2016届高考数学理一轮总复习第2章函数、导数及其应用练习6(含解析)新人教A版
- 格式:doc
- 大小:68.00 KB
- 文档页数:2
第二单元 函数与导数B1 函数及其表示5.B1[2016·江苏卷] 函数y =3-2x -x 2的定义域是________.5.[-3,1] [解析] 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为[-3,1].11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.B2 反函数5.B2[2016·上海卷] 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.5.log 2(x -1),x ∈(1,+∞) [解析] 将点(3,9)的坐标代入函数f (x )的解析式得a =2,所以f (x )=1+2x ,所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B4 函数的奇偶性与周期性 11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.14.B4[2016·四川卷] 已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f -52+f (1)=________.14.-2 [解析] 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 因为f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0. 又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f 12=412=2, 所以f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2. 9.B4[2016·山东卷] 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,fx +12=fx -12.则f (6)=( )A .-2B .-1C .0D .29.D [解析] ∵当x >12时,f (x +12)=f (x -12),∴f (x )的周期为1,则f (6)=f (1).又∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又∵当x <0时,f (x )=x 3-1,∴f (-1)=(-1)3-1=-2,∴f (6)=-f (-1)=2.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B5 二次函数B6 指数与指数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.6.B6[2016·全国卷Ⅲ] 已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.A [解析] b =425=245<243=a ,c =523>423=243=a ,故b <a <c .12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B7 对数与对数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立. 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .9.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)9.A [解析] 不妨设P 1(x 1,y 1),P 2(x 2,y 2),其中0<x 1<1<x 2.由l 1,l 2分别是点P 1,P 2处的切线,且f ′(x )=⎩⎨⎧-1x ,0<x <1,1x ,x >1,得l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以k 1·k 2=-1x 1·1x 2=-1⇒x 1·x 2=1,l 1:y =-1x 1(x -x 1)-ln x 1①,l 2:y =1x 2(x -x 2)+ln x 2②,则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2), 由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立①②两式可解得交点P 的横坐标x P =2-ln (x 1x 2)x 1+x 2=2x 1+x 2,所以S △P AB =12|AB |·|x P |=12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A.12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B8 幂函数与函数的图像 7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.12.B8[2016·全国卷Ⅱ] 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(x i +y i )=( )A .0B .mC .2mD .4m12.B [解析] 由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y =x +1x =1+1x的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i ,y i )和(x′i ,y′i )均满足x i +x′i =0,y i +y′i =2,∴=0+2·m2=m.B9 函数与方程19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.15.B9[2016·山东卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) [解析] 画出函数f (x )的图像如图所示,根据已知得m >4m -m 2,又m >0,解得m >3,故实数 m 的取值范围是(3,+∞).B10 函数模型及其应用 B11 导数及其运算21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a ,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).B12 导数的应用14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.17.G1、G7、B12[2016·江苏卷] 形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m17.