涡街流量计测理原量及传感器介绍
- 格式:doc
- 大小:114.00 KB
- 文档页数:4
余姚市银环涡街流量计说明书一、引言余姚市银环涡街流量计是一种用于测量管道中液体流量的仪器。
它采用涡街测量原理,具有精度高、可靠性强、使用方便等优点。
本说明书将详细介绍余姚市银环涡街流量计的结构、工作原理、安装调试方法、注意事项等内容,以帮助用户正确使用和维护该流量计。
二、结构和工作原理余姚市银环涡街流量计由传感器、转换器和显示仪表组成。
传感器是测量流体流量的主要部件,其内部装有涡街发生器和感应线圈。
当液体通过传感器时,涡街发生器会产生周期性的涡街,并通过感应线圈感应到涡街的频率信号。
转换器将频率信号转换为与流体流速成正比的电信号,并将其传输给显示仪表进行显示。
三、安装调试方法1. 安装前的准备:确认流量计型号和规格与管道要求相符,检查传感器和转换器的外观是否完好。
2. 安装位置选择:应选择在管道直径较大的直线段上,且远离管道弯头、阀门等干扰装置。
3. 安装方法:根据管道直径,选择合适的法兰连接方式,确保传感器与管道连接紧密。
安装时应注意传感器的流向,确保箭头指向流体的流动方向。
4. 接线方法:根据接线图连接转换器和显示仪表,确保接线正确可靠。
5. 调试步骤:按照说明书的要求,进行涡街流量计的调零和范围设定,确保测量精度和稳定性。
四、使用注意事项1. 避免过高或过低的流速,以免影响测量精度。
2. 定期清洁传感器,防止积存物影响测量。
3. 避免在高温、强磁场或腐蚀性介质环境中使用,以免损坏流量计。
4. 定期检查仪表的工作状态,确保其正常运行。
5. 严禁擅自拆卸和改装流量计,以免影响测量精度和安全性。
五、技术参数1. 测量范围:根据用户需求选择合适的规格型号。
2. 测量精度:一般为±1%。
3. 工作温度:-20℃~+150℃。
4. 工作压力:一般为1.6MPa。
5. 输出信号:一般为4-20mA或脉冲信号。
六、总结余姚市银环涡街流量计是一种精度高、可靠性强的流量测量仪器。
本说明书详细介绍了其结构、工作原理、安装调试方法和使用注意事项等内容,希望能够帮助用户正确使用和维护该流量计。
概述1.1 原理及适用范围涡街流量计是目前国际上主要流量仪表产品之一,广泛应用于石油、化工、冶金、供热等部门。
对液体、气体、蒸汽的流量进行检测和计量。
在流体中设置三角柱型旋涡发生体,从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡,如图1.1所示,旋涡列在旋涡发生体下游非对称地排列。
设旋涡的发生频率为f,被测介质的平均流速为V,旋涡发生体迎流面宽度为d,表体通径为D,即可得到关系式:在旋涡发生体中装入检测探头及相应电路即构成了涡街流量传感器,LUGB—2型涡街流量传感的探头,采用特殊结构及材质,是改进型涡街流量传感器。
1.2 特点检测元件不接触流体,可靠性高,介质适应性强无可动部件,耐磨损,结构牢固、简单良好的抗震性能允许工作温度范围宽,-40℃~+350℃测量范围宽,准确度高脉冲信号输出或二线制4~20mA电流信号输出2、基本参数测量介质液体、气体、蒸汽(单相介质或可以认为是单相介质) 饱和蒸汽在干度≥85%时,可以认为是单相介质介质温度-40℃~+350℃介质压力 1.6MPa 2.5MPa 4.0MPa(压力4.0MPa以上,需特殊定做) 准确度 1.0级 1.5级量程比1:8~1:30(参比标况下空气) 1:8~1:40(参比常温水)流量范围液体0.4~7.0m/s 气体4.0~60.0m/s 蒸汽5.0~70.0m/s 规格Φ25Φ40 Φ50Φ65Φ80 Φ100Φ125Φ150 Φ200 Φ250 Φ300材质1Crl8Ni9Ti雷诺数正常2x104~7x106阻力系数Cd≤2.6允许振动加速度LUGB型≤0.2g防护等级IP65防爆等级(ia) ⅡCT6环境条件环境温度-40~+55℃(非防爆场所) -20~+55℃(防爆场所) 相对湿度≤85%大气压力86~106kPa供电电源非防爆型脉冲型+12VDC 20mA 电流型+24VDC 20mA输出信号频率脉冲信号2~3000Hz 低电平≤1V 高电平≥6V 二线制4~20mA信号(隔离输出) 负载≤500Ω3、传感器的选型:1. 