2005年数学四试题分析、详解和评注
- 格式:doc
- 大小:613.00 KB
- 文档页数:16
2005年高考数学试题(湖北等 )的分析及评价武汉市教育科学研究院 孔峰一、总体评价:2005年高考数学试题(湖北卷)严格依据教育部《数学科考试大纲》的各项要求,在遵循“有利于高校选拔人才、有助于中学实施素质教育、有助于高校扩大办学自主权”原则的基础上,融入了新课程新大纲的理念,试题立意新颖,选材不拘一格。
与2004年全国其他独立命题省市试卷相比,试卷的结构、采用的题型和配备的题量,题型的分值比例等方面保持相对稳定。
与2004年全国新课程卷及2004年湖北卷的结构及考查内容更吻合一些,且比2004年湖北卷对新课程新大纲的整体把握与理解更加成熟,整份试卷从数学知识、思想方法、学科能力出发,多层次多角度地考查了学生的数学素养和学习潜能,对考生能力、知识灵活运用及综合运用提出了比较高的要求,尤其值得注意的是,对新增加内容的知识的考查、知识的灵活运用考查,以及在运用新增加内容知识去处理实际问题的实践能力的考查均提出了较高的要求,因此我们考生在高考复习中需引起足够重视和研究,订做到与时俱进。
二、2005年高考数学试题的特点今年,我省高考数学命题在2004年平稳过渡的基础上,站在新课程评价理念的高度,稳中求新、稳中求活。
在继续深化能力立意、倡导通性通法、坚持数学应用、加大新增知识的考查力度等各个方面又作了进一步的实践、探索、深化与创新。
审视试卷,笔者感悟到白纸黑字间的灵性的跳动,令人回味,试题命题呈现出诸多亮点,对我们高考复习有很多有益的启示。
1、立足基础,突出能力,考查思维的灵活性无论在选择题、填空题,还是解答题中均有许多试题突出对基础知识的考查。
但其中一些基础试题在强调基础知识的同时,试题对能力的考查也十分突出,可以从多方面去思考,体现了思维的灵活性。
不同能力的学生处理方式不同,体现了不同的思维水平和数学思维品质。
例1 (高考理科第7题文科第10题)若sin α+cos α=tan α (0<α<2π),则α∈A.⎪⎭⎫⎝⎛6,0π B. ⎪⎭⎫⎝⎛4,6ππ C. ⎪⎭⎫⎝⎛3,4ππ D. ⎪⎭⎫⎝⎛2,3ππ 本题以方程的形式出现,似乎应该求出角α,但这只是一种表象,透过现象看本质,选择支是角α的范围,于是只需角α的一个三角不等式,由此联想大家熟知的基本结论:当α是锐角时,sin α+cos α>1.于是tan α>1,答案选C 。
2005年研究生入学考试数学四模拟试题参考答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 设曲线y=f(x)与y=sinx 在原点相切,则极限)2(lim nnf n ∞→ =______________.[解] 由题设,f(0)=0,1)0(='f ,于是)2(lim n nf n ∞→=.2)0(222)0()2(lim ='=⋅-∞→f nf n f n (2) 由拉格朗日中值定理有)(1x x xxe e θ=-,其中1)(0<<x θ,则=→)(lim 0x x θ__________.[解] =→)(lim 0x x θ.21)11(lim ln )1ln(lim00=--=--→→x e e x x e x x x x x (2) 设其他20,0,sin )(≤≤⎩⎨⎧=x x x f ,D 是全平面,则⎰⎰=-Ddxdy x y f x f )()(___________.[解]⎰⎰=-Ddxdy x y f x f )()(⎰⎰+-=-222.)2cos 1()sin(sin x xdy x y x dx(3) 设A=)2(,)(≥⨯n a n n ij ,A 的伴随矩阵A*的秩为1,且∑===nj ijn i a1),,2,1(0 ,则Ax=0的通解为_____________.[解] 由题设,秩r(A)=n-1, 于是Ax=0的基础解系所含解向量的个数为n-r(A)=1, 而∑===nj ijn i a1),,2,1(0 表明Ax=0有解T ),,,(111 ,故Ax=0的通解为Tk ),,,(111 .(5) 已知-2是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=b x A 2222220的特征值,其中b 为不等于零的任意常数,则x= .[解] 由题设,有0)4(2222222222=+=-------=--x b bx A E ,知x=-4.(6) 设P(A)=0.5, P(B)=0.6,4.0)(=A B P ,则)(B A B A P -= .[解] 由题设知P(AB)=0.2, 于是)(B A B A P -=)()}({B A P B A B A P ++=)()(B A P B A P +=.31)()()()()(=-+-AB P B P A P AB P A P二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 设 .0,0,0,sin 1,0,1sin )1ln(1)(0232>=<⎪⎪⎩⎪⎪⎨⎧+=⎰x x x dt t x x x x x f x 则f(x)(A) 极限不存在. (B) 极限存在但不连续.(C) 连续但不可导. (D) 可导. [ ] [解] 应选C.因为 )0(0)(lim ),0(0)(lim 0f x f f x f x x ====+-→→,所以f(x)在x=0处连续.而 )0(-'f 不存在,故应选(C).(8) 设f (x )有连续导数且0)(lim≠=→a xx f x ,又⎰-=x dt t f t x x F 022)()()(. 当0→x 时,)(x F '与nx 是同阶无穷小,则n 等于(A) 1. (B ) 2. (C) 3. (D) 4. [ ][解] 应选C.)(x F '=⎰xdt t f x 0)(2,于是.3120)1()(2lim )(2lim )(lim20100=⇒=-⇒≠-=='-→-→→⎰n n x n x f x dt t f x x F n x n xx n x (9) 设a 和b 为常数,且b a dt e e xt x x =+⎰-+∞→][lim 02,则(A) a=0,b=1 (B) a=-1,b=1 (C) 1,2-=-=b a π(D) 0,2=-=b a π[ ][解] 应选D由于⎰⎰-=-=-=∞+--+∞→xt t x dt e dt e a 02lim22π,021lim 21lim][lim 02=-=-⋅=+=+∞→--+∞→-+∞→⎰xe xe a dt e e b x x x x xt xx故应选(D).