【2年中考1年模拟】2016年中考数学 专题25 尺规作图试题(含解析)
- 格式:doc
- 大小:1.95 MB
- 文档页数:35
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.考点:作图—复杂作图.2.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.(2015福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图-基本作图.4.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【答案】A.考点:作图—基本作图. 6.(2015衢州)数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( )A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B . 【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理. 7.(2015自贡)如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)【答案】作图见试题解析.考点:作图-应用与设计作图.8.(2015北京市)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图-基本作图;2.作图题.9.(2015百色)已知⊙O为△ABC的外接圆,圆心O在AB上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.①求证:OD⊥BC;②求EF的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②321 7.【解析】试题分析:(1)按照作角平分线的方法作出即可;(2)①由AD是∠BAC的平分线,得到CD BD=,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.(2015南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.(2015镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F,反向延长 FO ,HO ,分别交⊙O 于D,B 顺次连接A ,B ,C,D ,E,F ,G ,H ,八边形ABCDEFGH 即为所求;(2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图-复杂作图. 12.(2015广安)手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图-应用与设计作图;2.操作型.13.(2015孝感)如图,一条公路的转弯处是一段圆弧(AB).(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m .试题解析:(1)如图1,点O 为所求;(2)连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为AB 的中点,∴OC ⊥AB ,∴AD=BD=12AB=40,设⊙O 的半径为r ,则OA=r ,OD=OD ﹣CD=r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r=50,即AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.(2015宜昌)如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA,BC 于点G ,H;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.【答案】(1)证明见试题解析;(2)40°.考点:1.作图—基本作图;2.等腰三角形的判定与性质.15.(2015随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.【答案】(1)作图见试题解析,证明见试题解析;(2839.【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;(2)先证明△PAB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:(1)作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA ,OB ⊥PC,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;(2)∵PA 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△PAB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°=4OA ,∴OA=433,∴431203180AB l π⨯⨯==839π.考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.16.(2015广州)如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;考点:1.作图-复杂作图;2.圆周角定理.17.(2015吉林省)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:(1)如图①,符合条件的C点有5个:;(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图-应用与设计作图.18.(2015哈尔滨)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.试题解析:(1)如图1所示;(2)如图2、3所示;考点:作图—应用与设计作图.19.(2015六盘水)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°.(1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;(3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求cot22.5°的值.【答案】(1)答案见试题解析;(2)22.5°;(321+.试题解析:(1)如图,(2)∵AD=AB,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22。
尺规作图一、选择题1.(2016,湖北宜昌,12,3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形 B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等边三角形.B、错误.∵EG=GF,∴△E FG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等边三角形.故选B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.2. (2016年浙江省丽水市)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.二、填空题1.(2016吉林长春,11,3分)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为10 .【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB 来解决,属于基础题,中考常考题型.2. (2016·广东深圳)如图,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于点Q P 、,再分别以Q P 、为圆心,以大于PQ 21的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________.答案:.2考点:角平分线的作法,等角对等边,平行四边形的性质。