传感器是由检测体与检测放大器两部分及连接杆组成,表体及其组成部件和连接杆均由1Crl8Ni9Ti材料制成,具有防腐耐用之优点,内部旋涡发生体与表体之间采用气体保护自熔焊接,坚固耐用。
涡街流量计特点及工作原理涡街流量计是综合吸取发达国家先进技术和总结多年讨论生产阅历的基础上进行细心设计的产,实现了产智能化、标准化、系列化、通用化、生产模具化、确保产质量的美观性,属于较为年轻的一类流量计,但其进展快速,目前已成为通用的一类流量计,其紧要优缺点和工作原理实在如下。
1、涡街流量计优点(1)涡街流量计无可动部件,测量元件结构简单,性能牢靠,使用寿命长。
(2)祸街流量计测量范围宽。
量程比一般能达到1:10、(3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。
一般不需单独标定。
它可以测量液体、气体或燕汽的流量。
(4)它造成的压力损失小。
(5)精准度较高,重复性为0.5%,且维护量小。
—次元件的流量特性对掌控系统产生的影响。
由于涡街的输出频率与流量成线性关系,当它与调整阀,调整器级成一一个掌控系统时,相当于一个时滞和时间常数都小到可疏忽的一个滞后环节,可视为比例环节,广义对象的特性完全取决于回路中其他环节。
对掌控系统几无影响。
2、涡街流量计缺点(1)涡街流量计工作状态F的体积流量不受被测无体温度、压力,密度等热工参数的影响,但液体或蒸汽的最后测量结果应是质量流量,对于气体,最后测量结果应是标准体积流量。
质量流量或标准体积流量都必需通过流体密度进行换算,必需考虑流体工况变化引起的流体密度变化。
(2)造成流量测量误差的因素紧要有:管道流速不均造成的测量误差:不能精精准定流体T.况变化时的介质密度:将湿饱和蒸汽假设成F饱和蒸汽进行测量。
这些误差假如不加以限制或除去,涡街流量计的总测量误差会很大。
(3)抗振性能差。
外来振动会使涡街流量计产生测量误差,甚至不能正常工作。
道道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。
大管径影响更为明显。
(4)对测量脏污介质适应性差。
涡街流量计的发生体极易被介质脏污或被污物缠绕,更改几何体尺寸.对测量精度造成极大影响。
(5)直管段要求高。
流量计控制原理
流量计控制原理的基本原理是通过测量流体流过的体积或质量来控制流量,从而实现对流量的精确控制。
流量计通常由传感器、转换器和显示器组成。
1. 传感器:流量计传感器根据不同的原理进行测量,常见的传感器有涡街传感器、超声波传感器和电磁传感器等。
传感器通过感知流体的运动,并将其转换为电信号。
2. 转换器:传感器产生的电信号经过转换器进行放大、滤波和线性化处理,目的是将传感器输出的信号转换成标准的电信号(如4-20mA或0-10V),以便后续的处理和控制。
3. 显示器:转换后的信号通过显示器进行显示,可以实时监测流量的数值。
同时,显示器也可以配备报警功能,当流量超过设定范围时发出报警信号。
控制流量的方法有多种,常见的方法包括:
1. 开关控制:根据设定的流量阈值,当流量达到或超过阈值时,控制执行器关闭或打开阀门等流体控制装置,从而调节流量。
2. 调速控制:根据实时测量的流量信号,通过调整执行器(如电机)的转速或强度,来改变流体的流量。
3. PID控制:PID控制是一种基于反馈的控制方法,通过比较
实际流量与设定流量之间的差异,计算出控制信号,进而调节
执行器以实现流量的精确控制。
