应用同步整流技术实现双向DC/DC变换
- 格式:doc
- 大小:603.00 KB
- 文档页数:10
双向 DC-DC 变换器简介双向 DC-DC 变换器是一种可以实现能量在两个方向上传输的电路,能够将能量从一个电源转移到另一个电源。
它在电动车、太阳能系统、电池储能系统等应用中得到广泛应用。
本文将介绍双向 DC-DC 变换器的原理、工作模式和应用。
原理双向 DC-DC 变换器通过两个独立的电感和开关器件实现能量的双向传输。
其拓扑结构常见的有升降压式和升压式两种。
在升降压式拓扑中,输入电源可以比输出电源的电压高或低;而在升压式拓扑中,输入电源的电压必须比输出电源的电压高。
下面介绍升降压式和升压式拓扑的工作原理:升降压式拓扑升降压式拓扑常用的桥式电感拓扑是最常见的升降压式拓扑。
其电路图和工作原理如下:升降压式拓扑升降压式拓扑在升降压式拓扑中,当开关 SW1 和 SW2 关闭时,电感 L1 储存电能;当 SW1和 SW2 开启时,通过二极管 D1 转移到电容 C1 上。
同样,当开关 SW3 和 SW4 关闭时,电感 L2 储存电能;当 SW3 和 SW4 开启时,通过二极管 D2 转移到电容 C2 上。
升压式拓扑升压式拓扑常用的桶式电感拓扑是最常见的升压式拓扑。
其电路图和工作原理如下:升压式拓扑升压式拓扑在升压式拓扑中,当开关 S1 关闭时,电感 L1 储存电能;当 S1 开启时,通过二极管 D1 转移到电感 L2 上。
此时,电容 C1 上的电压逐渐升高,最终达到所需的输出电压。
工作模式双向 DC-DC 变换器有三种工作模式:降压模式、升压模式和反向电流保护模式。
降压模式降压模式是指输入电压高于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以维持输出电压在设定范围内。
当开关器件关闭时,电感和电容储存能量;而当开关器件打开时,能量从电感和电容中释放,通过二极管传递到输出端。
这个过程会不断循环,以保持输出电压稳定。
升压模式升压模式是指输入电压低于输出电压的情况。
在此模式下,开关器件周期性地开启和关闭,以提供所需的输出电压。
双向dc-dc变换器是什么双向dcdc变换器原理双向直流变换器双向DC-DC变换器是实现直流电能双向流动的装置,主要应用于混合动力汽车和直流不间断供电系统等双向直流变换器采用经典BUCK/BOOST电路拓扑,具备升降压双向变换功能,即升降压斩波电路。
能量从C1流向C2时,直流变换器工作在BOOST模式下,实现升压功能;能量从C2流向C1时,直流变换器工作在BUCK模式下,实现降压功能。
双向直流变换器功能描述:恒压充、放电机转换,恒功率充、放电及转换等;电池侧和直流母线侧双向升降压;l 兼容多种不同配置和型号的蓄电池;电池侧接光伏电池板时具备MPPT功能;多台变流器并联运行控制功能(主从控制,下垂控制);双向直流变换器原理所谓双向DC-DC变换器就是DC-DC变换器的双象限运行,它的输入、输出电压极性不变,但输入、输出电流的方向可以改变。
变换器的输出状态可在V o-lo 平面的一、二象限内变化。
变换器的输入、输出端口调换仍可完成电压变换功能,功率不仅可以从输入端流向输出端,也能从输出端流向输入端。
图1-1为BDC的二端口示意图。
从各种基本的变换器拓扑来看,用双向开关代替单向开关,就可以实现能量的双向流动。
双向DC-DC变换器实现了能量的双向传输,在功能.上相当于两个单向DC-DC变换器,是典型的机两用”设备。
在需要双向能量流动的应用场合可以大幅度减轻系统的体积重量及成本,有重要研究价值。
双向DC-DC变换器的应用在一一个系统中的直流电源(或直流源性负载)间需要双向能量流动的场合都需要双向DC-DC变换器。
因此直流电机驱动系统、不停电电源系统、航空航天电源系统、太阳能(风能)发电系统、能量储存系统(如超导储能)、电动汽车系统等系统中都有其适用场合。
下面列举几个预研的或已应用的实例,以使BDC的概念更清晰。
双向直流变换器因公环境介绍双向DC-DC变换器是能够根据能量的需要调节能量双向传输的直流到直流的变换器。