(10) 设)1sin(sin 1cos )1(2cos sin ),(-++--+==y x x y y xy y x f z ,则)1,0(y z∂∂等于(A) -1 (B) 3cos (C) 1 (D) 0 [ ] [解] 应选(A).当x=0时,)1sin(1)1(),0(-+--==y y y f z ,于是)1,0(yz ∂∂=1)]1sin(1[)1cos()1()1sin(112-=-+--+---=y y y y y(11) 若在[0,1]上有0)(,0)(,0)1()1(,0)0()0(<''>''>====x g x f a g f g f 且,则⎰=101,)(dx x f I ⎰=102,)(dx x g I ⎰=13axdx I 的大小比较关系是(A) .321I I I ≥≥ (B) .123I I I ≥≥(C) .132I I I ≥≥ (D) .312I I I ≥≥ [ ] [解] 应选(C).凸凹,)(,0)()(,0)(x g x g x f x f <''>'', 于是]1,0[),()(∈≥≥x x f ax x g ,从而有.132I I I ≥≥(12) 设A 为n m ⨯阶矩阵,考虑以下命题:①Ax=0只有零解;② Ax=b 有唯一解;③A 的行向量组线性无关;④A 的列向量组线性无关. 则有(A) ①⇒②⇒④ . (B ) ②⇒①⇒④.(C) ④⇒①⇒③. (D) ③⇒②⇒①. [ ] [解] 应选(B).Ax=b 有唯一解,知n b A r A r ==)()( ,于是Ax=0只有零解,进而可推知A 的列向量组线性无关,故应选(B).(13) 设A,B,C 两两独立且P(A),P(B),P(C)),(10∈, 则A,B,C 不相互独立的充分条件是(A) A 与BC 独立 (B) C 与B A 独立.(C) B 与C A -独立. (D) AB 与AC 独立. [ ] [解] 应选(D).若AB 与AC 独立,则P()()()AC P AB P AC AB =⋅, 即 )()()(AC P AB P ABC P ==)()()(2C P B P A P )()()(C P B P A P ≠可见此时A,B,C 不相互独立。
2005年高考数学试题分析与2006届高考复习建议2005年普通高等学校招生全国统一考试,在2004年高考改革的基础上进一步深入和发展。
全国及部分省市共命制了16套(含文理科)共29种试卷。
这些试卷依据《2005年普通高等学校招生全国统一考试大纲》或单独命题省市的《2005年高考考试说明》的各项要求,在遵循“数学科考试,要发挥数学作为基础学科的作用,既重视考查中学数学知识掌握程度,又注重考查进入高校继续学习的潜能。
”原则的基础上,进一步加大了改革的力度,凸显了新课程改革的理念,做到了坚持循序渐进,体现适度创新。
我省是继去年以来第二次自主命题,并首次实行网上高考评卷,评卷方式实行了科学的“多评制”,做到了一卷二评、三评甚至四评,最大限度地实现了阅卷公平、公正。
第一部分 试卷整体分析一、全面、综合测试基础知识,重视考查对数学内涵的理解数学基础知识、基本技能和基本数学思想方法是中学数学教学的主要内容,考查学生对基础知识的掌握程度,是数学考试的重要目标之一。
对知识的考查,不仅是知识的简单重现,更注重理解和运用,特别是注重知识的整体性和综合性,在知识网络的交汇点上设计试题,对所学知识融会贯通,理论联系实际,防止单纯性的死记硬背。
1.对数学基础知识的考查全面又突出重点试卷全面考查《考试大纲》要求的知识内容,教材中各章的内容都有涉及,如二项式定理、排列组合、复数、球等教学课时较少的内容,在试卷中都有考查。
在全面考查的前提下,重点考查高中数学知识的主干内容,如函数、不等式、数列、直线与平面、圆锥曲线、平面向量、概率、导数。
例1:(湖南卷文1)设全集U ={–2,–1,0,1,2},A ={–2,–1,0},B ={0,1,2},则(C U A)∩B =(C )(A){0} (B){–2,–1} (C){1,2} (D){0,1,2}例2:(全国1卷理1)设I 为全集,S 1、S 2、S 3是I 的三个非空子集,且S 1∪S 2∪S 3=I ,则下面论断正确的是(A )(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I (D )123I I S C S C S ⊆⋃()这两题都考查集合概念与运算,是源于课本的基础题目,既可以从集合的基本关系和基本运算入手解答,也可以运用文氏图求解。
2005年普通高等学校招生全国统一考试 数学(天津文科卷)试题精析详解一、选择题(5分⨯10=50分)(1) 集合{|03}A x x x N =≤<∈且的真子集个数是 ( ) (A )16 (B )8 (C )7 (D )4 【思路点拨】本题考查集合、真子集的基本概念,可采用直接法求集合A【正确解答】用列举法,{0,1,2}A =,A 的真子集有:,{0},{1},{2},{0,1},{0,2},{1,2}∅,共7个,选C【解后反思】注意不要忘记空集,以及真子集不包含集合本身.(2) 已知111222log log log b a c <<,则 ( )(A )222b a c >> (B) 222a b c >> (C) 222c b a >> (D) 222c a b >> 【思路点拨】本题考查指数函数和对数函数的增减性.【正确解答】由函数性质可知,函数12log y x =在()0,∞上是减函数,因此得b a c >>,又因为2x y =是增函数,所以222b a c>>,选A【解后反思】要深刻理解指数函数和对数函数的图象与性质,并从已知条件和结论的特征出发,发现它们各自所具有的模型函数,以便有目的地思考.