总之,流量计控制原理的关键在于准确测量流体流过的体积或质量,并根据测量结果通过合适的控制方法来控制流量。
这种控制可以应用于各种流体控制系统,如供水系统、化工过程等。
流量传感器的原理和应用概述流量传感器是一种用于测量流体(液体或气体)流动速度和流量的设备。
它使用各种原理和技术来进行测量,可以应用于多种行业和领域。
本文将介绍流量传感器的原理和应用,并提供一些常见的流量传感器类型和其优缺点。
原理流量传感器的测量原理根据其类型和技术而有所不同。
以下是几种常见的流量传感器原理:1.机械流量计:机械流量计基于测量液体或气体通过管道或管道截面积的变化来计算流速和流量。
常见的机械流量计包括涡轮流量计、涡街流量计和节流装置。
机械流量计适用于粘稠流体和高温环境。
2.电磁流量计:电磁流量计利用法拉第电磁感应原理来测量液体的流量。
它通过在流体中产生一个垂直于流动方向的磁场,并测量液体中感应电动势的大小来计算流速和流量。
电磁流量计适用于导电液体,如水和液体金属。
3.超声波流量计:超声波流量计利用超声波的传播速度与流速的关系来测量液体或气体的流量。
它通过发送和接收超声波脉冲来计算流速和流量。
超声波流量计适用于广泛的液体和气体。
4.热式流量计:热式流量计利用测量流体散热量的变化来计算流速和流量。
它通过在流体中加热一个细丝,并测量细丝的温度变化来计算流速和流量。
热式流量计适用于低流速和低温流体。
应用流量传感器在许多行业和领域中都有广泛的应用。
以下是一些常见的应用领域:1.工业过程控制:流量传感器可用于监测和控制工业流程中的流速和流量,例如化工厂中的原料供应和产品流动。
2.供水和排水系统:流量传感器可用于监测供水和排水系统中的水流量,帮助水务部门管理供水和排水质量和流量。
3.能源管理:流量传感器可用于测量供暖、制冷和通风系统中的液体和气体流量,以帮助优化能源管理和减少能源消耗。
4.医疗设备:流量传感器可用于医疗设备中,如呼吸机、输液器和洗肾机,以监测和控制气体和液体的流量。
5.环境监测:流量传感器可用于监测大气和水体中的气体和液体流量,以帮助环境保护和监测。
流量传感器类型和优缺点下面是几种常见的流量传感器类型和它们的优缺点:1.涡轮流量计:–优点:高精度、线性性好、适用于高温和高粘稠度流体。
涡街流量计的原理一、涡街流量计概述涡街流量计是一种常用的温度、压力和流量测量仪表,广泛应用于石油、化工、冶金、电力等工业领域。
它利用流体流经流量计时产生的涡旋,通过检测涡旋频率来测量流体的流量。
本文将详细介绍涡街流量计的原理、工作方式以及其在工业生产中的应用。
二、涡街流量计工作原理涡街流量计利用流体通过管道时产生的涡旋来测量流体的流量。
其主要由涡街传感器和信号处理器组成。
1. 涡街传感器涡街传感器是涡街流量计的核心部分,它利用流体流经传感器时产生的涡旋来测量流量。
传感器由一个线圈和一个薄膜板组成。
当流体通过传感器时,流体对薄膜板施加压力,导致薄膜板振动。
这种振动产生的涡旋频率与流体的流速成正比。
2. 信号处理器信号处理器用于测量和处理传感器产生的涡旋信号。
传感器产生的涡旋信号通过线圈传递给信号处理器。
信号处理器通过计算涡旋的频率来测量流体的流速,并将结果转换为标准的电信号输出。
三、涡街流量计的工作方式涡街流量计是一种被动式的测量仪表,其工作不需要外部能量输入。
它通过检测流体流经传感器时产生的涡旋来测量流量。
具体工作方式如下:1. 流体流经传感器流体通过管道流经涡街流量计的传感器。
流体对传感器的薄膜板施加压力,导致薄膜板振动。
振动产生的涡旋沿着流体的流向形成,涡旋的频率与流体的流速成正比。
2. 信号采集与处理涡街传感器产生的涡旋信号通过线圈传递给信号处理器。
信号处理器对涡旋信号进行采集和处理。
它根据涡旋的频率计算出流体的流速,并将结果转换为标准的电信号输出。
3. 流量计显示与记录流量计的输出信号可以通过显示装置直接显示流体的流量信息。