第25课时尺规作图(55分)一、选择题(每题5分,共10分)1.数学活动课上,四位同学围绕作图问题:“如图25-1,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的是(A)2.[2016·丽水]用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下作图中,作法错误的是(D)二、填空题(每题5分,共15分)3.[2017·成都]如图25-2,在▱ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于12图25-1图25-2MN 的长为半径作弧,两弧相交于点P ;③作射线AP 交边CD 于点Q .若DQ =2QC ,BC =3,则▱ABCD 的周长为__15__.【解析】 由作图知,AQ 是∠BAD 的平分线,∴∠BAQ =∠DAQ ,又∵▱ABCD 中,CD ∥AB ,∴∠DQA =∠BAQ =∠DAQ ,∴DA =QD .∵DQ =2QC ,BC =3,∴DQ =3,QC =32,∴▱ABCD 的周长为2(BC +CD )=2×⎝ ⎛⎭⎪⎫3+3+32=15. 4.[2017·济宁] 如图25-3,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a ,b ),则a 与b 的数量关系为__a +b =0__.【解析】 根据题目中作图步骤可得射线OP 即为∠MON 的角平分线,表达式即为y =-x ,所以点P 的坐标(a ,b ),a 与b 满足a +b =0.5.[2017·河北]如图25-4,依据尺规作图的痕迹,计算∠α=__56__°.图25-4 第5题答图【解析】 ∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DAC =∠ACB =68°.∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°.∵由作法可知,EF 是线段AC 的垂直平分线,图25-3∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.三、解答题(共30分)6.(15分) [2016·广州] 如图25-5,利用尺规,在△ABC的边AC上方作∠CAE =∠ACB,在射线AE上截取AD=BC,连结CD,并证明:AB∥CD(尺规作图,要求保留作图痕迹,不写作法).图25-5 第6题答图解:所求作的图形如答图所示.证明:∵∠CAE=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.7.(15分)[2016·孝感]如图25-6,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D,②过点D作AC的垂线,垂足为E;(2)在(1)作出的图形中,若CB=4,CA=6,则DE=__2.4__.图25-6第7题答图【解析】 (1)以C 为圆心,任意长为半径画弧(半径小于直角边),交BC ,AC 于两点,再以这两点为圆心,大于这两点间线段的一半为半径画弧,过这两弧的交点与点C 的直线交AB 于点D 即可,根据过直线外一点作已知直线的垂线的方法可作出垂线;(2)根据平行线的性质和角平分线的性质推出∠ECD =∠EDC ,进而证得DE =CE ,由DE ∥BC ,推出△ADE ∽△ABC ,根据相似三角形的性质即可推得结论.解:(1)如答图所示;(2)∵CD 是∠ACB 的平分线,∴∠BCD =∠ECD ,∵DE ⊥AC ,BC ⊥AC ,∴DE ∥BC ,∴∠EDC =∠BCD ,∴∠ECD =∠EDC ,∴DE =CE ,∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC ,设DE =CE =x ,则AE =6-x ,∴x 4=6-x 6,解得x =2.4,即DE =2.4.(30分)8.(15分)[2016·青岛]如图25-7,已知线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO =a ,且⊙O 与∠ACB 的两边分别相切.图25-7解:如答图所示,第8题答图①作∠ACB 的平分线CD ;②在CD 上截取CO =a ;③作OE ⊥CA 于点E ,以O 为圆心,OE 长为半径作圆,⊙O 即为所求.9.(15分)[2018·中考预测]如图25-8,已知△ABC ,按如下步骤作图: ①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ;③连结BD ,与AC 交于点E ,连结AD ,CD .(1)求证:△ABC ≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,AC =4,求BE 的长.图25-8【解析】 (1)利用SSS 定理证得结论;(2)设BE =x ,利用特殊角的三角函数易得AE 的长,由∠BCA =45°,易得EC =BE =x ,由AC =AE +EC 解得x ,即BE 的长.解:(1)证明:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS );(2)设BE=x,由题可知BD⊥AC,∵∠BAC=30°,∴∠ABE=60°,∴AE=tan60°·x=3x,∵∠BCA=45°,∴∠CBE=45°,∴EC=BE=x,∵AE+EC=AC,∴3x+x=4,解得x=23-2,∴BE=23-2.(15分)10.(15分)[2017·无锡]如图25-9,已知等边三角形ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.图25-9 备用图【解析】(1)三角形各边中垂线的交点即△ABC的外心O;(2)由(1)知点O到顶点A的距离是它到对边中点的两倍,作OA的中垂线交AB于点D,以O为圆心,OD为半径作圆交AB,BC,CA于E,F,G,H,I,连结EF,GH,正六边形DEFGHI即为所求.解:(1)如答图①,点O为△ABC的外心.第10题答图① 第10题答图②(2)如答图②,正六边形DEFGHI 即为所求.。
2016年全国中考数学真题分类尺规作图一、选择题1.(2016浙江丽水,9,3分)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()【答案】D.二、解答题1.19、(2016广东,19,6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)条件下,若DE=4,求BC的长.解析:(1)作AC的垂直平分线MN,交AC于点E。
(2)由三角形中位线定理,知:BC=2DE=820.(2016湖北孝感,20,8分)如图,在Rt△ABC中,ACB∠=90°.(1)请用直.尺.和圆规...按下列步骤作图,保留作图痕迹:①作ACB∠的平分线,交斜边AB于点D;(2分)②过点D作AC的垂线,垂足为点E.(3分)(2)在(1)作出的图形中,若CB=4,CA=6,则DE=☆.(3分)DAB C20.(1)如图所示:注:作ACB的平分线,交斜边AB于点D……………………………2分过点D作AC的垂线,垂足为点E……………………………5分(2)DE=512(或4.2).……………………………8分5.(2016山东青岛,15,4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.)20(题第ACBACBDE2. (2016兰州,22,5分)如图已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留做题痕迹,并把作图痕迹用黑色签字笔描黑.)【答案】如图,四边形ABCD即为所求。
