北师大版八年级上册数学课本课后练习题答案(整理版)
- 格式:doc
- 大小:31.00 KB
- 文档页数:9
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
为⼤家整理的北师⼤版⼋年级上册数学配套练习册答案的⽂章,供⼤家学习参考!更多最新信息请点击第⼀章勾股定理课后练习题答案说明:因录⼊格式限制,“√”代表“根号”,根号下内⽤放在“()”⾥⾯;“⊙”,表⽰“森哥马”, §,¤,♀,∮,≒,均表⽰本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正⽅形的⾯积是625;B所代表的正⽅形的⾯积是144。
2.我们通常所说的29英⼨或74cm的电视机,是指其荧屏对⾓线的长度,⽽不是其长或宽,同时,因为荧屏被边框遮盖了⼀部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.⾯积为60cm:,(由勾股定理可知另⼀条直⾓边长为8cm).问题解决12cm。
21.2知识技能1.8m(已知直⾓三⾓形斜边长为10m,⼀条直⾓边为6m,求另⼀边长).数学理解2.提⽰:三个三⾓形的⾯积和等于⼀个梯形的⾯积:联系拓⼴3.可以将四个全等的直⾓三⾓形拼成⼀个正⽅形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的⾯积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学⽣通过量或其他⽅法说明B’ E’F’C’是正⽅形,且它的⾯积等于图①中正⽅形ABOF和正⽅形CDEO的⾯积和。
即(B’C’)=AB+CD:也就是BC=a+b。
, 222222这样就验证了勾股定理§l.2 能得到直⾓三⾓形吗随堂练习l.(1) (2)可以作为直⾓三⾓形的三边长.2.有4个直⾓三⾓影.(根据勾股定理判断)数学理解2.(1)仍然是直⾓三⾓形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样⾛最近13km提⽰:结合勾股定理,⽤代数办法设未知数列⽅程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短⾏程是20cm。
北师大版八年级数学上册第六章《4.数据的离散程度》课时练习题(含答案)一、单选题1.在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是( ) A .平均数B .中位数C .众数D .方差2.为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A .平均数B .中位数C .众数D .方差3.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ). A .中位数B .众数C .平均数D .方差4.如果将一组数据中的每个数都减去5,那么所得的一组新数据( ) A .众数改变,方差改变 B .众数不变,平均数改变 C .中位数改变,方差不变 D .中位数不变,平均数不变 5.在对一组样本数据进行分析时,小凡列出了方差的计算公式:222221[(8)2(6)(9)(11)]5s x x x x =-+-+-+-,根据公式不能得到的是( )A .众数是6B .方差是6C .平均数是8D .中位数是86.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁7.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙28.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表: 一分钟跳绳个数(个) 141 144 145 146 学生人数(名) 5 2 1 2则关于这组数据的结论正确的是( ) A .平均数是144 B .众数是141 C .中位数是144.5 D .方差是5.4二、填空题9.如果有一组数据-2,0,1,3,x 的极差是6,那么x 的值是_________.10.一组数据的方差计算公式为(222221(5)(8)(8)11)4s x x x x ⎤=-+-+-+-⎦,则这组数据的方差是______.11.射击运动员小东10次射击的成绩(单位:环):7.5,8,7.5,8.5,9,7,7,10,8.5,8.这10次成绩的平均数是8.1,方差是0.79,如果小东再射击一次,成绩为10环,则小东这11次成绩的方差______0.79.(填“大于”、“等于”或“小于”)12.已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为______.