(3)某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为 ( )(A )81125 (B )54125 (C )36125 (D )27125见理第7题(4)将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-= 相切,则实数λ的值为 ( ) (A )-3或7 (B )-2或8 (C )0或10 (D )1或11 【思路点拨】本题考查了平移公式、直线与圆的位置关系,只要正确理解平移公式和直线与圆相切的充要条件就可解决.【正确解答】由题意可知:直线20x y λ-+=沿x 轴向左平移1个单位后的直线l 为:2(1)0x y λ+-+=.已知圆的圆心为(1,2)O -解法1:直线与圆相切,则圆心到直线的距离等于圆的半径,因而有=3λ=-或7.解法2:设切点为(,)C x y ,则切点满足2(1)0x y λ+-+=,即2(1)y x λ=++,代入圆方程整理得:225(24)(4)0x x λλ+++-=, (*)由直线与圆相切可知,(*)方程只有一个解,因而有0∆=,得3λ=-或7. 解法3:由直线与圆相切,可知CO l ⊥,因而斜率相乘得-1,即2211y x -⨯=-+,又因为(,)C x y 在圆上,满足方程22240x y x y ++-=,解得切点为(1,1)或(2,3),又(,)C x y 在直线2(1)0x y λ+-+=上,解得3λ=-或7.选A【解后反思】直线与圆的位置关系历来是高考的重点.作为圆与圆锥曲线中的特殊图形,具有一般曲线的解决方法外(解法2)还有特别的解法,引起重视理解和掌握.(5)设,,αβγ为平面,,,m n l 为直线,则m β⊥的一个充分条件是 ( )(A ),,l m l αβαβ⊥=⊥ (B ),,m αγαγβγ=⊥⊥(C ),,m αγβγα⊥⊥⊥ (D) ,,n n m αβα⊥⊥⊥ 见理第4题(6)设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( ) (A )±2 (B )43± (C )12± (D )34± 见理第5题(7)给出三个命题:①若1a b ≥>-,则11a b a b≥++. ②若正整数m 和n 满足m n ≤2n ≤. ③设11(,)P x y 为圆221:9O x y +=上任一点,圆2O 以(,)Q a b 为圆心且半径为1.当2211()()1a x b y -+-=时,圆1O 和2O 相切.其中假命题的个数为 ( ) (A )0 (B )1 (C )2 (D )3 见理第3题(8)函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图像如图所示,则函数表达式为( )(A )4sin()84y x ππ=-+ (B )4sin()84y x ππ=- (C )4sin()84y x ππ=-- (D )4sin()84y x ππ=+ 【思路点拨】本题考查正弦曲线的图象变换,考查图与形的等价转换能力. 只要由已知图形依次确定A 、ω、φ,而φ的确定是解决本题的难点,必须用最高点或最低点进行处理. 【正确解答】解法1:由函数图象可知,函数过点(2,0),(6,0)-,振幅4A =,周期16T =,频率28T ππω==,将函数4sin 8y x π=向右平移6个单位,得到 34sin((6))4sin()4sin()88484y x x x πππππ=-=-=-+.选A解法2:由函数图象可知,函数过点(2,0),(6,0)-,振幅||4A =,周期16T =,频率28T ππω==,这时4sin()8y x πφ=±+,又因为图象过点(2,4)-,代入得,sin()14πφ+=±.当sin()14πφ+=时,2,2()424k k k Z πππφπφπ+=+=+∈,而||,24ππφφ<∴=,当sin()14πφ+=-时,32,2()424k k k Z πππφπφπ+=-=-∈,而||2πφ<,无解.∴ 33sin(2)4sin()4sin()848484y x k x x πππππππ=+-=-=-+.选A.解法3:可将点的坐标分别代入进行筛选得到.选A.【解后反思】一般地,如果由图象来求正弦曲线sin()(0,,)2y A x x R πωϕωϕ=+><∈的解析式时,其参数A 、ω、φ的确定:由图象的最高点或最低点求振幅A ,由周期或半个周期(相邻最值点的横坐标间的距离)确定ω,考虑到φ的唯一性,在确定A 、ω的基础上将最值点的坐标代入正弦函数的解析式,在给定的区间内求出φ的值.(9)若函数2()log (2)(0,1)a f x x x a a =+>≠在区间1(0,)2,内恒有()0f x >,则()f x 的单调递增区间为 ( ) (A )1(,)4-∞- (B )1(,)4-+∞ (C )(0,)+∞ (D )1(,)2-∞- 【思路点拨】本题考查二次函数对数函数的性质,区间1(0,)2的题意就是要研究出22y x x =+的值域来判定a 的取值范围.【正确解答】函数的定义域为1{|0}2x x x ><-或,在区间1(0,)2上,2021x x <+<,又()0f x >,则01a <<,因此log a y t =是减函数,函数()f x 的单调递增区间为函数22y x x =+的递减区间,考虑对数函数的定义域,得所求的单调递增区间为1(,)2-∞-选D【解后反思】对复合函数的性质,一方面要考虑定义域,另一方面要有借助函数图象,用数形结合的思想来解决问题.(10)设()f x 式定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) (A )(1.5)(3.5)(6.5)f f f << (B )(3.5)(1.5)(6.5)f f f << (C )(6.5)(3.5)(1.5)f f f << (A )(3.5)(6.5)(1.5)f f f << 【思路点拨】本题考查函数的周期性,单调性和对称性等性质,对相关概念有深刻的理解,将自变量的值转化到同一个单调区间,借助图象进行处理.【正确解答】函数图象关于直线3x =对称,则有(3)(3)f x f x +=-,因此有(3.5)(30.5)(30.5)(2.5)f f f f =+=-=,又因为函数周期为6,因此(6.5)(0.5)f f =,()f x 在(0,3)内单调递减,所以(3.5)(1.5)(6.5)f f f <<,选B【解后反思】直观的几何图形是解决问题的有效的重要方法之一,必须引起重视.