1.(2016四川成都,25,4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN 和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【考点】平移的性质.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN 最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,CBAD周长=25+10CBADCBADCBAD周长=25+210周长=217+34周长=213+26故答案为:.2.(2016四川广安,24,8分)在数学活动课上,老师要求学生在5×5的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边都与AB 或AD 都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种)【答案】解: 第一种(四选一):第二种(二选一):第三种 第四种 第五种CB AD周长=32+10CBAD周长=35+510CBAD周长=CBAD周长=CBAD周长=CBAD周长=说明:①以上答案仅供参考,除此外凡符合的均可;②每种2分(画法正确得1分,写出周长正确得1分) ③相似的图形只能算一种.三、解答题1..(2016江西,17,6分)如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边; (2)在图(2)中画出线段AB 的垂直平分线.图2图1AA【解析】 如图所示:图1AAC B AD 周长=25+4 2C B AD CBAD 周长=52+26周长=52+34(1) ∠BAC=45º;(2)OH是AB的垂直平分线.2.20.(2016浙江宁波,20,8分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.3.23.(2016山东青岛,23,10分)问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb 的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5 )×( n﹣5 )的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9 的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n﹣10 )×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可).【解答】解:探究三:边长为18,19的正方形分割示意图,如图所示,问题解决:若5≤n<10时,如探究一.若n≥10,设n=5a+b,其中a、b为正整数,5≤b<10,则图形如图所示,均可将正方形分割为一个5a×5a的正方形、一个b×b的正方形和两个5a×b的矩形.显然,5a ×5a的正方形和5a×b的矩形均可分割为1x5的矩形,而b×b的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,.4.27.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O 且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)【解答】解:(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P即为所求.证明:如图作PN⊥ML,∵A与A′关于ML对称,∴∠1=∠2,∵∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,∴∠3=∠4,∴AP是入射光线,PB是反射光线,P即为入射点.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON 于点P、Q.则光线的行进路线为A→P→Q→B.(3)如图3,光线的行进路线为S→A→B→C→B→A→S.∵∠SAN=∠OAB=∠MON=∠30°,∴OB=BA,∵BC⊥ON,∴CA=OA=,∴AB=,BC=,∴这束光线经过的路程为:SA+AB+BC+CB+BA+AS=(1++)×2=2+.(4)θ=30°,60°,90°,120°,150°.理由如图所示,。
中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()共32页,第1页4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形共32页,第2页7、如图,在ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:尺规作图,过圆外一点作圆的切线.已知:⊙O和点P求过点P的⊙O的切线小涵的主要作法如下:如图,(1)连结OP,作线段OP的中点A;(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;(3)作直线PB和PC.共32页,第3页所以PB和PC就是所求的切线.老师说:“小涵的做法正确的.”请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.EF11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若共32页,第4页AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.共32页,第5页16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.共32页,第6页(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.共32页,第7页22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);共32页,第8页(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB 的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;共32页,第9页(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.共32页,第10页33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC 边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).共32页,第11页37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)共32页,第12页41、如图,AE∥BF,AC平分∠BA E,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.共32页,第13页45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作②以的垂直平分线,交为圆心,于点,交于点;.为半径作圆,交的延长线于点⑵在⑴所作的图形中,解答下列问题.①点②若与的位置关系是_____________;(直接写出答案),,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC 绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)共32页,第14页理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)共32页,第15页参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2)B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、m244、(1)如图;(2)45、(1)作图见解析;(2)①点B在⊙O上;②5.47、见解析48、见解析49、见46、解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P 到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH=BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;。
2016年全国中考数学真题分类
尺规作图
一、选择题
12.(2016湖北宜昌,12,3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()
A.△EGH为等腰三角形 B.△EGF为等边三角形
C.四边形EGFH为菱形 D.△EHF为等腰三角形
【考点】作图—基本作图;线段垂直平分线的性质.
【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,
∴△EGH是等边三角形.
B、错误.∵EG=GF,
∴△EFG是等腰三角形,
若△EFG是等边三角形,则EF=EG,显然不可能.
C、正确.∵EG=EH=HF=FG,
∴四边形EHFG是菱形.
D、正确.∵EH=FH,
∴△EFH是等边三角形.
故选B.
二、填空题
17.(2016湖北荆州,17,3分)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).
【分析】沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.【解答】解:如图所示.