同时,流量信息也可以通过数据记录仪进行记录和储存,以供后续分析和处理。
四、涡街流量计的优势和应用涡街流量计具有以下优点,使其在工业生产中得到广泛应用:1. 高精度涡街流量计具有较高的测量精度,测量范围广,适用于不同介质的流量测量。
2. 可靠稳定涡街流量计结构简单、稳定可靠,无可动部件,几乎不需要维护。
摘要涡街流量计是主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。
其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。
无可动机械零件,因此可靠性高,维护量小,仪表参数能长期稳定。
可在-20℃~+250℃的工作温度范围内工作。
有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的流量仪表。
本文主要讨论其工作原理,基本结构,信号采集及处理和安装方法等。
关键词:涡街流量计工作原理基本结构信号采集安装方法涡街流量计涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。
其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。
无可动机械零件,因此可靠性高,维护量小。
仪表参数能长期稳定。
本仪表采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。
有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的流量仪表。
涡街流量计原理涡街流量传感器是以卡门(Kaman )和斯特劳哈(Streusel )有关旋涡的产生和旋涡与流速关系的理论来测量流量的。
把一个非流线型阻流体(Bluff Body )垂直插入管道中,随着流体绕过阻流体流动,产生附面层分离现象,形成有规则的旋涡列,左右两侧旋涡的旋转方向相反。
这种旋涡称为卡门涡街。
根据卡门的研究,这些涡列多数是不稳定的,只有形成相互交替的内旋的两排涡列,且涡列宽度h 与同列相邻的两旋涡的间距l 之比满足lh =0.281(对圆柱形旋涡发生体)时,这样的涡列才是稳定的。
生产旋涡分离的阻流体称为旋涡发生体。
涡街流量计是根据旋涡脱离旋涡发生体的频率与流量之间的关系来测量流量的仪表。
1.卡门涡街的产生与现象为说明卡门涡街的产生,我们来考虑粘性流体绕流圆柱体的流动.当流体速度很低时,流体在前驻点速度为零,来流沿圆柱左右两侧流动,在圆柱体前半部分速度逐渐增大,压力下降,后半部分速度下降,压力升高,在后驻点速度又为零.这时的流动与理想流体统流圆柱体相同,无旋涡产生,如图1—1a 所示.图1-1 圆柱绕涡街产生示意图随着来流速度增加,圆柱体后半部分的压力梯度增大,引起流体附面层的分离,如图1—1b 所示.当来流的雷诺数Re 再增大,达到40左右时,由于圆柱体后半部附面层中的流体微团受到更大的阻滞,就在附面层的分离点S 处产生一对旋转方面相反的对称旋涡.如图1-1c 所示.在一定的雷诺数Re 范围内,稳定的卡门涡街的及旋涡脱落频率与流体流速成正比.2.卡门涡街的稳定条件并非在任何条件下产生的涡街都是稳定的.冯·卡门在理论上已证明稳定的涡街条件是:涡街两列旋涡之间的距离为h ,单列两涡之间距离为l ,若两者之间关系满足1)/sinh(=l h π或/h l =0. 281 (1-1) 时所产生的涡街是稳定的。
涡街流量计工作原理
涡街流量计通过涡街发生器产生的涡街作用原理来测量流体的流量。
其工作原理如下:
1. 流体进入涡街流量计后,首先经过一个流体进口。
进口处通常设有一个圆锥形收缩管,用于引导流体进入流量计并形成一定的流速。
2. 流体进入流量计后,经过一个特殊设计的涡街发生器。