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO 1=2 3 m19.B6、B9、B12[2016·江苏卷] x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.21.B12[2016·全国卷Ⅰ] 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.21.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (i)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(ii)设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,故f (x )存在两个零点.(iii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1.故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞) 时,f ′(x )>0.因此f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0, 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).16.B12[2016·全国卷Ⅱ] 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.16.1-ln 2 [解析] 曲线y =ln x +2的切线为y =1x 1·x +ln x 1+1(其中x 1为切点横坐标),曲线y =ln(x +1)的切线为y =1x 2+1·x +ln(x 2+1)-x 2x 2+1(其中x 2为切点横坐标).由题可知⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.21.B12[2016·全国卷Ⅱ] (1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.21.解:(1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明:g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3[f (x )+a ].由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0,因此,存在唯一x a ∈(0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为 g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x a +1)x 2a =e x ax a +2, 于是h (a )=e x a x a +2.由e x x +2′=(x +1)e x (x +2)2>0(x >0),可知y =e xx +2(x >0)单调递增,所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为y =e x x +2单调递增,对任意λ∈(12,e 24],存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ,所以h (a )的值域是(12,e 24].综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是(12,e 24].10.B12[2016·山东卷] 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A [解析] 由函数图像上两点处的切线互相垂直,可知函数在这两点处的导数之积为-1,经检验,选项A 符合题意.20.B12,B14[2016·山东卷] 已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增,若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3(x -2a )(x +2a). (i)当0<a <2时,2a>1. 当x ∈(0,1)或x ∈(2a,+∞)时,f ′(x )>0,f (x )单调递增. 当x ∈(1,2a)时,f ′(x )<0,f (x )单调递减. (ii)当a =2时,2a =1,在区间(0,+∞)内,f ′(x )≥0,f (x )单调递增. (iii)当a >2时,0<2a<1. 当x ∈(0,2a)或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈2a,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增;当a =2时,f (x )在(0,+∞)上单调递增;当a >2时,f (x )在(0,2a)上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-(1-1x -2x 2+2x 3)=x -ln x +3x +1x 2-2x 3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在[1,2]上单调递减. 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得当x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)上单调递增,在(x 0,2)上单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.B12[2016·天津卷] 设函数f (x )=(x -1)3-ax -b ,x ∈R ,其中a ,b ∈R . (1)求f (x )的单调区间;(2)若f (x )存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (3)设a >0,函数g (x )=|f (x )|,求证:g (x )在区间[0,2]上的最大值不小于14.20.