[来源:Z。
xx。
]
AE=BE,DE=EF,AD=CF.
三、解答题
16.(2016陕西17,5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成两个相似三角形。
(保留作图痕迹,不写作法)
解:如图,直线AD即为所作。
……………………(5分)
第17题答案图
第17题图。
广东省揭阳市普宁市2016年中考数学二模试卷(解析版)一、选择题:每小题3分,共30分1.8的立方根是()A.2 B.±2 C.±2D.22.下列运算中,正确的是()A.x3x=x4B.(﹣3x)2=6x2C.3x3﹣2x2=x D.x6÷x2=x33.图中几何体的主视图是()A.B.C. D.4.如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36°B.54°C.64°D.72°5.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A.B.C.D.6.2016年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于()A.30°B.45°C.60°D.90°9.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°10.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2二、填空题:每小题4分,共24分11.函数y=的自变量x的取值范围为.12.一个正多边形的一个外角等于30°,则这个正多边形的边数为.13.一次函数y=﹣x+3的图象与y轴的交点坐标为.14.若点P(2m﹣1,)在第三象限,则常数m的取值范围是.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.16.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22016﹣1的末位数字是.三、解答题:每小题6分,共18分17.计算:(﹣1)2016+|1﹣|﹣2cos45°.18.先化简,再求值:÷(1﹣),其中x是方程x2+3x+2=0的根.19.如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);(2)求弧AB的长及扇形OAB的面积.四、解答题:每小题7分,共21分20.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.21.为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下车库的设计示意图(如图),按规定,地下车库坡道口上方要张贴限高标志,以便高职停车人车辆能否安全驶入.(1)图中线段CD(填“是”或“不是”)表示限高的线段,如果不是,请在图中画出表示限高的线段;(2)一辆长×宽×高位3916×1650×1465(单位:mm)的轿车欲进入车库停车,请通过计算,判断该汽车能否进入该车库停车?(本小问中取1.7,精确到0.1)22.已知函数y1=x+2的图象分别与坐标轴相交于A,B两点(如图所示),与反比例函数y2=(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式;(3)根据图象(x>0)直接写出y1>y2时的取值范围.五、解答题:每小题9分,共27分23.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.24.如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.2016年广东省揭阳市普宁市中考数学二模试卷参考答案与试题解析一、选择题:每小题3分,共30分1.8的立方根是()A.2 B.±2 C.±2D.2【分析】根据立方根的定义,即可解答.【解答】解:∵23=8,∴8的立方根是2,故选:D.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.2.下列运算中,正确的是()A.x3x=x4B.(﹣3x)2=6x2C.3x3﹣2x2=x D.x6÷x2=x3【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用积的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=x4,正确;B、原式=9x2,错误;C、原式不能合并,错误;D、原式=x4,错误,故选A【点评】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.图中几何体的主视图是()A. B.C. D.【分析】找到从正面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示:几何体的主视图是:.故选:A.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.4.如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36°B.54°C.64°D.72°【分析】首先由OC⊥OD,根据垂直的定义,得出∠COD=90°,然后由平角的定义,知∠AOC+∠COD+∠DOB=180°,从而得出∠DOB的度数.【解答】解:∵OC⊥OD,∴∠COD=90°,∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°﹣36°﹣90°=54°.故选:B.【点评】本题主要考查了垂直及平角的定义,题目简单.5.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A.B.C.D.【分析】设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据甲车行驶30千米与乙车行驶40千米所用时间相同,列方程.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,由题意得,=.故选A.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.2016年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、1000名考生的数学成绩是总体的一个样本,故A错误;B、1000是样本容量,故B错误;C、每位考生的数学成绩是个体,故C正确;D、9万多名考生的数学成绩是总体,故D错误;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于()A.30°B.45°C.60°D.90°【分析】由于点P始终在优弧BAC上移动,故∠P度数不易直接求,可转化为求同弧所对的其他它圆周角的度数.【解答】解:∵△ABC为正三角形,AD⊥BC,∴AD为∠BAC的平分线,∴∠BAE=60°×=30°,又∵∠BPE=∠BAE,∴∠BPE=30°,故选A.【点评】此题主要考查了圆周角定理,一般将位置不固定的角转化为固定角来解,运用转化思想是解答此题的关键.9.如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°【分析】因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD 绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.【解答】解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C .【点评】本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.10.