基于TL494的双向Buck-Boost BDC高效开关电源设计黄仲平;徐航;沈烨【摘要】该文双向DC-DC变换器(BDC)的设计由PWM控制、驱动、功率变换及测控4大部分组成.PWM控制以TL494为控制核心,闭环调节电路占空比;PWM驱动由IR2111构成,驱动同步整流电路的开关管;功率变换采用同步整流电路为功率变换拓扑,实现DC-DC双向高效功率变换;测控电路以MSP430单片机为控制器,结合电流、电压采样电路,控制电路输出参数并显示.系统具有过流、过压保护功能,并能通过MSP430单片机实现高精度的程控.测试结果表明,采用同步整流电路能较好完成DC-DC功率双向变换,双向功率变换效率均达到95%以上,同时还具有很强的抗扰动能力.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)001【总页数】5页(P12-16)【关键词】双向DC-DC变换器;TL494;IR2111;MSP430单片机【作者】黄仲平;徐航;沈烨【作者单位】四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065【正文语种】中文【中图分类】TN702开关电源一般由脉冲宽度调制(pulse width modulation, PWM)控制IC和MOSFET构成,具有效率高、体积小、质量轻以及功耗小等特点,尤其是电源效率一般都超过了80,比传统的线性电源提高近一倍[1-3]。
随着自动化产业的发展,开关电源技术也得到了不断地提高,应用领域也逐渐扩大[4]。
不仅包括仪器仪表、测控系统以及计算机内部各供电系统,也适应各种消费类电子产品。
开关电源逐步取代了传统的线性电源成为主流的电源产品,并且不断地向集成化、智能化、模块化发展[5]。
在一个直流供电系统中,并不局限于单一的“充电”或者“放电”模式,往往需要能量的双向流动。
如电动汽车中的燃料电池,给汽车运动系统提供电能的同时从压缩机处吸收能量,只有吸收的能量大于等于提供的能量汽车才能正常运行[6-7];太阳能电池阵也是如此,航天器外围的太阳能板是一个双向DC-DC变换器,即可以为航天器时刻提供工作电压,也需要不断吸收太阳能[8];不停电(UPS)系统中的放电单元和充电单元也可以理解为双向boost-buck电源[9]。
方案分享一种同步整流式DC作为一种比较常见的电源管理配件,工程师们平时所用到的DC-DC变换器种类繁多,不同的电源变换器在工作应用方面也有各自的长处。
在今天的方案分享中,我们将会为工程师们分享一种同步整流式DC-DC变换器的设计,希望能够通过本文的介绍,对大家的新产品研发工作有所帮助。
在本次的方案分享中,我们所设计的电源变换器为正激、隔离式结构,其本身的输出功率为16.5W。
这种电源变换器采用单片开关式稳压器DPA424R,其本身的直流输入电压范围是36~75V,输出电压为3.3V,输出电流为5A。
这一电源转换器主要采用400kHz同步整流技术,大大降低了整流器的损耗。
当直流输入电压为48V时,电源效率η=87%。
变换器具有完善的保护功能,包括过电压欠电压保护,输出过载保护,开环故障检测,过热保护,自动重启动功能、能限制峰值电流和峰值电压以避免输出过冲。
在本方案中,这种同步整流是DC-DC电源变换器的主电路图如下图图1所示。
可以看出,在这一主电路系统中,由DPA424R构成的16.5W同步整流系统。
与分立元器件构成的电源变换器相比,可大大简化电路设计。
由C1、L1和C2构成输入端的电磁干扰(EMI)滤波器,可滤除由电网引入的电磁干扰。
在这种同步整流式变换器的主电路结构中,我们可以看到,电阻R1在该电路系统中主要被用来设定欠电压值UUV及过电压值UOV,因此,当其取值为R1=619kΩ时,则欠电压值UUV=619kΩ×50μA+2.35V=33.3V,而过电压值UOV=619kΩ×135μA+2.5V=86.0V。
当输入电压过高时,则R1还能线性地减小最大占空比,防止磁饱和。
电阻R3为极限电流设定电阻,取R3=11.1kΩ时,所设定的漏极极限电流为1.5A。
电路中的稳压管VDZ1。
高频开关电源课程报告交错并联同步整流DC-DC变换器的研究Research on a Interleaved DC-DCConverter Using Synchronous RectificationABSTRACT:As the rapid development of power electronics technique, the switch supply have been advanced. It has replaced the linear steady voltage supply and because the most extensive direct current steady voltage supply that has been applied. It’s determined by the predominant performance of