解:(1)由f (x )=(x -1)3-ax -b ,可得f ′(x )=3(x -1)2-a . 下面分两种情况讨论: (i)当a ≤0时,有f ′(x )=3(x -1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞). (ii)当a >0时,令f ′(x )=0,解得x =1+3a 3或x =1-3a3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递减区间为(1-3a 3,1+3a 3),单调递增区间为(-∞,1-3a 3),(1+3a3,+∞). (2)证明:因为f (x )存在极值点,所以由(1)知a >0,且x 0≠1.由题意,得f ′(x 0)=3(x 0-1)2-a =0,即(x 0-1)2=a 3,进而f (x 0)=(x 0-1)3-ax 0-b =-2a 3x 0-a3-b .又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b =8a 3(1-x 0)+2ax 0-3a -b =-2a 3x 0-a3-b =f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.(3)证明:设g (x )在区间[0,2]上的最大值为M ,max{x ,y }表示x ,y 两数的最大值.下面分三种情况讨论:(i)当a ≥3时,1-3a 3≤0<2≤1+3a 3,由(1)知,f (x )在区间[0,2]上单调递减,所以f (x )在区间[0,2]上的取值范围为[f (2),f (0)],因此M =max{|f (2)|,|f (0)|}=max{|1-2a -b |,|-1-b |}=max{|a -1+(a +b )|,|a -1-(a +b )|}=⎩⎪⎨⎪⎧a -1+(a +b ),a +b ≥0,a -1-(a +b ),a +b <0, 所以M =a -1+|a +b |≥2.(ii)当34≤a <3时,1-23a 3≤0<1-3a 3<1+3a 3<2≤1+23a 3.由(1)和(2)知f (0)≥f (1-23a 3)=f (1+3a 3),f (2)≤f (1+23a 3)=f (1-3a 3),所以f (x )在区间[0,2]上的取值范围为[f (1+3a 3),f (1-3a3)], 因此M =max{|f(1+3a 3)|,|f (1-3a 3)|=max ⎩⎨⎧⎭⎬⎫-2a 93a -a -b ,2a 93a -a -b = max ⎩⎨⎧⎭⎬⎫2a 93a +(a +b ),2a 93a -(a +b )=2a 93a +|a +b |≥29×34×3×34=14. (iii)当0<a <34时,0<1-23a 3<1+23a 3<2,由(1)和(2)知f (0)<f (1-23a 3)=f (1+3a3),f (2)>f (1+23a 3)=f (1-3a3).所以f (x )在区间[0,2]上的取值范围为[f (0),f (2)],因此M =max{|f (0)|,|f (2)|}=max{|-1-b |,|1-2a -b |}=max{|1-a +(a +b )|,|1-a -(a +b )|}=1-a +|a +b |>14.综上所述,当a >0时,g (x )在区间[0,2]上的最大值不小于14.03[2016·浙江卷]“复数与导数”模块(1)已知i 为虚数单位.若复数z 满足(z +i)2=2i ,求复数z . (2)求曲线y =2x 2-ln x 在点(1,2)处的切线方程. 解:(1)设复数z =a +b i ,a ,b ∈R ,由题意得 a 2-(b +1)2+2a (b +1)i =2i ,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-1,b =-2. 故z =1或z =-1-2i.(2)由于(2x 2-ln x )′=4x -1x,则曲线在点(1,2)处的切线的斜率为3.因此,曲线在点(1,2)处的切线方程为y =3x -1. B13 定积分与微积分基本定理 B14 单元综合18.B14[2016·北京卷] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.18.解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞). 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 15.B14[2016·四川卷] 在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号).15.②③ [解析] ①设点A 的坐标为(x ,y ),则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,故。
自主园地备考套餐加固训练练透考点1.给出下列结论:①当a<0时,(a2)32=a3;②na n=|a|(n>1,n∈N*,n为偶数);③函数f(x)=(x-2)12-(3x-7)0的定义域是{x|x≥2,且x≠73};④若2x=16,3y=127,则x+y=7.其中正确的是()A.①②B.②③C.③④D.②④解析:(a2)32>0,a3<0,故①错,∵2x=16,∴x=4,∵3y=127,∴y=-3.∴x+y=4+(-3)=1,故④错.答案:B2.已知f(x)=3x-b(2≤x≤4,b为常数)的图像经过点(2,1),则f(x)的值域()A.[9,81] B.[3,9]C. [1,9] D.[1,+∞)解析:由f(x)过定点(2,1)可知b=2,因f(x)=3x-2在[2,4]上是增函数,可知C正确.答案:C3.设函数f(x)=a-|x|(a>0,且a≠1),f(2)=4,则()A. f (-2)>f (-1)B. f (-1)>f (-2)C. f (1)>f (2)D. f (-2)<f (2)解析:∵f (2)=4,∴a -|2|=4,a =12,∴f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |,则函数f (x )为偶函数,x ≥0时,递增,x <0时,递减,故选A 项.答案:A4.函数y =⎝ ⎛⎭⎪⎫12 2x -x 2 的值域为( ) A. ⎣⎢⎡⎭⎪⎫12,+∞ B. ⎝ ⎛⎦⎥⎤-∞,12 C. ⎝ ⎛⎦⎥⎤0,12 D. (0,2] 解析:令t =2x -x 2=-(x -1)2+1≤1,∴⎝ ⎛⎭⎪⎫12t ≥12. ∴y =⎝ ⎛⎭⎪⎫122x -x 2 的值域为⎣⎢⎡⎭⎪⎫12,+∞,故选A 项. 答案:A5.函数y =a 1-x (a >0,a ≠1)的图像恒过定点A ,若点A 在直线mx+ny -1=0(mn >0)上,则1m +1n 的最小值为__________.解析:由题易知,定点为(1,1),所以m +n =1,1m +1n =m +n m +m +n n=n m +m n +2≥2+2=4(当且仅当m =n =12时等号成立).答案:4。