二、填空题(4分⨯6=24分)(11)二项式10的展开式中常数项为 . 【思路点拨】本题考查二项式定理的通项公式,只要概念清楚和运算无误即可.【正确解答】展开式的一般项为1010(t tt C -,令1()(10)032t t +--=,6t =,因此常数项为610210C =.【解后反思】要注意符号因子不能丢. (12)已知2,4a b ==,a 和b 的夹角为3π,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为 .【思路点拨】本题以向量为背景,考查余弦定理,要判断较短的一条应是3π所对的对角线. 【正确解答】222||||||2||||cos 416224cos 123c a b a b C π=+-⋅=+-⨯⨯⨯=【解后反思】要正确向量的加减法则的几何意义,对向量a =(x,y )的模有几种方法.①2||a x y =+22||a a =.(13)如图,PA ABC ⊥平面,90ACB PA AC BC a ∠====且,则异面直线PB 与AC 所成的角的正切值等于 .见理第12题(14)在数列{}n a 中,121,2a a ==,且21(1)nn n a a +-=+-*()n N ∈,则10S = .见理第13题 (15)设函数1()ln1x f x x +=-,则函数1()()()2x g x f f x=+的定义域为 . 【思路点拨】本题考查复合函数定义域的求法,必须使常见各类函数都有意义,构成不等式组来解.【正确解答】由题意得120122221121111011x x x x x x x x x⎧+⎪>⎪⎪--<<⎧⎪⇒⇒-<<-<<⎨⎨><-⎩⎪+⎪>⎪-⎪⎩或或则所求定义域为(2,1)(1,2)--. 【解后反思】正确地解不等式组,将繁分式化简是一关键. (16)在三角形的每条边上各取三个分点(如图).以这9个分点为顶点可画出若干个三角形,若从中 任意抽取一个三角形,则其三个顶点分别落在原 三角形的三个不同边上的概率为 .【思路点拨】本题考查等可能事件的概率,关键是要确定基本事件.【正确解答】可画出的三角形个数为39381C -=,三个顶点分别落在不同边上的个数为11133327C C C =,所求概率为271813=. 【解后反思】理解和掌握等可能事件的概率的计算公式P (A )=mn,本题中构成三角形的个数是一难点.三、解答题(共6小题,共76分) (17)(本小题满分12分)已知7sin()241025παα-==,求sin α及tan()3πα+. 【思路点拨】本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.【正确解答】解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ②由①和②式得53sin =α,5cos =α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即5sin =α由1027)4sin(=-πα可得5cos sin =-αα 由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限53sin =α, 从而557sin cos =-=αα以下同解法一【解后反思】在求三角函数值时,必须对各个公式间的变换应公式的条件要理解和掌握,注意隐含条件的使用,以防出现多解或漏解的情形. (18)(本小题满分12分)若公比为c 的等比数列{}n a 的首项11a =且满足13(3,4,)2n n n a a a n --+==. (I )求c 的值;(II )求数列{}n na 的前n 项和n S .【思路点拨】本题考查等比数列的通项公式及前n 项和的求法.可根据其定义进行求解,要注意①等比数列的公比C 是不为零的常数②前n 项和的公式是关于n 的分段函数,对公比C 是否为1加以讨论.【正确解答】(Ⅰ)解:由题设,当3n ≥时,2212,n n n n a c a a ca ---==,221212---+=+=n n n n a ca a a ,由题设条件可得20n a -≠,因此212c c +=,即221c c --= 解得c =1或2=c (Ⅱ)解:由(Ⅰ),需要分两种情况讨论,当c =1时,数列{}n a 是一个常数列,即1n a = (n ∈N *)这时,数列{}n na 的前n 项和2321=++++=n S n 当21-=c 时,数列{}n a 是一个公比为21-的等比数列,即1)21(--=n n a (n ∈N *)这时,数列{}n na 的前n 项和12)21()21(3)21(21--++-+-+=n n n S①① 式两边同乘21-,得n n n n n S )21()21)(1()21(2212112-+--++-+-=-- ②①式减去②式,得n nn n n n n S )21(211)21(1)21()21()21()21(1)211(12--+--=---++-+-+=+- 所以]223)1(4[911-+--=n n n n S (n ∈N *) 【解后反思】本题是数列求和及极限的综合题.(1)完整理解等比数列{}n a 的前n 项和公式:11(1)(1)(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩(2)要掌握以下几种情形的极限的求法.①利用1lim 0n n→∞=②利用lim 0n n q →∞=(1q <)③要掌握分类讨论的背景转化方法.如1q >时转化为11q<.(19)(本小题满分12分)如图,在斜三棱柱111ABC A B C -中,1111,,A AB A AC AB AC A A A B a ∠=∠===,侧面11B BCC 与底面ABC 所成的二面角为120,,E F 分别是棱111,B C A A 的中点(I )求1A A 与底面ABC 所成的角; (II )证明1//A E 1平面B FC ;(III )求经过1,,,A A B C 四点的球的体积.见理第19题(20)(本小题满分12分)某人在山坡P 点处观看对面山顶上的一座铁塔,如图所示,塔高80BC =米,塔所在的山高220OB =米,200OA =米,图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平面的夹角为1,tan 2αα=.