如图,若△ABC 和△DEF 的面积分别为S 1,S 2,则( )A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 2【分析】作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,在Rt △ABM 中利用正弦的定义得到AM=3sin50°,利用三角形面积公式得到S 1=BCAM=sin50°,同样在Rt △DEN 中得到DN=7sin50°,则S 2=EFDN=sin50°,于是可判断S 1=S 2.【解答】解:作AM ⊥BC 于M ,DN ⊥EF 于N ,如图,在Rt △ABM 中,∵sin ∠B=,∴AM=3sin50°,∴S 1=BCAM=×7×3sin50°=sin50°, 在Rt △DEN 中,∠DEN=180°﹣130°=50°,∵sin ∠DEN=,∴DN=7sin50°,∴S 2=EFDN=×3×7sin50°=sin50°, ∴S 1=S 2.故选D .【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了三角形面积公式.二、填空题:每小题4分,共24分11.函数y=的自变量x的取值范围为x≤0.5.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得1﹣2x≥0,解得x≤0.5,故答案为:x≤0.5.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.12.一个正多边形的一个外角等于30°,则这个正多边形的边数为12.【分析】正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数.【解答】解:依题意,得多边形的边数=360°÷30°=12,故答案为:12.【点评】题考查了多边形内角与外角.关键是明确多边形的外角和为定值,即360°,而当多边形每一个外角相等时,可作除法求边数.13.一次函数y=﹣x+3的图象与y轴的交点坐标为(0,3).【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=3,∴一次函数y=﹣x+3的图象与y轴的交点坐标为(0,3).故答案为:(0,3).【点评】本题考查的是一次函数图象上点的坐标特点,熟知y轴上点的坐标特点是解答此题的关键.14.若点P(2m﹣1,)在第三象限,则常数m的取值范围是m<﹣1.【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点P(2m﹣1,)在第三象限,∴,解不等式①得,m<,解不等式②得,m<﹣1,所以,不等式组的解集是m<﹣1,即常数m的取值范围是m<﹣1.故答案为:m<﹣1.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是1:2.【分析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比,根据相似多边形的周长的比等于其相似比,即可求得答案.【解答】解:∵五边形ABCDE与五边形A′B′C′D′E′位似,OA=10cm,OA′=20cm,∴五边形ABCDE∽五边形A′B′C′D′E′,且相似比为:OA:OA′=10:20=1:2,∴五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比为:OA:OA′=1:2.故答案为:1:2.【点评】此题考查了多边形位似的知识.注意位似是相似的特殊形式与相似多边形的周长的比等于其相似比知识的应用.16.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22016﹣1的末位数字是9.【分析】观察已知等式,发现末位数字以2,4,8,6循环,原式整理后判断即可得到结果.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴末位数字以2,4,8,6循环,∵2016÷4=504,∴2+22+23+24+…+22016﹣1的末位数字与(2+4+8+6)×504﹣1的末位数字相同为9.故答案为:9.【点评】此题考查了尾数特征,弄清题中的数字循环规律是解本题的关键.三、解答题:每小题6分,共18分17.计算:(﹣1)2016+|1﹣|﹣2cos45°.【分析】直接利用绝对值的性质以及特殊角的三角函数值、有理数的乘方性质分别化简各数进而求出答案.【解答】解:(﹣1)2016+|1﹣|﹣2cos45°=1+﹣1﹣2×=﹣=0.【点评】此题主要考查了绝对值以及特殊角的三角函数值、有理数的乘方,正确化简各数是解题关键.18.先化简,再求值:÷(1﹣),其中x是方程x2+3x+2=0的根.【分析】先算括号里面的,再算除法,根据x是方程x2+3x+2=0的根求出x的值,代入代数式进行计算即可.【解答】解:原式=÷==x+1,解方程x2+3x+2=0得,x1=﹣1,x2=﹣2,∵x≠﹣1,∴当x=﹣2时,原式=﹣2+1=﹣1.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.19.如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);(2)求弧AB的长及扇形OAB的面积.【分析】(1)连接AB,作弦AB的垂直平分线即可作出扇形的对称轴;(2)利用弧长的计算公式和扇形的面积公式可得结果.【解答】解:(1)如图所示:(2)的长度:=4π(cm);S==12π(cm2).扇形【点评】本题主要考查与扇形有关的计算,熟记弧长公式:l=(弧长为l,圆心角度=是解答此题的关键.数为n,圆的半径为r)和扇形的面积公式S扇形四、解答题:每小题7分,共21分20.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【分析】(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.【解答】解:(1)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)==.【点评】正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.21.为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下车库的设计示意图(如图),按规定,地下车库坡道口上方要张贴限高标志,以便高职停车人车辆能否安全驶入.(1)图中线段CD不是(填“是”或“不是”)表示限高的线段,如果不是,请在图中画出表示限高的线段;(2)一辆长×宽×高位3916×1650×1465(单位:mm)的轿车欲进入车库停车,请通过计算,判断该汽车能否进入该车库停车?(本小问中取1.7,精确到0.1)【分析】(1)根据点到直线距离中垂线段最短,可以判断CD是否为限高的线段,从而可以作出正确的图形;(2)根据题目中的条件可以求得CE的长度,然后与车的高1465mm进行比较,即可解答本题.【解答】解:(1)图中线段CD不是表示限高的线段,故答案为:不是,图中表示限高的线段是CE,如右图所示,(2)在Rt△ABD中,∠BAD=30°,AB=9m,∴BD=ABtan30°=9×=3m,∴CD=BD﹣BC=(3﹣0.5)m,在Rt△CDE中,∠CDE=60°,CD=(3﹣0.5)m,∴CE=CD×sin60°=(3﹣0.5)×=≈4.1m,∵4.1m>1465mm=1.465m,故该汽车能进入该车库.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.已知函数y1=x+2的图象分别与坐标轴相交于A,B两点(如图所示),与反比例函数y2=(x>0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式;(3)根据图象(x>0)直接写出y1>y2时的取值范围.【分析】(1)分别令一次函数解析式中x=0、y=0求出y、x的值,从而得出点A、B的坐标;(2)由A、B点的坐标结合中位线的性质,找出线段OD、DC的长度,从而找出点C的坐标,再由点C的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.