限时·规范·特训[A 级 基础达标]1. [2014·天津高考]设a =log 2π,b =log 12π,c =π-2,则( )A. a >b >cB. b >a >cC. a >c >bD. c >b >a解析:∵π>3,∴a =log 2π>1,b =log 12π<0,0<c =π-2=1π2<1,故a >c >b ,选C.答案:C2. 函数y =ln(1-x )的大致图象为( )解析:y 的定义域为(-∞,1),且y 在定义域上为减函数,故选C.答案:C3. 函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( )A. (1,+∞)B. (0,1)C. ⎝ ⎛⎭⎪⎫0,13 D. (3,+∞)解析:由于a >0,且a ≠1,∴u =ax -3为增函数, ∴若函数f (x )为增函数,则f (x )=log a u 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D. 答案:D4. [2015·金版原创]函数y =log 13(-x 2+6x )的值域( )A. (0,6)B. (-∞,-2]C. [-2,0)D. [-2,+∞)解析:∵-x 2+6x =-(x -3)2+9, ∴0<-x 2+6x ≤9, ∴y ≥log 139=-2,故选D.答案:D5. 若log a (a 2+1)<log a (2a )<0,则a 的取值范围是( ) A. (0,1)B. ⎝⎛⎭⎪⎫0,12C. ⎝⎛⎭⎪⎫12,1 D. (0,1)∪(1,+∞)解析:∵a 2+1>1,又log a (a 2+1)<0,∴0<a <1, 又log a (a 2+1)<log a (2a )<0,∴⎩⎪⎨⎪⎧a 2+1>2a ,2a >1,∴a >12且a ≠1. 所以12<a <1,故选C. 答案:C6. [2014·四川高考]已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( )A. d =acB. a =cdC. c =adD. d =a +c解析:log 5b =a ,b >0,故由换底公式得lg blg5=a ,∴lg b =a lg5.∵lg b =c ,∴a lg5=c ,又∵5d=10,∴d =log 510,即1d =lg5,将其代入a lg5=c 中得ad =c ,即a =cd .答案:B7. 设2a=5b=m ,且1a +1b =2,则m =________.解析:由2a =5b =m , 得a =log 2m ,b =log 5m , 又1a +1b =2,即1log 2m +1log 5m =2,∴lg2lg m +lg5lg m =2,∴lg2+lg5lg m =lg10lg m =1lg m =2, 即m =10. 答案:108. [2015·河北石家庄质检]若函数f (x )= ⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≤1,log 2x ,x >1,则f (x )≥2的解集为________.解析:x ≤1时,由⎝ ⎛⎭⎪⎫12x ≥2=⎝ ⎛⎭⎪⎫12-1, 得x ≤-1.当x >1时,log 2x ≥2=log 24, 得x ≥4.不等式f (x )≥2的解集为(-∞,-1]∪[4,+∞). 答案:(-∞,-1]∪[4,+∞)9. [2015·西安模拟]已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 1gx )>0的解集为________.解析:∵f (x )是R 上的偶函数, ∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数,由f ⎝ ⎛⎭⎪⎫13=0,得f ⎝⎛⎭⎪⎫-13=0.∴f (log 1gx )>0⇒log 1gx <-13或log 1gx >13⇒x >2或0<x <12,∴x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).答案:⎝ ⎛⎭⎪⎫0,12∪(2,+∞)10. 已知lg x +lg y =2lg(2x -3y ),求log 32xy 的值. 解:依题意可得:lg(xy )=lg(2x -3y )2, 即xy =(2x -3y )2,整理得:4(x y )2-13(xy )+9=0, 解得:x y =1或x y =94, ∵x >0,y >0,2x -3y >0, ∴x y =94,∴log 32x y =2.11. [2015·长春模拟]设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12. [2015·山东青岛模拟]已知函数f (x )=log 12(x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围. 解:(1)由题意可知,x 2-2ax +3=0的两根为x 1=1, x 2=3,∴x 1+x 2=2a ,∴a =2. (2)因为函数f (x )的值域(-∞,-1],则 f (x )max =-1,所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2,得3-a 2=2, 所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,有y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2.所以实数a 的取值范围是[1,2).[B 级 知能提升]1. 设a =log 32,b =ln2,c =5-12,则( )A. a <b <cB. b <c <aC. c <a <bD. c <b <a解析:∵12<log 32<ln2ln3<ln2,而c =5-12=15<12,∴c <a <b . 答案:C2. [2014·重庆高考]函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:显然x >0,∴f (x )=log 2x ·log 2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝ ⎛⎭⎪⎫log 2x +122-14≥-14.