试问,此人距水平地面多高时,观看塔的视角BPC ∠最大(不计此人身高)? 见理第20题 (21)(本小题满分14分) 已知m R ∈,设P :1x 和2x 是方程220x ax --=的两个实根,不等式21253m m x x --≥-对任意实数[1,1]a ∈-恒成立;Q :函数324()()63f x x mx m x =++++在(,)-∞+∞上有极值.求使P 正确且Q 正确的m 的取值范围.【思路点拨】本题是组合题,考查一元二次方程的根的概念和导数的应用. 【正确解答】 (Ⅰ)由题设1x 和2x 是方程220x ax --=的两个实根,得1x +2x =a 且1x 2x =-2,所以,84)(||22122121+=-+=-a x x x x x x当a ∈[-1,1]时,28a +的最大值为9,即12||x x -≤3由题意,不等式212|53|||m m x x --≥-对任意实数a ∈[1,1]恒成立的m 的解集等于不等式2|53|3m m --≥的解集由此不等式得PC 1B 1A 1B CF EG HO2533m m --≤- ①或 2533m m --≥②不等式①的解为0m ≤≤不等式②的解为1m ≤或m ≥因为,对1m ≤或05m ≤≤或6m ≥时,P 是正确的(Ⅱ)对函数6)34()(23++++=x m mx x x f 求导3423)('2+++=m mx x x f 令0)('=x f ,即034232=+++m mx x 此一元二次不等式的判别式 124)34(12422--=+-=∆m m m m 若∆=0,则0)('=x f 有两个相等的实根0x ,且)('x f 的符号如下:因为,0()f x 不是函数()f x 的极值若∆>0,则0)('=x f 有两个不相等的实根1x 和2x (1x <2x ),且)('x f 的符号如下:+-因此,函数f (x )在x =1x 处取得极大值,在x =2x 处取得极小值综上所述,当且仅当∆>0时,函数f (x )在(-∞,+∞)上有极值由0161242>--=∆m m 得1m <或4m >, 因为,当1m <或4m >时,Q 是正确得综上,使P 正确且Q 正确时,实数m 的取值范围为(-∞,1)⋃,6[]5,4(+∞⋃【解后反思】对恒成立问题的等价转换,相应知识的完整理解是关键.对P 来说,转化为求使12x x -的最大值时的范围,而要注意一次二次方程根存在的充要条件.对Q 来说,()f x 的导函数存在的充要条件的理解是一难点,也是易错点.(22)(本小题满分14分)抛物线C 的方程为2(0)y ax a =<,过抛物线C 上的一点000(,)(0)P x y x ≠作斜率为12,k k 的两条直线分别交抛物线C 于1122(,),(,)A x y B x y 两点(,,P A B 三点互不相同),且满足120(0,1)k k λλλ+=≠≠-.(I )求抛物线C 的焦点坐标和准线方程;(II )设直线AB 上一点M ,满足BM MA λ=,证明线段PM 的中点在y 轴上; (III )当1λ=时,若点P 的坐标为(1,-1),求PAB ∠为钝角时点A 的纵坐标1y 的取值范围. 见理第22题.。
2005数学分析解答D解:112022000111011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dy y x y x y dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。
解:22220022222tan 2222cos ,[0,2)2sin cos cos 222113cos 22cos 2213(2)(1)12arctan 421(2)(1)2311421C x x y ydx xdy I d x y x x x x d x dx x x x x ππθθθπθθθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩---=−−−→=+++-+-++−−−−−→=--++++=-⎰⎰⎰换元万能公式代换226426212dx d x ππ+∞+∞-∞-∞+=-+++⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。
证明:1111()1111(1)111()'()1[ln(1)]0()()()b bxb b bbxa a ab f x b b x a a b f b b b a a b f b b b a b a b a b f x Taylor x x x a b f x ++++-⎛⎫⎛⎫⎛⎫≥=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭+-⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭-⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭---⎛⎫=++-> ⎪+-⎝⎭,构造函数展开可以证明所以递增,从而得证一、 设f(x)为[a,b]上的有界可测函数,且2[,]()0,a b f x dx =⎰证明:f(x)在[a,b]上几乎处处为0。
证明:反证法,假设A={x|f(x)≠0},那么mA>0。
稳步提高,仍需努力----2005年高考广东数学试题和答卷的分析华南师范大学数学科学学院柳柏濂05年数学高考,是广东省独立命题的第二年。
从命题的内容和答卷的状况,有不少值得分析和总结的东西。
本文就05年广东省高考数学科评卷的情况,谈谈我们的看法。
一.题型和特点05年广东高考数学科试题,总结了上一年独立命题中的经验和不足,在大纲框架中作调整,在稳定结构中求改革。
其特点可以归结为:紧扣考纲,调整结构,贴近教材,保持传统,鼓励创意,重视衔接。
1. 紧扣考纲05年高考严格按照考纲和课本的精神命题。
在内容分布上,以函数(29分,占19%)、立体几何(24分,占16%)、解析几何(包括向量)(34分,占23%)为主。
除了注意反映课程标准的新增内容,如向量、概率统计、导数等内容外(参考公式中仅给出概率公式),还改正了去年的不足,把在高中数学课程标准中某些内容的减少,在试题中得到体现。
