九年级数学下册知识点总结知识讲解
- 格式:doc
- 大小:522.50 KB
- 文档页数:7
人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。
另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。
二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。
2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。
3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
图像关于直线y=x和y=-x对称。
4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。
第28章锐角三角函数【思维导图】28.1锐角三角函数【知识点】1.Rt△ABC中,∠C=90°.(1)∠A的对边与斜边比,叫做∠A的正弦,记为sinA,即sinA=∠A的对边斜边=aa(2)∠A的邻边与斜边比,叫做∠A的余弦,记为cosA,即cosA=∠A的邻边斜边=aa(3)∠A的对边与邻边比,叫做∠A的正切,记为tanA,即tanA=∠A的对边∠A的邻边=aa∠A的正弦、余弦、正切统称为∠A的锐角三角函数.提示:sin A 不是sin与A的乘积,而是一个整体,cosA和tanA同理;锐角三角函数的三种表示方法:sin A,sin 56°,sin∠DEF.2.一个锐角的三角函数值是一个比值,它与三角形的大小无关,它没有单位.在Rt△ABC中,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的锐角三角函数值为定值.锐角三角函数锐角α30°45°60°sin α12√22√32cos α√32√2212tan α√331√3(1)正弦值、正切值随角度的增大而增大,余弦值随角度的增大而减小.(2)sin α=cos(90°-α)cos α=sin(90°-α)tan α·tan(90°-α)=1(3)锐角A 的正弦、余弦的取值范围分别为:0<sin A<1,0<cos A<1, (4)cos 2A+sin 2A=1 sin 2A+sin 2(90°-α)=1(5)tan A=sin A cos A4.锐角三角函数值是个常数值,它只与角的度数有关,将来离开了直角三角形也存在.5.若α=45°,则sin α=cos α; 若α<45°,则sin α<cos α; 若α>45°,则sin α>cos α;28.2解直角三角形及其应用 28.2.1 解直角三角形【知识点】1.在直角三角形中,由已知元素求出其余未知元素的过程就是解直角三角形.2.在直角三角形中,三边之间的关系是a 2+b 2=c 2(勾股定理); 两锐角之间的关系是∠A+∠B=90° 边角之间的关系有sinA=∠A 的对边斜边,cosA=∠A 的邻边斜边,tanA=∠A 的对边∠A 的邻边3.在直角三角形的六个元素中,除直角外的五个元素只要知道其中的两个元素,就可以求出其余三个元素,其中至少有一个是边.4.在Rt △ABC 中,∠C=90°,若已知∠A=α,AB=c ,较简便的方法是用正弦求出BC ,用余弦求出AC ,也可用勾股定理求出AC ,根据直角三角形的两锐角互余求出∠B.单元练习一、选择题1.已知∠α为锐角,且sin a=12,则∠α=( )A.30°B.45°C.60°D.90°2.sin 60°的相反数是( )A.-12B.−√33C.−√32D.−√223.如图,在∠ABC中,∠B=90°,BC=2AB,则cosA的值为( )A.52B.12C.255D.554.如图,在4×5 的正方形网格中,每个小正方形的边长都是1,∠ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB 的值为( )A.3√55B.√175C. 35D. 455.在∠ABC中,∠A,∠B均为锐角,且|2sin A-1|与(cos a-√22)2互为相反数,则∠C的度数是( )A.45°B.75°C.105°D.120°6.如图,在∠ABC中,∠C=90°,AB=15,sinB=35,则AC的长为( )A.3 B.9 C.4 D.127.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪的高A D为1.5米,则铁塔的高BC为( )A.(1.5+150tanα)米a.(1.5+150tan a)米C.(1.5+150sinα)米a.(1.5+150sin a)米8.在Rt∠ABC 中,∠C=90°,AB=2BC,则cos A 的值为 ( ) A.√32 B .12 C .√33 D .√229.如图,在∠ABC 中,CA =CB =4,cosC =14 ,则sinB 的值为( )A.102 B .153 C .64 D .10410.如图,电线杆CD 的高度为h ,两根拉线 AC 与BC 相互垂直,∠CAB=α,则拉线 BC 的长度为(点 A,D,B 在同一条直线上)( ) a .asin a a .acos a a .atan a D. h·cosα11.定义一种运算:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β.例如:当α=60°,β=45°时,cos(60°-45°)=12×√22+√32×√22=√2+√64,则cos 75°的值为 ( )A.√6+√24 B .√6-√24C.√6-√22 D .√6+√2212.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则cos∠ADC 的值为( )A .21313B .31313C .23D .53 二、填空题,则cos B=_______.13.在∠ABC中, aa=90°,tan a=√3314.已知α为锐角,当无意义时,cos α的值是_______.√3tan a-115.