当且仅当x =22时,有f (x )min =-14.答案:-143. [2015·中山模拟]已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1, 解之得1<a <83,若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,所以a >4,且a <4,故不存在. 综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.答案:⎝ ⎛⎭⎪⎫1,83 4.[2015·商丘模拟]已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.解:∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图知,要使x ∈[13,2]时恒有|f (x )|≤1, 只需|f (13)|≤1, 即-1≤log a 13≤1, 即log a a -1≤log a 13≤log a a .当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是(0,13]∪[3,+∞).。
高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文【最新考纲】 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数.1.对数的概念如果a x=N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b(a >0,且a≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a≠1,M >0,N >0,那么:①log a (M·N)=log a M +log a N ,②log a M N =log a M -log a N ,③log a M n=nlog a M (n∈R).3.对数函数的定义、图象与性质4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )答案:(1)×(2)×(3)×(4)√2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由图象可知y =log a (x +c)的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.答案:D3.(2015·四川卷)lg 0.01+log 216的值是________. 解析:lg 0.01+log 216=lg 1100+log 224=-2+4=2. 答案:24.(2015·北京卷)2-3,312,log 25三个数中最大的数是________.解析:因为2-3=123=18<1,1<312=3<2,log 25>log 24=2,所以三个数中最大的数是lo g 25. 答案:log 255.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2). 答案:(-∞,2)两种关系1.a b=N ⇔log a N =b(a >0,a ≠1,N >0).2.指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.两点注意1.在无M >0的条件下,log a M n=nlog a |M|(n∈N *,且n 为偶数).2.解决与对数函数有关的问题时,务必先研究函数的定义域.对数函数的单调性取决于底数a ,应注意底数的取值范围.两类方法1.对数值的大小比较方法:(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化为同真数后利用图象比较.2.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定.一、选择题1.2lg 2-lg 125的值为( )A .1B .2C .3D .4 解析:2lg 2-lg 125=lg ⎝ ⎛⎭⎪⎫22÷125=lg 100=2.答案:B2.(2016·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c解析:因为312>1,0<log 1312<1,c =log 213<0所以a >b >c. 答案:A4.函数f(x)=lg 1|x +1|的大致图象为( )解析:f(x)=lg 1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x|的图象左移1个单位得到.由y =-lg|x|的图象可知选D. 答案:D5.(2016·唐山统考)已知f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12解析:要使函数f(x)的值域为R ,则有⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a<12.答案:C 6.设f(x)=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:由f(x)是奇函数可得a =-1, ∴f(x)=lg 1+x1-x 的定义域为(-1,1).由f(x)<0,可得0<1+x1-x <1,解得-1<x <0.答案:A二、填空题7.(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278.答案:2788.函数y =log 12(x 2-6x +17)的值域是________.解析:x 2-6x +17=(x -3)2+8≥8,则y≤log 128=-3,即函数的值域为(-∞,-3].答案:(-∞,-3]9.(2015·天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b)取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b)=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a)=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b)取得最大值4. 答案:4 三、解答题10.