【解答】解:(1)令一次函数y1=x+2中x=0,则y=2,∴点B的坐标为(0,2);令一次函数y1=x+2中y=0,则x+2=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).(2)∵OB是△ACD的中位线,∴,∵点A(﹣3,0),点B(0,2),∴AD=6,DC=4,OD=AD﹣AO=6﹣3=3,∴点C的坐标为(3,4).又∵点C在反比例函数y2=(x>0)的图象上,∴k=3×4=12,∴反比例函数解析式为y2=(x>0).(3)观察函数图象,发现:当x>3时,一次函数图象在反比例函数图象的上方,∴不等式y1>y2时的取值范围为x>3.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题以及三角形中位线的性质,解题的关键是:(1)分别代入x=0、y=0求B、A点坐标;(2)求出点C的坐标;(3)根据函数图象的上下位置关系解决不等式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据反比例函数图象上点的坐标特征求出反比例系数k是关键.五、解答题:每小题9分,共27分23.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.【分析】(1)由AB是⊙O的切线,∠A=30°,易求得∠OCB的度数,继而可得∠A=∠OCB=30°,又由等角对等边,证得AB=BC;(2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形.【解答】证明:(1)∵AB是⊙O的切线,∴OB⊥AB,∵∠A=30°,∴∠AOB=60°,∵OB=OC,∴∠OCB=∠OBC=∠AOB=30°,∴∠A=∠OCB,∴AB=BC;(2)连接OD,∵∠AOB=60°,∴∠BOC=120°,∵D为的中点,∴=,∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD与△COD是等边三角形,∴OB=BD=OC=CD,∴四边形BOCD是菱形.【点评】此题考查了切线的性质、等腰三角形的性质、菱形的判定以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【分析】(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程(8﹣x)2=x2+(4)2,解此方程即可求得OG的长.【解答】(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OBcos30°=8×=4,AB=OBsin30°=8×=4,∴点B的坐标为(4,4);(2)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)解:设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.【点评】此题考查了折叠的性质,三角函数的性质,平行四边形的判定,等边三角形的性质,以及勾股定理等知识.此题难度较大,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.25.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.【解答】解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为y=﹣3x+3,∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.。
北京市2016年各区中考一模汇编平面几何之尺规作图1【2016丰台一模,第09题】如图,△ABC 中,AC <BC ,如果用尺规作图的方法在BC 上 确定一点P ,使PA +PC =BC ,那么符合要求的作图痕迹是A B C D2.【2016东城一模,第16题】 阅读下面材料: 在数学课上,老师提出如下问题甲、乙、丙、丁四位同学的主要作法如下:请你判断哪位同学的作法正确 ;这位同学作图的依据是请你判断哪位同学的作法正确 ; 这位同学作图的依据是 .PA +PC =BC .为圆心,BA 长为半径画弧,交就是所求的点.是所求的点.A BC3.【2016平谷一模,第16题】 阅读下面材料:在数学课上,老师提出如下问题:请回答:小米的作图依据是_________________________.4.【2016朝阳一模,第16题】阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .所以直线CF 就是所求作的垂线.请回答:小艾这样作图的依据是____________.5.【2016海淀一模,第16题】阅读下面材料在数学课上,老师提出如下问题:请回答:小云的作图依据是6.【2016西城一模,第14题】已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为_______________.7.【2016通州一模,第15题】在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于12DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC. 其中证明△ODC≌△OEC的理由是_______________________________________.详细解答1. C2.丁;垂直平分线上的点到线段两端的距离相等;等量代换3.全等三角形“SSS”判定定理;全等三角形对应角相等;两点确定一条直线.4.等腰三角形“三线合一”;两点确定一条直线.5.四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)6.7.8.SSS;。
尺规作图一、作图题(共14题;共133分)1.如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)2.如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.3.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).6.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.8.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.①利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;②利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑11.如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.12.如图,点D在△ABC的AB边上,且∠ACD=∠A。