如图,在Rt∠ABC中,∠ACB=90°,CD∠AB,垂足为D,若AC= 5 ,BC =2,则sin∠ACD的值为_________.16.某物体沿着坡比为4:3的坡面上升了8米,那么在坡面上移动了_______米.17.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点,正方形ABCD的边长为8,则BH的长为_______.H,tan∠ABG=1218.如图,在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是_________.三、解答题19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50 cm,∠AB C=47°.(1)求车位锁的底盒BC的长;(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位? (参考数据:aaa47°≈0.73,aaa47°≈0.68,aaa47°≈1.07)20.某景区为给游客提供更好的游览体验,拟在如图∠所示的景区内修建观光索道.其设计示意图如图∠所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为50 m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A、B两处的水平距离AE为576 m,DF∠AF,垂足为点F.(图∠中所有点都在同一平面内,点A、E、F 在同一水平线上)(1)求索道AB的长(结果精确到1 m);(2)求AF的长(结果精确到1 m).(参考数据:sin 15°≈0.25,cos 15°≈0.96,tan 15°≈0.26,√2≈1.41)21.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了450米,到达菜园B处锄草,再从B处沿正西方向到达果园C处采摘水果,再向南偏东37°方向走了300米,到达手工坊D处进行手工制作,最后从D处回到门口A处,手工坊在基地门口北偏西65°方向上,求菜园与果园之间的距离.(结果保留整数.参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。
九年级数学下册知识点九年级下册数学知识点归纳圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.....及a 都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求21P COBAPCO BADABC abccD。
九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。
在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。
数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。
通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。
希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
九年级数学下册各章知识点第一章:有理数1. 有理数的概念:有理数是整数和分数的统称,包括正数、零和负数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的加减法:通分后相加减。
4. 有理数的乘除法:同号异号相乘、除法转化为乘法求解。
5. 有理数的乘方:正数与负数的幂的性质。
第二章:代数式与方程1. 代数式的概念:包含有常数和变量,并且包含加减乘除等运算符号的式子。
2. 代数式的运算:常数与变量的运算、代数式的合并与展开。
3. 简单方程的解法:等式的转化与解方程。
4. 一元一次方程:含有一个未知数的一次方程的解法与应用。
5. 实际问题中的应用:运用方程进行实际问题的解答。
第三章:函数与图像1. 函数的概念:函数是自变量与因变量之间的关系,每个自变量对应唯一一个因变量。
2. 函数的表示:函数关系可以通过表格、图像、公式等形式表示。
3. 线性函数:函数图像为直线的函数。
4. 平方函数:函数图像为抛物线的函数。
5. 函数的最值:函数图像的最大值和最小值。
第四章:全等与相似1. 图形的基本概念:点、线、面及其性质。
2. 直线、射线、线段的比较:长度比较和角度比较。
3. 全等三角形:全等三角形的判定条件与性质。
4. 相似三角形:相似三角形的判定条件与性质。
5. 相似三角形的应用:运用相似三角形进行实际问题的解答。
第五章:平面图形的性质1. 四边形的性质:平行四边形、矩形、正方形、菱形等四边形的特殊性质。
2. 三角形的性质:等腰三角形、等边三角形等三角形的特殊性质。
3. 圆的性质:圆心角、圆内外切等与圆相关的性质。
4. 圆的应用:运用圆的性质解答实际问题。
5. 长方体与棱柱:长方体、正方体、棱柱的性质及计算表面积和体积。
第六章:统计与概率1. 统计调查:设计统计调查方案、收集数据、整理数据等。
2. 统计图表:直方图、折线图、饼图等图表的绘制与分析。
3. 概率的概念:事件发生的可能性。
4. 事件与概率:事件的概率计算、相互独立事件的概率计算等。
一、二次函数1.二次函数定义o二次函数(quadratic function)是指未知数的次数为二次的多项式函数,可以表示为f(x)=ax²+bx+c(a不为0)。
2.基本形式o一般式:y=ax²+bx+c (a≠0)o顶点式:y=a(x-h)²+k 或y=a(x+m)²+k(h, k为常数,a≠0)o交点式(与x轴):y=a(x-x1)(x-x2)3.重要概念o顶点坐标:(-b/2a, (4ac-b²)/4a)o开口方向:由a决定,a>0时开口向上,a<0时开口向下。
o开口大小:由|a|决定,|a|越大开口越小,|a|越小开口越大。
4.函数变化o当a>0时,x>0时y随x增大而增大;x<0时y随x增大而减小。