三、解答题13.某学校开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)九(1)班竞赛成绩的众数是,九(2)班竞赛成绩的中位数是;(2)哪个班的成绩较为整齐,试说明理由.14.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.6 8.6 m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).15.为了从甲、乙两名学生中选拔一人参加县级中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前6次测验成绩的折线统计图.现对甲、乙的6次测验成绩的数据进行统计分析列表对比如下:平均数中位数众数方差甲75 75 c m乙75 b70 33.3(1)填空:b=____;c=____;(2)求m的值;(3)如果从稳定性来看,选谁参赛较合适?如果从发展趋势来看,选谁参赛较合适?请结合所学统计知识说明理由.16.市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.17.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.18.为增强防疫意识,某初中在元旦举行了疫情防控知识竞赛活动,现从本校甲、乙两班中各随机抽取10名同学的测试成绩进行整理、描述和分析,如图所示:班级平均数/分中位数/分众数/分方差甲班83.7 82 46.21乙班83.7 86 13.21(1)两组数据的平均数、中位数、众数、方差如上表所示,请补充完整.(2)根据上述数据,请从两个不同角度评价甲班与乙班掌握防疫知识的情况。
初二(八年级)上册数学书练习题答案(北师大版)初二(八年级)下册数学书练习题答案很重要,初二(八年级)下册数学书练习题答案是什么呢?下面是初二(八年级)下册数学书练习题答案,跟初二(八年级)下册数学书练习题答案对过后您做的对吗?八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒ ,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm). 问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
八年级数学上册课本习题答案北师大做八年级数学课本习题应该集中全力,以求知道得更多,知道一切。
小编整理了关于八年级数学上册课本习题答案北师大,希望对大家有帮助!八年级数学上册课本习题答案北师大(一)复习题第16页1.解:由勾股定理分别求得AB,BC,CD,的长为5cm,13cm,10cm,所以折线的长为5+13+10=28(cm).2.解:(1)因为8²+15²=17²,所以8,15,17能作为直角三角形的三边长,.(2)因为7²+12²≠15²,所以7,12,15不能作为直角三角形的三边长.(3)因为12²+15²≠〖20〗^2,所以12,15,20不能作为直角三角形的三边长.(4)因为7²+24²=25²,所以7,24,25能作为直角三角形的三边长.3.解:如图1-4-11所示,设帆船的始点为A先向东方向航行了160km到点B,再向正北方向航行了120km到点C.在Rt△ABC中,∠B=90°,AB=160,BC=120,由勾股定理,得A C²=BC²+A=120²+160²=200²,所以AC200.因此,这艘船此时离出发点200km.4.解:在Rt△ABC中,∠B=90°,所以AC²=AB²+BC²=4²+3²=25,所以AC=5(cm).在Rt△FAC中,∠FAC=90°,所以FC²=FA²+AC²=12²+5²=169.所以S_正方形CDEF=FC²=169(cm^2 ).5.解:如图1-4-12所以,设小明家位于点C,先向正北方向走了150m到点A,再向正东方向走了250m到点B,在Rt△ABC中,∠A=90°,由勾股定理,得A B²=BC²-AC²=250²-150²=40 000(m²).所以AB=200m.故小明向正东方向走了200m远.6.解:一两直角边为直径的两个半圆面积之和等于以斜边为直径的半圆的面积.7.解:两图的面积相等,前者由4个全等的直角三角形和边长为C 的正方形组成,后者由4个全等直角三角形和边长分别为a,b的两个正方形组成,因此边长分别为a,b的两个正方形组成,因此边长为c 的正方形的面积等于边长为a,b的两个正方形的面积之和,即c²=a²+b².8.解这样做实际上得到了一个边长分别为3,4,5的三角形,因为3²+4²=5²,所以由直角三角形的判别条件可知该三角形是直角三角形.9.