专题25 尺规作图☞解读考点☞2年中考【2015年题组】1.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.【答案】D.考点:作图—复杂作图.2.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.(2015福州)如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100° D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.4.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A. B. C. D.【答案】A.考点:作图—基本作图.6.(2015衢州)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理 B.直径所对的圆心角是直角C.勾股定理的逆定理 D.90°的圆周角所对的弦是直径【答案】B.【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC =a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B .考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周角定理.7.(2015自贡)如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP =3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)【答案】作图见试题解析.考点:作图—应用与设计作图.8.(2015北京市)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 . 【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图—基本作图;2.作图题.9.(2015百色)已知⊙O 为△ABC 的外接圆,圆心O 在AB 上.(1)在图1中,用尺规作图作∠BAC 的平分线AD 交⊙O 于D (保留作图痕迹,不写作法与证明); (2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC =4,连接OD 交BC 于F . ①求证:OD ⊥BC ; ②求EF 的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②7. 【解析】试题分析:(1)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到 CDBD ,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.(2015南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.(2015镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)158.【解析】试题分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD的度数,得到 AD的长,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴ AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.12.(2015广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图—应用与设计作图;2.操作型.13.(2015孝感)如图,一条公路的转弯处是一段圆弧( AB).(1)用直尺和圆规作出 AB所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若 AB的中点C到弦AB的距离为20m,AB=80m,求 AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O 为所求;(2)连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为 AB 的中点,∴OC ⊥AB ,∴AD =BD =12AB =40,设⊙O 的半径为r ,则OA =r ,OD =OD ﹣CD =r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r =50,即 AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.(2015宜昌)如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E . (1)求证:AB =AE ;(2)若∠A =100°,求∠EBC 的度数.【答案】(1)证明见试题解析;(2)40°.考点:1.作图—基本作图;2.等腰三角形的判定与性质.15.(2015随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O 的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求 AB的长..【答案】(1)作图见试题解析,证明见试题解析;(2)9【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;(2)先证明△PAB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:(1)作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA,OB⊥PC,∴OA=OB,即d=r,∴PC是⊙O的切线;(2)∵PA、PC是⊙O的切线,∴PA=PB,又∵AB=AP=4,∴△PAB是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt△AOP中,tan60°=4OA,∴OA=3,∴1203180ABlπ⨯==9.考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.16.(2015广州)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;考点:1.作图—复杂作图;2.圆周角定理.17.(2015吉林省)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】试题分析:(1(2(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:(1)如图①,符合条件的C点有5个:;(3ABCD的面积最大..考点:作图—应用与设计作图.18.(2015哈尔滨)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.试题解析:(1)如图1所示;(2)如图2、3所示;考点:作图—应用与设计作图.19.(2015六盘水)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°.(1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;(3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求c ot 22.5°的值.【答案】(1)答案见试题解析;(2)22.5°;(31.试题解析:(1)如图,(2)∵AD =AB ,∴∠ADB =∠ABD ,而∠BAC =∠ADB +∠ABD ,∴∠ADB =12∠BAC =12×45°=22.5°,即∠BDC 的度数为22.5°;(3)设AC =x ,∵∠C =90°,∠BAC =45°,∴△ACB 为等腰直角三角形,∴BC =AC =x ,AB ,∴AD =AB =,∴CD =x +=1)x ,在Rt △BCD 中,cot ∠BDC =DC BC ==1,即cot 22.5°=1.考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题. 20.(2015山西省)如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求 DE的长.【答案】(1)作图见试题解析;(2)2.试题解析:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC,∴CD=3cos30°=2,∴ DE的长=602180π=2.考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题.21.(2015济宁)如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并判断四边形AECF的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF的形状为菱形.