o当a<0时,x>0时y随x增大而减小;x<0时y随x增大而增大。
二、相似三角形1.相似三角形的定义o三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。
2.相似比o相似三角形的对应边的比叫作这两个三角形的相似比。
3.判定定理o如果两个三角形的两个角对应相等,则这两个三角形相似。
o如果两个三角形的两组对应边的比相等,并且相应的夹角相等,则这两个三角形相似。
o如果两个三角形的三组对应边的比相等,则这两个三角形相似。
o平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
4.特殊情况o两个等边三角形一定相似。
o两个等腰直角三角形一定相似。
5.相似三角形的性质o相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
o相似三角形周长的比等于相似比。
o相似三角形面积的比等于相似比的平方。
三、锐角三角函数1.基本概念o在直角三角形中,锐角的正弦(sin)、余弦(cos)和正切(tan)等称为锐角三角函数。
2.定义o正弦(sin):对边/斜边o余弦(cos):邻边/斜边o正切(tan):对边/邻边o余切(cot):邻边/对边3.特殊角的三角函数值o需要记忆如30°、45°、60°等特殊角的三角函数值。
图1九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
九年级下册数学知识点归纳一、实数与代数表达式1. 实数的概念与性质- 有理数与无理数的定义- 实数的四则运算规则- 绝对值的性质与计算- 实数的大小比较与不等式2. 代数表达式的运算- 单项式与多项式的概念- 多项式的加法、减法、乘法- 多项式的因式分解- 乘法公式的应用(平方差、完全平方等)3. 代数方程与不等式- 一元一次方程与一元二次方程的解法- 不等式的性质与解集表示- 线性不等式的图解法- 二元一次方程组的解法(代入法、消元法)二、平面几何1. 平行线与角- 平行线的判定与性质- 角的基本性质- 同位角、内错角、同旁内角的定义与性质2. 三角形的性质- 三角形的基本概念(边、角、高、中线等)- 等腰三角形与等边三角形的性质- 三角形的内角和外角性质- 三角形的面积计算公式3. 四边形的性质- 平行四边形、矩形、菱形、正方形的性质- 四边形的面积计算公式- 四边形的对角线性质4. 圆的性质- 圆的基本性质(圆心、半径、直径、弦、弧等)- 圆周角与圆心角的关系- 切线的性质与判定- 圆的面积与周长计算公式三、空间几何1. 立体图形的认识- 常见立体图形(棱柱、棱锥、圆柱、圆锥、球)的特征 - 立体图形的表面积与体积计算公式2. 空间图形的位置关系- 点、线、面在空间中的位置关系- 空间直线与平面的平行与垂直关系- 空间图形的相交与相切四、数列与数学归纳法1. 序列的概念与表示- 数列的定义与分类(等差数列、等比数列等)- 数列的通项公式与前n项和公式2. 数学归纳法的原理与应用- 数学归纳法的基本步骤- 利用数学归纳法证明等式、不等式- 数列的性质证明五、概率与统计1. 概率的基本概念- 随机事件的概率定义- 概率的加法原理与乘法原理- 条件概率与独立事件的概念2. 统计的基础知识- 数据的收集与整理- 频数分布表与直方图的绘制- 算术平均数、中位数、众数的计算以上是九年级下册数学的主要知识点归纳。
九年级下册知识点第一章 直角三角形边的关系1、正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=∠A 的对边/∠A 的邻边。
①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA=∠A 的对边/斜边;3、余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=∠A 的邻边/斜边;4、余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA=∠A 的邻边/∠A 的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则①sin A = cos(90°−∠A )等等。
6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。
(P4-13、P5-15,16、P10-11、P12-3)题6:计算:()3122101-+--⎪⎭⎫ ⎝⎛- + ︒⋅︒︒-︒60tan 30cos 60cos 45cot7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
0≤sinα≤1,0≤cosα≤1。
同角的三角函数间的关系:t αn α·c ot α=1,tan α=sinα/cosα,cotα=cosα/sinα,sin 2α+cos 2α=18、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有:(1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A +∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC 内接圆⊙O 的半径为(a+b-c)/2;(6)直角三角形△ABC 外接圆⊙O 的半径为c/2。
(P18-13、P16-例5、P19-15)题7:小红的运动服被一个铁钉划破一个呈直角三角形的洞,其中两边分别为1 cm 和2 cm ,若用同色形布将此洞全部遮盖,那么这个圆的直径最小应等于( )。
A .2 cmB .3 cmC .2 cm 或3 cmD .2 cm 或5cm题8:长为12 cm 的铁丝,围成边长为连续整数的直角三角形,则斜边上的中线为________cm 。
题9:如图2,河对岸有铁塔AB .在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高。
图2题10:已知:四边形ABCD 中,∠B =∠ADC =90°,AB =2、CD =1、∠A =60°,求:BC 。