解:(1)面积为53个平方单位,可以构造一个直角三角形,斜边为AB,直角边长分别为2个单位和7个单位.由勾股定理,得AB²=2²+7²=53,即正方形的面积.(2)可利用5=2²+1²,10=3²+1²,13=2²+3²构造正方形(图略).10.解:(1)如图1-4-13所示.(2)所有正方形的面积和为4cm².(3)如果一直画下去,可以想象出是一幅丰富多彩的图形,如果取出图形的任意部分放大后与原图形形状相同.(4)若原直角三角形是等腰直角三角形,则这个图形是轴对称图形.11.解:(1)设梯子的顶端距底面xm(x>0),根据勾股定理,得x²+7²=25²,解得x=24,所以梯子的顶端距地面24m.(2)不是,设梯子底部在水平方向滑动ym(y>0),此时梯子顶端距地面24-4=20(m).由勾股定理,得20²+(7+y)²=25²,解得y=8.所以梯子底部在水平方向滑动了8m,而不是4m.12.解:将长方体展成平面图形,因为两点之间线段最短,所以所求的爬行距离就是线段AB的长度,线段AB的长度有3种可能,示意图如图1-4-14①②③所示,在图1-4-14①中,由勾股定理,得AB²=20²+15²=625=25²,所以AB=25;在图1-4-14②中,由勾股定理,得AB²=25²+10²=725;在图1-4-14③中,由勾股定理,得AB²=30²+5²=925.因为925>725>625,所以图1-4-14①中线段AB 的长度最短,为25,即蚂蚁需要爬行的最短路程为25.八年级数学上册课本习题答案北师大(二)第27页练习1.解:因为6²=36,所以36的算术平方根是6,即√36=6;因为(3/4)^2=9/16,所以9/16 的算术平方根是 3/4 即√(9/16)=3/4;因为(√17)^2=17所以17的算术水平根是√17,因为0.9²=0.81,所以0.81的算术平方根是0.9,即√0.81=0.9;因为(10-²)=10-⁴,所以10-⁴的算术平方根是10-²,即√(10-⁴)=10-².2.解:在Rt△ABC中,∠C=90°,由勾股定理,得AB²=AC²+BC²=5²+3²=34,所以AB=√34.3.解:在Rt△ABC中,∠B=90°,由勾股定理,得AB²=AC²-BC²=8²-6.4²=23.04,所以AB=√23.04=4.8(m).所以.帐篷支撑杆的高是4.8m.八年级数学上册课本习题答案北师大(三)第29页练习。
北师大版八年级上册数学书答案这篇关于北师大版八年级上册数学书答案的文章,是特地为大家整理的,希望对大家有所帮助!13.1.1轴对称答案基础知识1~4:A;B;B;A5、①;不是轴对称图形6、王;中;田;甲;本、垂直平分线8、②①④③⑤能力提升9、10:2110、略探索研究11、∵AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠B+∠C=90°,由翻折的性质得,∠C=∠ADC,由三角形的外角性质得,∠ADC=∠B+∠BAD=2∠B,∴∠B+2∠B=90°,解得∠B=30°13.1.2线段的垂直平分线的性质答案基础知识1~2:A;B3、垂直平分4、B’C;AB’;∠AB’C;60°5、△ABC全等于△ADC∠DCA=∠BCA∠DAC=∠BACDB垂直AC6、30°;60°15、证明:连结PA、PB、PC,∵AB、BC的垂直平分线相交与点P∴PA=PB,PB=PC∴PA=PC∴P点也在边AC的垂直平分线上能力提升8~9:C;D探索研究10、∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,DE=CE;OE=OE;∴Rt△ODE≌Rt△OCE,∴OD=OC,∵OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线13.2画轴对称图形第1课时答案基础知识1、D2、52°3、14、略直线MN是线段AA’,CC’,DD’的垂直平分线5、y=3,x=115°6、略、略能力提升8、略探索研究9、平移;旋转13.2画轴对称图形第2课时答案基础知识1~3:C;A;C4、-5或55、;6、1;2、2;3;-2;-38、;;;;长方形9、或10、;;;能力提升11、ABCD正方形12、略A²;B²;C²;D²探索研究13、可以找到对称点,A1,B1,C1,D1,顺次连接可得所求图形。
北师⼤版⼋年级上册数学课本答案
志⼠惜⽇短,愁⼈知夜长。
惜取⽇短。
认真努⼒做⼋年级数学课本的习题吧。
店铺为⼤家整理了北师⼤版⼋年级上册数学课本的答案,欢迎⼤家阅读!
北师⼤版⼋年级上册数学课本答案(⼀)
习题2.3
1:解(1)√49=7;(2) √(25/196)=5/14;(3) √0.09=0.3;(4)-√64=-8.