switch supply. Switch supply is consisted of AC-DC and DC-DC. As the work of large scale integrated circuit is normal, VRM is required to decrease low output voltage, continuous to increase output current, and also meets high efficiency, rapid dynamic response etc, in order to meet these needs, low voltage and high current DC-DC converter reflects the development orientation of switching power supply. To optimize the performance of low-voltage/high-current DC-DC converter, it is necessary to enhance it’s topology and control method. In this paper, synchronous rectifier and the multi-phase interleaved parallel technology are studied, presents a low voltage high current DC-DC converter design. I apply Matlab/Simulink software to simulate the circuit and the results verify the validity of the proposed scheme.KEY WORDS:buck converter,low voltage and high current,synchronous rectifier interleaved,Matlab/Simulink摘要:随着电力电子技术的飞速发展,开关电源技术不断得到提高,现在它已经取代线性稳压电源,成为目前最为广泛使用的直流稳压电源,这主要是由它的优越性能所决定的。
基于STM32F334双向同步整流BUCK BOOST数字电源设计牟健何波贤梅杰丁少娜摘要:本设计中采用同步BUCK电路和同步BOOST电路级联而成的同步整流BUCK-BOOST电路拓扑,基于STM32F334高性能32位ARM Cortex-M4 MCU构建能量实现的双向流动,并能在同一方向实现升降压功能的数字电源。
关键词:STM32F334;双向同步整流;数字电源DOI:10.3969/j.issn.1005-5517.2018.8.012O 引言随着不可再生资源的日益减少,人们对新型清洁能源的需求增加,促进了诸如太阳能发电、风力发电、微电网行业的发展,在这些行业产品中需要能量的存储释放以及能量的双向流动,比如太阳能、风力发出的电需要升压逆变之后才能接入电网,而对于电池或者超级电容的充放电需要系统能够具备升压和降压的功能,为了确保电能转换的安全性以及稳定性,因此急需设计一款变换器,不仅能实现能量的双向流动,还能在同一方向实现升降压功能。
实现能量双向流动功能整流驱动电路拓扑有很多种,双向DC-DC变换器一般可以通过用MOS 管代替经典拓扑电路中整流二极管得到新的拓扑,例如双向Cuk电路、Sepic电路、Zeta电路等,其中双向Cuk电路需要多个电感,输出负电压,输出的电流较小;而Sepic电路有非常复杂的控制环路特性,且效率低;Zeta电路是双Sepic电路,要求更高的输入电压纹波、大容量的飞跨电容。
本系统设计采用同步BUCK电路和同步BOOST电路级联而成的同步整流BUCK-BOOST电路拓扑,并采用STM32F334高性能32位ARM Cortex-M4MCU构建数字电源,其不仅嵌入浮点单元(FPU),集成高分辨率的定时器(达217 ps)和两个超高速5 Msps(0.2Us)12位模数转换器(ADC),对电路的输出电压电流同步测量,还构建实时的双闭环PID控制,实时跟踪输出电压,减少系统的稳定误差。
2015年全国大学生电子设计竞赛双向 DC-DC 变换器(A 题)[本科组]参赛学校:淮阴工学院参赛编号:HA011队员姓名:刘新邵慧洁甄将军指导老师:陈万刘保连2015年8月15日摘要随着科技和生产的发展,双向DC-DC变换器在诸如电动车动力系统,直流不停电电源等场合的应用越来越多。