已知函数f(x)=log a (x +1)-log a (1-x),a >0且a ≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)若a >1时,求使f(x)>0的x 的取值集合. 解:(1)f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f(x)的定义域为{x|-1<x <1}. (2)由(1)知f(x)的定义域为{x|-1<x <1}, 且f(-x)=log a (-x +1)-log a (1+x) =-[log a (x +1)-log a (1-x)]=-f(x), 故f(x)为奇函数.(3)因为当a >1时,f(x)在定义域{x|-1<x <1}内是增函数,所以f(x)>0⇔x +11-x >1,解得0<x <1.所以使f(x)>0的x 的解集是{x|0<x <1}.11.设x∈[2,8]时,函数f(x)=12log a (ax)·log a (a 2x)(a >0,且a≠1)的最大值是1,最小值是-18,求a 的值.解:由题意知f(x)=12(log a x +1)·(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f(x)取最小值-18时,log a x =-32,又∵x∈[2,8],∴a ∈(0,1). ∵f(x)是关于log a x 的二次函数,∴函数f(x)的最大值必在x =2或x =8时取得. ①若12(log a 2+32)2-18=1,则a =2-13,此时f(x)取得最小值,x =(2-13)-32=2∉[2,8],舍去.②若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。
课后限时自测[A 级 基础达标练]一、选择题1.(2015·潍坊模拟)方程x 3-6x 2+9x -10=0的实根个数是( )A .3B .2C .1D .0[解析] 设f(x)=x 3-6x 2+9x -10,f ′(x)=3x 2-12x +9=3(x -1)(x -3),由此可知函数的极大值为f(1)=-6<0,极小值为f(3)=-10<0,所以方程x 3-6x 2+9x -10=0的实根个数为1个.[答案] C2.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的年关系是R =R(x)=⎩⎨⎧400x -12x 2,(0≤x ≤400),80 000,(x>400),则总利润最大时,年产量是( )A .100B .150C .200D .300[解析] 由题意,总成本函数C =C(x)=20 000+100 x ,总利润P(x)=⎩⎨⎧300x -x 22-20 000,(0≤x ≤400),60 000-100x ,(x>400),又P′(x)=⎩⎪⎨⎪⎧300-x ,(0≤x ≤400),-100,(x>400),令P′(x)=0,得x =300,则x =300时,总利润P(x)最大.[答案] D3.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf ′(x)+f(x)≤0,对任意正数a ,b ,若a<b ,则必有( )A .af(b)≤bf(a)B .bf(a)≤af(b)C .af(a)≤f(b)D .bf(b)≤f(a)[解析] ∵xf′(x)≤-f(x),f(x)≥0,∴⎝ ⎛⎭⎪⎫f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0. 则函数f (x )x 在(0,+∞)上是单调递减的,由于0<a<b ,则f (a )a≥f (b )b .即af(b)≤bf(a).[答案] A4.若函数f(x)=x x 2+a(a>0)在[1,+∞)上的最大值为33,则a 的值为( )A .33B . 3C .3+1D .3-1[解析] 由题意知,f′(x)=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2, 当x>a 时,f ′(x)<0,f(x)单调递减; 当-a<x<a 时,f ′(x)>0,f(x)单调递增;当x =a 时,令f(x)=a 2a =33,a =32<1,不合题意.∴f(x)max =f(1)=11+a =33,a =3-1. [答案] D5.(2014·辽宁高考)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3][解析] 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max. 设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min. 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈[-2,-1)时,φ′(x )<0;当x ∈(-1,0)时,φ′(x )>0. ∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2, ∴a ≤-2.综上知-6≤a ≤-2.[答案] C二、填空题6.(2015·济南模拟)若函数f(x)=x 3-3x +a 有三个不同的零点,则实数a 的取值范围是________.[解析] 由f(x)=x 3-3x +a ,得f′(x)=3x 2-3,由f ′(x)=3x 2-3=0,得x =±1,f 极大值(-1)=2+a ,f 极小值(1)=a -2,要使函数f(x)=x 3-3x +a 有三个不同的零点,则有f 极大值(-1)=2+a>0,f 极小值(1)=a -2<0,即-2<a<2,所以实数a 的取值范围是(-2,2).[答案] (-2,2)7.函数f(x)=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f(x 1)-f(x 2)|≤t ,则实数t 的最小值是________.[解析] f′(x)=3x 2-3=3(x -1)(x +1),令f′(x)=0,得x =-1或x =1.当-3≤x<-1或1<x ≤2时,f ′(x)>0;当-1<x<1时,f ′(x)<0. ∴当x =-1时,f(x)有极大值f(-1)=1;当x =1时,f(x)有极小值f(1)=-3.又f(-3)=-19,f(2)=1.因此f(x)在[-3,2]上的最大值f(x)max =1,最小值f(x)min =-19. 又|f(x 1)-f(x 2)|≤f(x)max -f(x)min =20,∴应有t ≥20,即t 的最小值为20.