51单片机串口通信
- 格式:ppt
- 大小:540.50 KB
- 文档页数:13
51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。
本文将介绍使用C语言编写51单片机的串口通信程序。
1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。
首先,我们需要一块51单片机开发板,内置了串口通信功能。
另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。
2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。
在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。
同时,我们还需要引入头文件来定义串口通信的相关寄存器。
3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。
这些参数的配置需要根据实际需要进行调整。
在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。
4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。
初始化串口的过程包括打开串口、设置中断等。
5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。
阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。
6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。
在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。
7. 中断处理在串口通信中,中断是一种常见的处理方式。
通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。
8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。
```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。
51单片机串口烧写和串口通信冲突51单片机是一款经典的单片机芯片,广泛应用于各种嵌入式系统中,具有体积小、功耗低、成本低等特点。
其中,串口烧写和串口通信是其重要的功能之一。
然而,在使用51单片机进行串口烧写和串口通信时,我们常常会遇到串口烧写和串口通信冲突的问题。
本文将从深度和广度两个方面介绍51单片机串口烧写和串口通信冲突的原因、解决方法以及个人观点和理解。
一、51单片机串口烧写和串口通信冲突的原因1. 引脚冲突:51单片机的串口通信使用了P3口的两个引脚(RXD和TXD),而串口烧写也需要使用这两个引脚。
当两者同时使用时,就会发生引脚冲突,导致串口通信无法正常进行。
2. 中断冲突:51单片机的串口通信和串口烧写都需要使用中断来进行数据的传输和处理。
然而,当两者同时进行时,就会发生中断冲突,导致程序异常或无法正常执行。
二、51单片机串口烧写和串口通信冲突的解决方法1. 引脚复用:通过引脚复用的方式,将串口通信和串口烧写使用的引脚分时复用。
可以在程序中通过控制器或开关来切换引脚的功能。
这样就可以避免引脚冲突,使串口烧写和串口通信能够正常进行。
2. 中断优先级设置:通过设置中断的优先级,可以解决串口通信和串口烧写同时进行时的中断冲突问题。
可以根据实际需求将串口通信和串口烧写的中断优先级进行设置,确保两者能够正确地进行数据传输和处理。
三、个人观点和理解作为一名嵌入式系统工程师,我对51单片机的串口烧写和串口通信冲突问题深有感触。
在实际项目中,我遇到过串口烧写和串口通信冲突导致程序异常的情况。
通过分析和解决这个问题,我更加深入地理解了51单片机的串口烧写和串口通信原理,以及相关的硬件和软件知识。
在解决串口烧写和串口通信冲突问题时,我发现引脚复用和中断优先级设置是较为常用且有效的方法。
通过合理设计引脚和优先级,可以有效解决冲突问题,同时保证系统的稳定性和可靠性。
总结回顾:通过本文的介绍,我们了解了51单片机串口烧写和串口通信冲突的原因及解决方法。
51单片机串口设置及应用单片机的串口设置及应用是指通过单片机的串口功能来进行通信的一种方式。
串口通信是一种全双工通信方式,可以实现双向数据传输。
单片机通过串口可以与其他设备进行通信,如计算机、传感器、LCD显示屏等。
1. 串口设置:单片机的串口通信一般需要进行以下设置:(1)串口模式选择:要根据实际情况选择串口工作模式,一般有异步串口和同步串口两种。
(2)波特率设置:串口通信需要设置一个波特率,即数据传输速率。
常见的波特率有9600、19200、115200等,需要与通信的设备保持一致。
(3)数据位设置:设置传输的数据位数,常见的有8位、9位等。
(4)停止位设置:设置停止位的个数,常见的有1位、2位等。
(5)校验位设置:可以选择是否启用校验位,校验位主要用于检测数据传输的正确性。
2. 串口应用:串口通信在很多领域都得到广泛应用,下面列举几个常见的应用场景:(1)串口与计算机通信:通过串口可以实现单片机与计算机的通信,可以进行数据的读写、控制等操作。
例如,可以通过串口将传感器采集到的数据发送给计算机,由计算机进行进一步处理分析。
(2)串口与传感器通信:串口可以与各种传感器进行通信,可以读取传感器采集到的数据,并进行处理和控制。
例如,可以通过串口连接温度传感器,读取实时的温度数据,然后进行温度控制。
(3)串口与LCD显示屏通信:通过串口可以实现单片机与LCD显示屏的通信,可以将需要显示的数据发送给LCD显示屏进行显示。