【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定.22.(2015宁波)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形; (2)利用(1)中的格点多边形确定m ,n 的值.【答案】(1)答案见试题解析;(2)112m n =⎧⎪⎨=⎪⎩.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m ,n 为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=⎧⎨+-=⎩,解得:112m n =⎧⎪⎨=⎪⎩. 考点:作图—应用与设计作图.23.(2015杭州)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a ,b ,c )(a ≤b ≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析. 【解析】试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a =2,b =3,c =4,再作图:①作射线AB ,且取AB =4; ②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系.24.(2015温州)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G •Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-⨯+=S . (1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积. (2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)【答案】. 【解析】试题分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a =3,b =3,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.25.(2015青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷4=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷3=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题.【2014年题组】1.(2014·安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.ASA D.AAS【答案】B.考点:作图—基本作图;全等三角形的判定与性质.2.(2014涉县一模)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断()A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC为等边三角形,故乙作法正确,故选A考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.3.(2014·玉林)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.【答案】90°.【解析】试题分析:如图所示:旋转角度是90°.考点:作图-旋转变换.4.(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为【答案】105°.考点:作图—基本作图;线段垂直平分线的性质.5.(2014•梅州)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE= ;(2)AE EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=【答案】(1)90°;(2)=;(3)7.考点:线段垂直平分线的性质;勾股定理的应用.☞考点归纳归纳 1:作三角形基础知识归纳:利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.注意问题归纳:用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【例1】已知:线段a、c和∠β(如图),利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.(不写作法,保留作图痕迹).【答案】作图见解析.考点:作图—基本作图.归纳 2:用角平分线、线段的垂直平分线性质画图基础知识归纳:角平分线的性质:角的平分线上的点到角的两边的距离相等.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.基本做图如图:【例2】两个城镇A,B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.【答案】作图见解析.考点:作图—应用与设计作图.归纳 3:与圆有关的尺规作图基础知识归纳:(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.注意问题归纳:关键是找准圆周心作出圆.【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D 两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【答案】考点:作图—复杂作图.☞1年模拟1.(2015届山东省胶南市校级模拟)已知:用直尺和圆规作图,(不写作法,保留作图痕迹,)如图,在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.【答案】作图见解析.【解析】试题分析:点P到M、N两点的距离相等即作MN的垂直平分线;点P到OA、OB的距离也相等.即作角平分线,两线的交点就是点P的位置.试题解析:如图所示:考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质.2.(2015届广东省黄冈中学校级模拟)已知△ABC中,∠C=90°,请利用尺规作出△ABC的内切圆O(不写作法,请保留作图痕迹)【答案】作图见解析.考点:1.三角形的内切圆与内心;2.作图—复杂作图.3.(2015届湖北省宜昌市兴山县模拟考试)如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC 的外接圆O ,作直径AE (尺规作图);(2)若AB =8,AC =6,AD =5,求△ABC 的外接圆直径AE 的长.【答案】(1)作图见解析;(2)9.6.试题解析:(1)如图:(2)证明:由作图可知AE 为⊙O 的直径,∴∠ABE =90°,(直径所对的圆周角是直角)∵AD ⊥BC ,∴∠ADC =90°,∴∠ABE =∠ADC ,∵ AB AB= ∴∠E =∠C ,∴△ABE ∽△ADC ,∴AC AD AE AB =,即 658AB =,∴AE =9.6. 考点:1.三角形的外接圆与外心;2.作图—复杂作图.4.(2015届江苏省盐城模拟考试)实践操作:如图,在Rt △ABC 中,∠ABC =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)(1)作∠BCA的角平分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的位置关系是(直接写出答案)(2)若BC=6,AB=8,求⊙O的半径.【答案】实践操作:画图见解析;综合运用:(1)相切;(2)3.试题解析:实践操作:(1)如图所示:CO即为所求;(2)如图所示:⊙O即为所求;综合运用:(1)AC与⊙O的位置关系是:相切;考点:1.作图—复杂作图;2.直线与圆的位置关系.。