL :第k 种路线,乘坐第m 辆公汽的费用;k C :选择第k 种路线的总费用;k m MS ,:选择第k 种路线,乘坐第m 辆公汽需要经过的公汽站个点数; k ,n M D :选择第k 种路线,乘坐第n 路地铁需要经过的地铁站个点数; k ,m FS :表示对于第k 种路线的第m 路公汽的路线是否选择步行,k ,m FS 为0-1变量,k,m F S 0=表示不选择步行,k,m FS 1=表示选择步行; k ,n FD :对于第k 种路线的第n 路地铁的路线是否选择步行,k ,n FD 为0-1变量,k,n F D 0=表示不选择步行,k,n FD 1=表示选择步行;三模型假设3.2 其它假设10、查询者转乘公交的次数不超过两次;11、所有环行公交线路都是双向的;12、地铁线T2也是双向环行的;13、各公交车都运行正常,不会发生堵车现象;14、公交、列车均到站停车四问题的分析对于路线的评价,我们可以分别以总行程时间,总转乘次数,总费用为指标,也可以将三种指标标准化后赋以不同权值形成一个综合指标。
而最优路线则应是总行程时间最短,总费用最少或总转乘次数最少,或者三者皆有之。
之所以这样考虑目标,是因为对于不同年龄阶段的查询者,他们追求的目标会有所不同,比如青年人比较热衷于比赛,因而他们会选择最短时间内到达奥运赛场观看比赛。
而中年人则可能较倾向于综合指标最小,即较快、较省,转乘次数又不多。
老年人总愿意以最省的方式看到奥运比赛。
而对于残疾人士则总转乘次数最少为好。
不同的路线查询需求用图4.1表示如下:图4.1 公交线路查询目标图经分析,本问题的解决归结为一个求最短路径的问题,但是传统的Dijkstra 最短路径算法并不适用于本问题,因为Dijkstra算法采用的存储结构和计算方法难以应付公交线路网络拓扑的复杂性,而且由于执行效率的问题,其很难满足实时系统对时间的严格要求。
为此我们在实际求解的过程中,采用了效率高效得广度优先算法,其基本思路是每次搜索指定点,并将其所有未访问过的近邻点加入搜索队列,循环搜索过程直到队列为空。
此方法在后文中有详细说明。
五建模前的准备为了后面建模与程序设计的方便,在建立此模型前,我们有必要做一些准备工作。
5.1数据的存储由于所给的数据格式不是很规范,我们需要将其处理成我们需要的数据存储格式。
从所给文件中读出线路上的站点信息,存入txt文档中,其存储格式为:两行数据,第一行表示上行线上的站点信息,第二行表示下行线的站点信息,其中下行路线标号需要在原标号的基础上加上520,用以区分上行线和下行线。
如果上行线与下行线的站点名不完全相同,那么存储的两行数据相应的不完全相同,以公交线L009为例:L009:3739 0359 1477 2159 2377 2211 2482 2480 3439 1920 1921 0180 2020 3027 2981L529:2981 3027 2020 0180 1921 1920 3439 3440 2482 2211 2377 2159 1478 0359 3739L529为L009所对应的下行线路。
如果下行线是上行线原路返回,那么存储的两行数据中的站点信息刚好顺序颠倒,以公交线路L001为例:L001:0619 1914 0388 0348 0392 0429 0436 3885 3612 0819 3524 0820 3914 0128 0710L521:0710 0128 3914 0820 3524 0819 3612 3885 0436 0429 0392 0348 0388 1914 0619如果是环线的情况(如图5.1所示),则可以等效为两条线路:顺时针方向:S1→S2→S3→S4→S1→S2→S3→S4;逆时针方向:S1→S4→S3→S2→S1→S4→S3→S2。