例如,可以通过串口将单片机采集到的数据以数字或字符的形式显示在LCD上。
(4)串口与外部存储器通信:通过串口可以与外部存储器进行通信,可以读写存储器中的数据。
例如,可以通过串口读取SD卡中存储的图像数据,然后进行图像处理或显示。
(5)串口与其他设备通信:通过串口可以和各种其他设备进行通信,实现数据的传输和控制。
例如,可以通过串口与打印机通信,将需要打印的数据发送给打印机进行打印。
总结:单片机的串口设置及应用是一种实现通信的重要方式。
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
c 51单片机串口初值计算单片机是一种集成电路,可以用来实现各种功能。
而串口是一种用于数据传输的通信接口,常用于单片机与外部设备之间的通信。
在单片机中使用串口通信时,需要对串口进行初始化,设置其波特率和各种参数。
本文将通过详细介绍C51单片机串口的初值计算方法,帮助读者更好地理解单片机串口的使用。
在C51单片机中,串口的初始化可以通过设置相应的寄存器来实现。
下面以51系列单片机为例,介绍串口初始化的过程。
首先,需要设置串口的波特率。
波特率是指在一个时间单位内,通过通信线路传输的波形的变化次数。
常用的波特率有9600bps、115200bps等。
要设置波特率,需要先确定所使用的晶振频率和串口的时钟分频系数。
C51单片机的串口通信是通过定时器T1实现的,波特率的计算公式为:波特率 = 晶振频率 / (12 * 2^n * (65536 - T1初值))其中,n为波特率位数,可以取3、4、5等。
按照常用的8位数据位和1位停止位,可以将n取为4。
以晶振频率为11.0592MHz,波特率为9600bps为例,计算T1初值:9600 = 11059200 / (12 * 2^4 * (65536 - T1初值))通过计算得到T1初值为77。
将77转换成16进制,得到的值为4D。
接下来,需要设置串口的工作模式和相关参数。
C51单片机的串口通信有两种模式:帧模式和位模式。
帧模式是指在每个数据字节的前后都添加起始位、停止位和校验位,可以提高数据的可靠性。
位模式是指仅传输数据位,不添加起始位、停止位和校验位,可以提高传输速率。
C51单片机的串口默认为位模式,但可以通过设置相应的寄存器来选择工作模式。
串口相关的寄存器包括SCON、PCON和T2CON。
设置串口工作模式以及数据位数、停止位数和校验方式的方法如下所示:SCON = (模式选择位7) (模式选择位6) 0 (8位数据位选择) (校验方式选择) (停止位数选择) (模式选择位1) (模式选择位0)其中,模式选择位7和模式选择位6可以根据实际需求进行设置。
一、串口通信原理串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。
由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。
串口通信的工作原理请同学们参看教科书。
以下对串口通信中一些需要同学们注意的地方作一点说明:1、波特率选择波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。
MSC-51串行端口在四种工作模式下有不同的波特率计算方法。
其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。
在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。
在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1))其中,SMOD——寄存器PCON的第7位,称为波特率倍增位;TH1——定时器的重载值。
在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。
这要根据系统的运作特点,确定通信的频率范围。
然后考虑通信时钟误差。
使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。
为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。
下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。
则TH1=256-62500/波特率根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。
列计数器重载值,通信误差如下表:因此,在通信中,最好选用波特率为1200,2400,4800中的一个。
2、通信协议的使用通信协议是通信设备在通信前的约定。
单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。
假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。
深入理解51单片机串口通信及通信实例串口通信的原理串口通信(SerialCommunicaTIons)的概念非常简单,串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
它很简单并且能够实现远距离通信。
比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。
典型地,串口用于ASCII码字符的传输。
通信使用3根线完成,分别是地线、发送、接收。
由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。
其他线用于握手,但不是必须的。