[答案] 208.设动直线x =m 与函数f(x)=x 2,g(x)=ln x 的图象分别交于点M ,N ,则|MN|的最小值为________.[解析] |MN|=x 2-ln x ,令f(x)=x 2-ln x ,f ′(x)=2x -1x =2x 2-1x ,当0<x<22时,f ′(x)<0;当x>22时,f ′(x)>0;∴当x =22时,f(x)有极小值也就是最小值,即f(x)min =f ⎝ ⎛⎭⎪⎫22=12-ln 12=12+12ln 2. [答案] 12+12ln 2三、解答题9.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲,乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?[解] (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×⎝ ⎛⎭⎪⎫1128 000×403-380×40+8=17.5(升). 因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h(x)升,依题意得h(x)=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8·100x =11 280x 2+800x -154(0<x ≤120),h ′(x)=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h′(x)=0,得x =80.当x ∈(0,80)时,h ′(x)<0,h(x)是减函数;当x ∈(80,120)时,h ′(x)>0,h(x)是增函数,∴当x =80时,h(x)取得极小值h(80)=11.25.易知h(80)是h(x)在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.10.(2015·天津模拟)已知函数f(x)=13x 3+1-a 2x 2-ax -a ,x ∈R ,其中a >0.(1)求函数f (x )的单调区间;(2)若函数f (x )在区间(-2,0)内恰有两个零点,求a 的取值范围.[解] (1)由题意得,f ′(x )=x 2+(1-a )x -a =(x +1)(x -a ).由f ′(x )=0,得x 1=-1,x 2=a >0.当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的单调递增区间是(-∞,-1),(a ,+∞);单调递减区间是(-1,a ).(2)由(1)知f (x )在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f (x )在区间(-2,0)内恰有两个零点当且仅当⎩⎪⎨⎪⎧f (-2)<0,f (-1)>0,f (0)<0.解得0<a <13. 所以a 的取值范围是⎝ ⎛⎭⎪⎫0,13.[B 级 能力提升练]1.(2014·课标全国卷Ⅰ)已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)[解析] 由题意可知,f ′(x)=3ax 2-6x ,当a =3时,f ′(x)=9x 2-6x =3x(3x -2),则当x ∈(-∞,0)时,f ′(x)>0;图(1)x ∈⎝ ⎛⎭⎪⎫0,23时,f ′(x)<0,x ∈⎝ ⎛⎭⎪⎫23,+∞时,f ′(x)>0. 注意f(0)=1,f ⎝ ⎛⎭⎪⎫23=59>0,则f(x)的大致图象如图(1)所示.排除A 、C .图(2)当a =-43时,f ′(x)=-4x 2-6x =-2x(2x +3),则当x ∈⎝ ⎛⎭⎪⎫-∞,-32时,f ′(x)<0;x ∈⎝ ⎛⎭⎪⎫-32,0时,f ′(x)>0;x ∈(0,+∞)时,f ′(x)<0,注意f(0)=1,f ⎝ ⎛⎭⎪⎫-32=-54,则f(x)的大致图象如图(2)所示.排除D .[答案] B2.已知f(x)=x e x ,g(x)=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________.[解析] 由题意得,f ′(x )=e x +x e x =e x (1+x ),当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e .又函数g (x )的最大值为a ,则由题意,得-1e ≤a 即a ≥-1e .[答案] ⎣⎢⎡⎭⎪⎫-1e ,+∞ 3.(2014·山东高考)设函数f(x)=e xx 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围.[解] (1)函数y =f(x)的定义域为(0,+∞).f ′(x)=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3. 由k ≤0可得e x -kx>0,所以当x ∈(0,2)时,f ′(x)<0,函数y =f(x)单调递减;当x ∈(2,+∞)时,f′(x)>0,函数y =f(x)单调递增.所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,k ≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x -kx ,x ∈[0,+∞).因为g′(x)=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x)=e x -k>0,y =g(x)单调递增. 故f(x)在(0,2)内不存在两个极值点.当k>1时,得x ∈(0,ln k)时,g ′(x)<0,函数y =g(x)单调递减; x ∈(ln k ,+∞)时,g ′(x)>0,函数y =g(x)单调递增. 所以函数y =g(x)的最小值为g(ln k)=k(1-ln k).函数f(x)在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k<2,解得e <k<e 22.综上所述,函数f(x)在(0,2)内存在两个极值点时,k 的取值范围为⎝ ⎛⎭⎪⎫e ,e 22.。
第2章 函数、导数及其应用练习6
1.已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg2)+f ⎝ ⎛⎭
⎪⎫lg 12=( ) A .-1 B .0 C .1 D .2
解析:∵f (x )=ln(1+9x 2-3x )+1,
∴f (-x )=ln(1+9x 2+3x )+1.