2.解:因为11²=121,所以121的算术平⽅根是11,即√121=11;因为(3/5)²=9/25,所以9/25 的算术平⽅根是3/5,即√(9/25)=3/5;因为1.4²=1.96,所以1.96的算术平⽅根是3/5,即√(9/25)=3/5;1.4²=1.96,所以1.96的算术平⽅根是1.4,即√1.96=1.4;因为(10³)²=10^6,所以√(〖10〗^6 )=10³.
3.解:设正⽅形的边长为x⾯积为a,由正⽅形的⾯积公式得x²=a.当正⽅形的⾯积变为原来的4倍时,则4a=4x²=(2x)²,所以它的边长变为原来的2倍.同理,当⾯积变为原来的9倍时,它的边长变为原来的3被;当⾯积变为原来的100倍时,它的边长变为原来的10倍;当⾯积为原来的n倍时,它的边长变为原来的√n 倍.
北师⼤版⼋年级上册数学课本答案(⼆)
习题2.5
北师⼤版⼋年级上册数学课本答案(三)
习题2.7。
北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)一、单选题1.数据10,3,a ,7,5的平均数是6,则a 等于( ). A .3B .4C .5D .62.如果1x 与2x 的平均数是5,那11x -与25x +的平均数是( ) A .4B .5C .6D .73.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是( ) A .4B .5C .6D .74.为了满足顾客的需求,某商场将5kg 奶糖,3kg 酥心糖和2kg 水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( ) A .25元B .28.5元C .29元D .34.5元5.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行综合考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的各项分数依次为90、88、85分,那么小王的最后综合得分是( ) A .87B .87.5C .87.6D .886.小刘利用空闲时间到外地某建筑公司打工,公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)的工资为80元/天,如果某月(30天)正常上班的天数占80%,则当月小刘的日平均工资为( ) A .140元B .160元C .176元D .182元7.六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( ) A .平均数是14B .中位数是14.5C .方差3D .众数是148.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y >z >xB .x >z >yC .y >x >zD .z >y >x二、填空题9.如果一组数据中有3个6、4个1-,2个2-、1个0和3个x ,其平均数为x ,那么x =______. 10.已知一组数据10、3、a 、5的平均数为5,那么a 为_____.11.某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分. 12.若已知数据1x ,2x ,3x 的平均数为a ,那么数据121x +,221x +,321x +的平均数为______(用含a 的代数式表示).13.已知数据1x ,2x ,3x ,4x 的平均数为10,则数据11x +,22x +,33x +,44x +的平均数是______.14.每年的4月23日是“世界读书日”,某校为了解4月份八年级学生的读书情况,随机调查了八年级50名学生读书的册数,数据整理如下:由此估计该校八年级学生4月份人均读书______册.三、解答题15.某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取.他们的各项成绩(单项满分100分)如表所示:(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?16.中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分,为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下: 抽取的200名学生成绩统计表 组别 海选成绩 人数 A 组 5060x ≤<10 B 组 6070x ≤< 30 C 组 7080x ≤< 40 D 组 8090x ≤<aE 组 90100x ≤≤ 70请根据所给信息解答下列问题:(1)填空:①=a ____________,②b =____________,③θ=____________度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A 组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?17.学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题:演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表:内容表达风度印象总评成绩小明8 7 8 8 m小亮7 8 8 9 7.85小田7 9 7 7 7.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?18.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级500名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图:测试成绩/分测试项目甲乙丙笔试92 90 95面试85 92 88其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示,请你根据以上信息解答下列问题:(1)请计算每名候选人的得票数;(2)若每名候选人得一票记0.5分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?19.某学校对九年级共500名男生进行体能测试.从中任意选取40名的测试成绩进行分析,分为甲,乙两组,绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩7 8 9 10人数 1 9 5 5请根据上面的信息,解答下列问题:(1)m ______:(2)从平均分角度看,评价甲,乙两个小组的成绩;(3)估计该校男生在这次体能测试中拿满分的人数.20.从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6千元”所在的扇形的圆心角是;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由。
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2.1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在.习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。