串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。
对于两个进行通信的端口,这些参数必须匹配。
a,波特率:这是一个衡量符号传输速率的参数。
指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。
一般调制速率大于波特率,比如曼彻斯特编码)。
通常电话线的波特率为14400,28800和36600。
波特率可以远远大于这些值,但是波特率和距离成反比。
高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。
当计算机发送一个信息包,实际的数据往往不会是8位的,标准的值是6、7和8位。
如何设置取决于你想传送的信息。
比如,标准的ASCII码是0~127(7位)。
扩展的ASCII码是0~255(8位)。
如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。
每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。
由于实际数据位取决于通信协议的选取,术语包指任何通信的情况。
51单片机串口通信原理详解1. 引言串口(Serial Port)是一种常用于计算机与外部设备之间进行数据传输的接口,它是一种逐位传输的方式。
51单片机是一种非常常用的单片机,串口通信是其重要的通信方式之一。
本文将详细解释51单片机串口通信的基本原理,包括串口通信的定义、硬件连接示意图、通信协议、数据传输过程以及数据接收处理等方面的内容。
2. 串口通信定义串口通信是一种通过串行通路进行数据传输的通信方式。
它是一种点对点的通信协议,即通信的两端通过共享数据线进行数据交换。
3. 硬件连接示意图完成串口通信,需要将单片机与外部设备进行连接。
下图是一个常见的串口通信连接示意图:___| |TXD <-|---|---> RXD| |RXD <-|---|---> TXD|___|单片机外部设备通常,单片机的TXD引脚连接到外部设备的RXD引脚,而单片机的RXD引脚连接到外部设备的TXD引脚。
4. 串口通信协议串口通信需要明确一种通信协议,以规定数据的传输格式和相关参数。
在51单片机中,常用的串口通信协议有UART(Universal Asynchronous ReceiverTransmitter)和USART(Universal Synchronous Asynchronous Receiver Transmitter)。
UART是指不使用时钟信号而直接利用起始位、数据位和停止位来传输数据的协议,属于异步通信。
USART是指同步和异步传输都能实现的通信协议。
5. 数据传输过程串口通信的数据传输过程可以分为发送和接收两个部分。
5.1 发送数据发送数据的步骤如下:1.配置串口通信参数,包括波特率、数据位、停止位和校验位等。
2.将要发送的数据存放在发送缓冲区中。
3.设置发送开始标志位。
4.如果发送缓冲区为空,则等待直到缓冲区不为空。
5.将发送缓冲区中的数据通过串口发送出去。
6.等待发送完成。
51单片机串口通信程序51单片机是我国自主研发的一款微控制器,在国内广泛应用于各种电子设备中。
在很多应用场景中,需要通过串口进行通信,以实现数据传输。
本文将介绍51单片机串口通信程序的编写方法。
一、串口介绍串口是一种通信接口,用于在电子设备之间传输数据。
其主要特点是一条通信线路同时只能传输一位数据,因此称为串口。
串口和并口属于不同的通信接口标准。
串口的优点是具有通信距离远、传输速率快、可靠性高等优点,因此广泛应用于各种场合中。
串口有两种工作模式:同步模式和异步模式。
在实际应用中,异步串口通信更为常见。
二、异步串口通信原理在异步串口通信中,数据的传输是通过发送端和接收端的时钟信号不同步实现的。
在发送数据时,发送端会发出一个起始位,接下来是数据位,最后是一个或多个停止位。
在接收端,当检测到起始位时,开始接收数据。
根据通信协议,在接收完数据位后,接收端会判断是否正确,然后再结束本次通信。
1. 硬件连接在51单片机和电脑之间进行串口通信,需要用到串口转USB线。
将串口转USB线的TxD接口与51单片机的P3.1接口相连,RxD接口与P3.0接口相连。
此外,需要一个5V的电源供给51单片机。
2. 准备工作在编写程序之前,需要进行一些准备工作:(1)将P3口设为外部中断P3口的最低2位是外部中断的2个输入端,需要将它们设为中断输入。
EA=1;EX0=1;(2)设置波特率串口通信需要设置波特率。
常见的波特率有9600、19200、38400等。
对应的波特率常数为0xFD、0xFA、0xF4等。
TH1=0xFD;//波特率9600(3)使能串口中断在发送和接收数据时,会不断产生中断,需要将中断使能。
ES=1;//允许串口中断3. 编写程序(1)发送数据void SendData(unsigned char SendBuff[],unsigned int ULength){unsigned int i;for(i=0;i<ULength;i++){SBUF=SendBuff[i];//发送数据while(TI==0); //等待,直到发送完成TI=0;}}(2)接收数据(3)主函数TMOD|=0x20;//定时器1工作方式2TH1=0xFD;//波特率9600TR1=1;//打开定时器1SCON=0x50;//串口方式1,8位数据,无校验,1停止位EA=1;//开总中断ES=1;//开串口中断while(1){SendData(pSendData,4);//发送数据 RecvData(pRecvData,4);//接收数据if(pRecvData[0]=='K'){P0=0x01;//点亮LED}else{P0=0x00;//关闭LED}}}四、总结。