例如三角恒等变换与三角方程,圆锥曲线的综合计算等内容都在试题中有不同程度的弱化。
2. 调整结构整份试题在大结构中保持稳定的题型,但在降低难度方面作了一些努力。
主要表现在:①选择题从12小题减少为10小题,填空题四题从04年的16分增加至05年的20分。
②选择题、填空题及解答题的第(15)题,以基本知识为主,较少技巧性的要求(共82分,约占55%)。
③试题的排序设计更趋合理,基本遵循由易到难的顺序。
解答题(如从(16)~(20))均分步设问,一方面为学生架设通向最后解决问题的桥梁,也便于未能完整解答问题的考生得到中间的分数。
3. 贴近教材高考的命题必须以教材为本。
以鼓励学生立足教材,学好学深基本知识。
05年广东数学试题中有不少以课本的例题、习题的题型加以改造而成的问题。
例如,第(15)题: (15)(本小题满分12分) 化简6161()cos(2)cos(2)2)(,)333k k f x x x x x R k Z πππ+-=++-++∈∈,并求函数()f x 的值域和最小正周期.本题主要考查三角函数的周期和值域,三角函数的诱导公式及和(差)角公式等基础知识,以及把特殊形式化为一般形式的化归和转化的数学思想方法,考查思维能力和运算能力。
2005年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A)4 (B)2 (C)4(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++ (6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
以下题型均在05年考研文登数学辅导班中讲过2005年数学四试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 12s i n l i m2+∞→x x x x =.212lim 2=+∞→x xx x 【评注】 若在某变化过程下,)(~)(x x αα,则).()(lim )()(lim x x f x x f αα= 完全类似例题见《数学复习指南》(经济类)P.23【例1.28】(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.【评注】 本题虽属基本题型, 也可先变形xdx y dy -=, 再积分求解.完全类似例题见《数学复习指南》(经济类)P.229【例10.5】(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.完全类似例题见《数学复习指南》(经济类)P.166【例7.6】(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=21 .【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a.【评注】 当向量的个数小于维数时,一般通过初等变换化阶梯形讨论其线性相关性. 完全类似例题见《数学复习指南》(经济类)P.312【例3.3】 (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。
一般地,若n n a a a αααβ12121111+++= , n n a a a αααβ22221212+++= ,n m n m m m a a a αααβ+++= 2211,则有 [][].,,,2122212121112121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n m m n m a a a a a aa a a αααβββ 完全类似例题见《数学复习指南》(经济类)P.268【例1.5】(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 【评注】 全概率公式综合考查了加法公式、乘法公式和条件概率,这类题型一直都是考查的重点.完全类似例题见《数学复习指南》(经济类)P.407【例1.31】二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ B ] 【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且 a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).【评注】 对于三次多项式函数f(x)=d cx bx ax +++23,当两个极值同号时,函数f(x) 只有一个零点;当两个极值异号时,函数f(x) 有三个零点;当两个极值有一为零时,,函数f(x) 有两个零点.完全类似例题见《数学复习指南》(经济类)P.151【例6.26】(8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ] 【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). 【评注】 本题比较二重积分大小,本质上涉及到用重积分的不等式性质和函数的单调性进行分析讨论.完全类似例题见《数学复习指南》(经济类)P.183【例8.2】(9)下列结论中正确的是(A)⎰∞++1)1(x x dx 与⎰+10)1(x x dx 都收敛. (B )⎰∞++1)1(x x dx 与⎰+10)1(x x dx 都发散.(C)⎰∞++1)1(x x dx 发散,⎰+10)1(x x dx收敛. (D)⎰∞++1)1(x x dx 收敛,⎰+10)1(x x dx发散.[ D ]【分析】 直接计算相应积分,判定其敛散性即可. 【详解】⎰∞++1)1(x x dx =2ln 1ln1=+∞+x x ,积分收敛,⎰+1)1(x x dx =+∞=-∞-=+)(01ln10x x,积分发散.故应选(D).【评注】 广义积分敛散性的判断,一般只要求掌握通过计算能判定的情形. 完全类似例题见《数学复习指南》(经济类)P.123【例4.52】(10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).【评注】 本题为基本题型,主要考查取极值的充分条件. 