经过分析,此两条”单行路线”线路的作用等同于原环形路线图5.1 环行线路示意图以环形公交线L158为例,此环形路线存储数据如下:L153: 534 649 2355 1212 812 171 170 811 2600 172 1585 814 264 3513 1215 1217 251 2604 2606 534 649 2355 1212 812 171 170 811 2600 1721585 814 264 3513 1215 1217 251 2604 2606L673: 534 2606 2604 251 1217 1215 3513 264 814 1585 172 2600 811 170 171 812 1212 2355 649 534 2606 2604 251 1217 1215 3513 264 8141585 172 2600 811 170 171 812 1212 2355 649在这里,L153被看作成上行路线,L673被当成下行路线。
这样对于每条公交线路都可以得到两行线路存储信息。
六模型的建立与求解6.1模型一的建立S与该模型针对问题一,仅考虑公汽线路,先找出经过任意两个公汽站点i,gººi g ,S 最多转乘两次公汽的路线,然后再根据不同查询者的需求搜寻出最优路线。
6.1.1 公汽路线的数学表示任意两个站点间的路线有多种情况,如果最多允许换乘两次,则换乘路线分别对应图6.1的四种情况。
该图中的A 、B 为出发站和终点站,C 、D 、E 、F 为转乘站点。
图6.1 公汽路线图对于任意两个公汽站点i ,g S与ººi g ,S ,经过i ,g S 的公汽线路表示为i L ,有i ,g i S L ∈;经过ººi g ,S 的公汽线路表示为ºi L ,有ºººi gi ,S L ∈; 1)直达的路线0L S (如图6.1(a )所示)表示为:ºº{}0i 1i ,g i 1i 1i g ,L S L S L ,S L =∈∈ 2)转乘一次的路线1L S (如图6.1(b )所示)表示为:ºº{}1i 1i 2i ,g i 1i 10i 1i 2i 2i 2i g,L S (L ,L )S L S L L ,L L S ;S C L S C L =∈∈∉∈∈,;且 其中:SC 为i1L ,i 2L 的一个交点;3)转乘两次的路线2L S (如图6.1(c )所示)表示为:{}2i 1i 2i 3i ,g i 1i 1i 3i 3i 2i 1i 2i 2i g ,L S (L ,L L )S L S L L ,L ),(L ,L )(L ,L )L =∈∈∉∈11,,;(L S ;S 通过以上转乘路线的建模过程,可以看出不同转乘次数间可作成迭代关系,进而对更多转乘次数的路线进行求寻。
不过考虑到实际情况,转乘次数以不超过2次为佳,所以本文未对转乘三次及三次以上的情形做讨论。
6.1.2最优路线模型的建立找出了任意两个公汽站点间的可行路线,就可以对这些路线按不同需求进行选择,找出最优路线了:1)以时间最短作为最优路线的模型:行程时间k T 等于乘车时间与转车时间之和。
°N 11k k ,mk m 1k k M i n T 3(M S 1)5N 1m1,2,,N 11;k 1,2,,k +==⨯-+⨯=+=∑g g g g g g (6.1式)其中,第k 路线是以上转乘路线中的一种或几种。
2)以转乘次数最少作为最优路线的模型:k M i n N 1(6.2式) 此模型等效为以上转乘路线按直达、转乘一次、两次的优先次序来考虑。
3)以费用最少作为最优路线的模型:k k ,mmM in C C L =∑ (6.3式) 其中,k ,m k ,m k ,m k ,m k ,m 1W 1W 2,202W 2,40C L 3W 2,==≤≤⎧⎪=≤≤=⎨⎪=≤⎩k ,m k ,m k ,m 或0M S 21M S 40M S (6.4式) 6.1.3模型的算法描述针对该问题的优化模型,我们采用广度优先算法找出任意两个站点间的可行路线,然后搜索出最优路线。
现将此算法运用到该问题中,结合图6.2叙述如下:(该图中的i ,g S 、ººi g ,S 、1,1S 、2,1S 、2,2S 表示公汽站点,1L 、2L 、3L 、4L 、5L 、6L 表示公汽线路。