∴f (x )+f (-x )=ln1+1+1=2.
又lg 12=-lg2,∴f (lg2)+f ⎝ ⎛⎭
⎪⎫lg 12=2,故选D 项. 答案:D
2.函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为( )
A .3个
B .2个
C .1个
D .0个
解析:设f (x )与g (x )图像的交点坐标为(x ,y ),
则y =2ln x ,y =x 2-4x +5,联立得2ln x =x 2-4x +5,令h (x )=x 2-4x +5-2ln x (x >0),
由h ′(x )=2x -4-2x
=0,得x 1=1+2,x 2=1-2(舍). 当h ′(x )<0时,即x ∈(0,1+2)时,h (x )单调递减;
当h ′(x )>0,即x ∈(1+2,+∞)时,h (x )单调递增.
又∵h (1)=2>0,h (2)=1-2ln2<0,h (4)=5-2ln4>0,
∴h (x )与x 轴必有两个交点,故选B 项.
答案:B
3.若实数t 满足f (t )=-t ,则称t 是函数f (x )的一个次不动点.设函数f (x )=ln x 与函数g (x )=e x (其中e 为自然对数的底数)的所有次不动点之和为m ,则( )
A .m <0
B .m =0
C .0<m <1
D .m >1 解析:函数f (x )=ln x 与函数g (x )=e x 互为反函数,则它们的图像关于直线y =x 对称,
而函数f (x )=ln x 与函数g (x )=e x
各自的次不动点均在直线y =-x 上,所以m =0.
答案:B 4.已知函数f (x )=⎝ ⎛⎭
⎪⎫13x -log 2x ,实数a ,b ,c 满足f (a )·f (b )·f (c )<0(0<a <b <c ),若实数x 0为方程f (x )=0的一个解,那么下列不等式中,不可能成立的是( )
A .x 0<a
B .x 0>b
C .x 0<c
D .x 0>c
解析:易知f (x )在(0,+∞)上是减函数.由0<a <b <c ,知f (a )>f (b )>f (c ). 又f (a )·f (b )·f (c )<0,故f (c )<0,从而f (a )·f (b )>0.
又f (x )的图像在(0,+∞)上是一条连续不断的曲线,故x 0>c 不可能成立.选D. 答案:D
5.设a >0且a ≠1,函数f (x )=a lg(x 2
-2x +3)
有最大值,则不等式log a (x 2-5x +7)>0
的解集为__________.
解析:∵函数y =lg(x 2-2x +3)有最小值,f (x )=a lg(x 2-2x +3)
有最大值,∴0<a <1.
∴由log a (x 2-5x +7)>0,得0<x 2-5x +7<1,解得2<x <3.
∴不等式log a (x 2-5x +7)>0的解集为(2,3).
答案:(2,3)。