对应定理公式见《数学复习指南》(经济类)P.141(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).【评注】 本题也可直接证明:用拉格朗日中值定理,有ξξ),21)(()21()(-'=-x f f x f 在(0,1)之间,由此容易推知若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(12)设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B=E+AB,C=A+CA ,则B-C 为(A) E. (B )-E. (C )A. (D) -A [ A ] 【分析】 利用矩阵运算进行分析即可. 【详解】 由B=E+AB,C=A+CA ,知 (E-A)B=E, C(E-A)=A,可见,E-A 与B 互为逆矩阵,于是有 B(E-A)=E.从而有 (B-C)(E-A)=E-A, 而E-A 可逆,故 B-C=E. 应选(A).【评注】 本题考查矩阵运算性质,注意当(E-A)B=E 时,表明E-A,B 均可逆,且互为逆矩阵,从而利用逆矩阵的定义,它们还可互换.(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).【评注】 本题考查二维随机变量分布律的性质和独立随机事件的概念,均为大纲要求的基本内容.完全类似例题见《数学复习指南》(经济类)P.528【习题二,1.(9)】(14) 设 ,,,,21n X X X 为独立同分布的随机变量列,且均服从参数为)1(>λλ的指数分布,记)(x Φ为标准正态分布函数,则(A) )(}{lim 1x x nn XP ni in Φ=≤-∑=∞→λλ. (B) )(}{lim 1x x n n XP ni in Φ=≤-∑=∞→λλ.(C)).(}{lim 1x x nnX P ni i n Φ=≤-∑=∞→λ(D)).(}{lim 1x x n XP ni in Φ=≤-∑=∞→λλ[ C ]【分析】 只需求出∑=ni iX1的期望与方差,再根据中心极限定理将其标准化即可.【详解】 由题设,21,1λλ==i i DX EX , ,,,2,1n i =,于是λnX Eni i =∑=1, 21λnX Dni i =∑=,根据中心极限定理,知nnX nnXni i ni i∑∑==-=-121λλλ其极限分布服从标准正态分布,故应选(C).【评注】 本题考查中心极限定理,应注意中心极限定理的条件和结论,特别是注意结论之间的转换.完全类似结论见《数学复习指南》(经济类)P.484三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e 【评注】 本题属基本题型,在里用罗必塔法则求极限的过程中,应注意利用无穷小量的等价代换进行简化.完全类似例题见《数学复习指南》(经济类)P.29【例1.45】(16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f x y x y f x y xg ''+''+'=∂∂,)()()(1yx f y x y x f x y f x y g '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222y g y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' 【评注】 本题属基本题型,但在求偏导数的过程中应注意计算的准确性.完全类似例题见《数学复习指南》(经济类)P.171【例7.18】(17)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π【评注】 形如积分σd y x f D⎰⎰),(、⎰⎰Dd y x g y x f σ)},(),,(max{、⎰⎰Dd y x g y x f σ)},(),,(min{、⎰⎰Dd y x f σ)],([、⎰⎰-Dd y x g y x f σ)},(),(sgn{等的被积函数均应当作分区域函数看待,利用积分的可加性分区域积分.完全类似例题见《数学复习指南》(经济类)P.193【例8.18】 (18)(本题满分9分)求f(x,y)=222+-y x 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 令02,02=-=∂∂==∂∂y yf x x f 得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=x fA ,0)0,0(2=∂∂∂=y x fB ,2)0,0(22-=∂∂=yfC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.【评注】 本题综合考查了多元函数微分学的知识,涉及到多个重要基础概念,特别是通过偏导数反求函数关系,要求考生真正理解并掌握了相关知识.当在区域边界上求极值时,也可将2244x y -=代入f(x,y)=252-x ,转化为一元函数求极值.完全类似例题见《数学复习指南》(经济类)P.178【例7.29】(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'x g x f dt t g t f dt t f t g 01)1()()()()()(,则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到 =)1(F ⎰⎰-'+'11)1()1()()()()(g f dt t g t f dt t f t g ,而⎰⎰⎰'-=='11110)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-1)()()1()1(dt t g t f g f ,故F(1)=0.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有 ⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 0)()()()()()(=⎰'-adx x g x f a g a f 0)()()()(,⎰⎰'+'adx x g x f dx x f x g 01)()()()(=⎰⎰'+'-1)()()()()()(dx x g x f dx x g x f a g a f a⎰'+1.)