图3第二章 二次函数 1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
自变量的取值范围是全体实数。
2、二次函数2ax y =的性质:(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴;(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点。
(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a 。
(P21-12)3、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线。
4、二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式, 其中ab ac k a b h 4422-=-=,。
5、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2。
6、抛物线的三要素:开口方向、对称轴、顶点。
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。
(P23-9,10)7、顶点决定抛物线的位置。
几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。
8、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=。
(P26-9) (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点。
注意:用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失。
题11:抛物线y =x 2+6x +4的顶点坐标是( )A .(3,-5)B .(-3,-5)C .(3,5)D .(-3,5)9、抛物线c bx ax y ++=2中,c b a ,,的作用(P29-例2,1,10)(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。
(2)b 和a 共同决定抛物线对称轴的位置。
由于抛物线c bx ax y ++=2的对称轴是直线。
a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧。
(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。
当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴。
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b 。
10、几种特殊的二次函数的图像特征如下:11、用待定系数法求二次函数的解析式(P32-12、P34-7,8、P37-2,4、P42-1,2、P51-例、P54-16)(1)一般式:c bx ax y ++=2。
已知图像上三点或三对x 、y 的值,通常选择一般式。
(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。
题12:已知关于x 的一元二次方程x 2-2(m -1)x +(m 2-1)=0,有两个实数根x 1、x 2,且x 12+x 22=4.求m 的值。
题13:先化简,再求值:225632111333x x x x x x -+⎛⎫⎛⎫÷-+ ⎪⎪+--⎝⎭⎝⎭ ,其中x =3题14:在平面直角坐标系中,B (3+1,0),点A 在第一象限内,且∠AOB =60°,∠ABO =45°。
(1)求点A 的坐标;(2)求过A 、O 、B 三点的抛物线解析式;(3)动点P 从O 点出发,以每秒2个单位的速度沿OA 运动到点A 止,①若△POB 的面积为S ,写出S 与时间t(秒)的函数关系;②是否存在t ,使△POB 的外心在x 轴上,若不存在,请你说明理由;若存在,请求出t 的值。
图412、直线与抛物线的交点(P47-5、P48-10,14)(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c )。
(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2)。
(3)抛物线与x 轴的交点。
二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根。
抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离。
(4)平行于x 轴的直线与抛物线的交点:同(3)一样可能有0个交点、1个交点、2个交点。
当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根。
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 cbx ax y n kx y ++=+=2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点。
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故:ac x x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121第三章 圆1、定义:圆是平面上到定点距离等于定长的点的集合。
其中定点叫做圆心,定长叫做圆的半径, 圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
2、点与圆的位置关系及其数量特征:如果圆的半径为r ,点到圆心的距离为d ,则:①点在圆上<===>d=r ;②点在圆内<===>d<r ;③点在圆外<===>d>r 。