涡街发生器通常由一个金属材料制成的悬臂式挡板组成,在流体中产生周期性涡流。
3. 流过涡街发生器的流体会产生涡街效应,即流体会在挡板两侧交替产生旋涡。
4. 产生的旋涡将会在挡板后面形成一个交替出现的涡街,涡街的频率与流体的流速成正比。
5. 涡街后的流体继续通过一个涡街检测器,涡街检测器通常由一个传感器和一个电子设备组成。
6. 传感器通常采用霍尔元件或光电元件,用于检测涡街的旋涡频率。
7. 电子设备会根据传感器检测到的旋涡频率来计算流体的流速,然后根据管道的截面积计算出流体的流量。
8. 测量结果可以通过显示屏或输出接口展示,以便实时监测和记录流体的流量。
总的来说,涡街流量计通过检测涡街效应,并将涡街的频率转换成流体的流速,进而计算出流体的流量。
这种测量方法具有结构简单、精度高、可靠性好等优点,并广泛应用于工业流体流量测量领域。
涡街流量计测理原量及传感器介绍
产品简介
LUGB型涡街流量计是速度式流量计的一种,以卡门涡街理论为基础,采用压电晶体检测流体通过管道内三角柱时所产生的旋涡频率,从而测量出流体的流量。
广泛应用于石油、化工、动力供热、轻工等多领域,适用于测量过热蒸气、饱和蒸汽、一般气体及液体。
其具有如下特点:
1、测量精度高、可靠性高、量程宽、不需现场调试。
2、测量介质广泛、可测量气体、液体和蒸汽。
3、结构简单、无运动磨损部件。
4、可选距离传输流量信号,能与计算机联网,实现集中监控管理。
5、工作温度高,介质温度可高达350℃。
6、放大板采用独特设计,气体、液体通用。
7、表体采用不锈钢材料,美观、耐腐蚀、经久耐用。
测量原理
当管道中流体介质通过旋涡发生体(三角柱)时,由于局部流速加速而产生旋涡现象(如图),此旋涡分成两列交替地出现,这种旋涡列被称为卡门涡街。
卡门涡街的释放频率与三角柱宽度尺寸和流体的流动速度有关,而与介质的温度、压力等特性参数无关。
可用下式表示:
f=StV/d ┈┈┈┈┈┈┈┈┈┈(1)
式中: f—卡门涡街的释放频率
St—斯特罗哈尔数
V —介质流速
d—三角柱的宽度
斯特罗哈尔数是涡街流量计的重要参数,它只与介质的雷诺数Re有关。
只要管道内介质的雷诺数保持在2×104至7×106范围内,斯特罗哈尔数St便保持为一个常数,这样,便可通过测量旋涡频率信号检测出流体介质的流速,再通过介质的流速计算出介质的流量。
传感器安装注意事项
涡街流量计传感器应安装在水平、垂直或倾斜(液体流向应自下而上)的与其通径相同的管道上。
传感器的上游和下游应配置一定长度的直管段,其长度应符合前直管段15~20D,后直管段5~10D的要求(D指管道直径)。
◆安装液体传感器的附近管道内应充满被测液体,不能空管或不满管。
◆传感器尽量安装在便于安装与检修的位置,避免安装在有强烈机械振动的管道上。
◆直管段的内径尽可能与传感器通径一致,若不能一致,应采用比传感器通径略大的管道,误差
在≤3%,并不超过5mm。
◆被测介质含有较多杂质时,应在传感器上游直管段要求的长度以外的地方加装过滤器。
◆传感器应尽量安装在远离电噪声位置,避免安装在有较强电磁场干扰的场合。
◆检修阀应安装在流量传感器上游,流量调节阀应安装在流量传感器下游。
◆传感器尽量安装在室内位置,如必须安装在室外,则须注意防水;放大器盒外电缆应弯成U
形。
◆焊接时,要保证法兰端面与管道中心线垂直
◆两法兰安装孔的方向应一致。
对于法兰卡装式传感器,DN15~DN32和DN80~DN150其法
兰上安装孔非均布,
孔距较大处为表杆安装位置,应对齐。
◆法兰焊接时,严禁带着传感器长时间焊接;法兰焊接完毕后,管道内要清理干净,不得存有焊
渣等杂物。
◆传感器箭头方向与介质流动方向一致,切勿装反。
◆当被测介质是蒸汽或其他高温介质时,在管道充满介质后,应对安装螺栓再一次进行紧固。
同
时,应对管道和表体进行隔热处理(注意表杆不可隔热),避免因环境温度过高而将放大器损坏。
传感器尺寸图。