()()()(adx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈, ⎰⎰-='≥'101)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而⎰⎰'+'adx x g x f dx x f x g 01)()()()().1()()]()1()[()()(g a f a g g a f a g a f =-+≥【评注】 对于积分不等式的证明,主要有两个途径:一是转化为函数不等式,二是通过恒等变形,如变量代换、分部积分等,再用积分的不等式性质进行讨论.完全类似例题见《数学复习指南》(经济类)P.115【例4.42~46】(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T)1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有 ⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101,显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.【评注】 本题求a 也可利用行列式0211532321=+-=a a,得a=2.本题也可这样考虑:方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=++=++=++=++0)1(2,0,0,0532,0323221321321321321x c x b x cx bx x ax x x x x x x x x 必存在无穷多解,化系数矩阵为阶梯形,可确定a=2,b=0,c=1或a=2,b=1,c=2,再对两组数据进行讨论即可.完全类似例题见《数学复习指南》(经济类)P.355【习题3(7)】(21)(本题满分13分)设A 为三阶矩阵,321,,ααα是线性无关的三维列向量,且满足3211αααα++=A ,3222ααα+=A ,32332ααα+=A .(I) 求矩阵B, 使得B A ),,(),,(321321αααααα=;(II )求矩阵A 的特征值;(III )求可逆矩阵P, 使得AP P 1-为对角矩阵.【分析】 利用(I)的结果相当于确定了A 的相似矩阵,求矩阵A 的特征值转化为求A 的相似矩阵的特征值. 【详解】 (I) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=311221001),,(),,(321321ααααααA , 可知 .311221001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B (II )因为321,,ααα是线性无关的三维列向量,可知矩阵],,[321ααα=C 可逆,所以 B AC C =-1,即矩阵A 与B 相似,由此可得矩阵A 与B 有相同的特征值.由0)4()1(3112210012=--=-------=-λλλλλλB E ,得矩阵B 的特征值,也即矩阵A 的特征值.4,1321===λλλ(III ) 对应于121==λλ,解齐次线性方程组(E-B)X=0,得基础解系T )0,1,1(1-=ξ,T )1,0,2(2-=ξ;对应于43=λ,解齐次线性方程组(4E-B)X=0,得基础解系.)1,1,0(3T =ξ令矩阵 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101021321ξξξQ , 则 .4000100011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-BQ Q 因 )()(1111CQ A CQ ACQ C Q BQ Q ----==,记矩阵 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101021321αααCQ P =[]323121,2,αααααα++-+-,故P 即为所求的可逆矩阵.【评注】 本题未知矩阵A 的具体形式求其特征值及相似对角形,问题的关键是转化为A 的相似矩阵进行分析讨论,这种处理思路值得注意.完全类似例题见《数学复习指南》(经济类)P.370【例5.19】(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P【评注】 本题属基本题型,只需注意计算的准确性,应该可以顺利求解.第二步求随机变量函数分布,一般都是通过定义用分布函数法讨论.完全类似例题见《数学复习指南》(经济类)P.436【例2.38~40】(23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )}.0{1≤+n Y Y P【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;求概率}0{1≤+n Y Y P 的关键是先确定其分布.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --==)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑==.112222σσσnn n -=+- (III ) X X X X Y Y n n -+-=+11=n n i i X nn X n X n n 222121-+--∑-=, 上式是相互独立的正态随机变量的线性组合,所以n Y Y +1服从正态分布,由于0)(1=+n Y Y E ,故 }0{1≤+n Y Y P =.21【评注】 通过定义求随机变量的数字特征是基本要求,也是到目前为止考查最多的情形,但读者还应注意利用数字特征的运算性质进行分析讨论,同样是求解数字特征的一个重要途径. 标准正态分布在数学期望左右两侧取值的概率为21,也是多次考查过的知识点. 本题前两部分为文登学校辅导班上讲授过的原题(原题求相关系数,刚好是本题的两部分,请参见数理统计部分笔记).。