双向 DC-DC 变换器应用于能量双向流动的场合可以大幅度减轻系统的体积重量和成本。
根据电池组充放电要求以及变换器的输入输出参数,在硬件电路设计中,采用了基于同步整流buck变换器的双向DC-DC电路结构,设计了基于STC89C52单片机的控制器,该控制器采样了双向DC-DC变换器的输出电压和充电电流,并通过软件计算得出功率器件的开关信号和充电电流指令,以达到精确控制充电电流的目的。
测试结果表明,本设计主要实现双向DC-DC变换器对电池组的充放电功能,达到了双向DC-DC变换器(本科组)基本部分和发挥部分的要求。
关键词:双向DC/DC 变换,buck-boost电路,充放电模式1系统方案1.1 DC/DC变换模块的论证和选择方案一:非隔离级联型DC-DC型拓扑结构变换器:它的不足之处是它开关器件和二极管数目都比通常的双向DC-DC变换器增加了一倍,而且由于每一时间段里主电流都要流经两个半导体器件,通态损耗也高一些。
图1-1 非隔离级联型DC-DC电路原理图方案二:非隔离双向buck-Boost型拓扑结构变换器:它是将buck变换器和boost变换器结合到同一电路上。
这种双向buck-boost电路可以较好的实现能量的双向流动,结构简单,所用器件少而且便于控制,易于实现,且效率比双向全桥DC-DC电路大大提高。
图1-2 非隔离双向buck-boost型电路原理图理想选择。
1.2 单片机控制方案的论证和选择方案一:采用80C51类单片机控制方案编译器能自动完成变量的存储单元的分配,编程者可以方便地进行信号处理算法和程序的移植。
倍流同步整流在DC/DC变换器中工作原理分析倍流同步整流在DC/DC变换器中工作原理分析类别:电源技术 作者:蔡拥军等 摘要:在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。
就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。
 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。
不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。
输出电压会从过去的3.3V降低到1.1~1.8V之间,甚至更低[1]。
从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。
这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。
而对称半桥加倍流同步整流结构的DC/DC变换器是最能够满足上面的要求的[3]。
 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果证明了它的合理性。
 1 主电路拓扑结构 主电路拓扑如图1中所示。
由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。
由于要求电路输出低压大电流,则倍流同步整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电流纹波; 3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。
双向DC-DC变换器引言双向DC-DC变换器是一种常用的电力电子装置,其功能是将电能从一种电压级别转换到另一种电压级别。
它可以将高压电能转换为低压电能,或将低压电能转换为高压电能,从而实现电能的双向传输。
在许多应用中,如电动汽车、太阳能和风力发电系统以及电池管理系统中,双向DC-DC变换器起着不可或缺的作用。
工作原理双向DC-DC变换器由一对相反的DC-DC转换器组成:升压转换器(boost)和降压转换器(buck)。
两个转换器通过一个电容和多个开关连接在一起,形成了一个闭环的电路系统。
当输入电源电压高于输出电压时,升压转换器工作,将电能从输入端转移到输出端;而当输入电源电压低于输出电压时,降压转换器工作,将电能从输出端转移到输入端。
通过控制开关的状态和频率,可以实现电能的双向传输。
主要组成部分双向DC-DC变换器主要由以下几个组件组成:1.升压转换器(boost):升压转换器用于将低电压输入转换为高电压输出。
2.降压转换器(buck):降压转换器用于将高电压输入转换为低电压输出。
3.电容:电容用于储存能量,平滑电压波动,确保输出电压稳定。
4.开关:开关用于控制电能的流动方向和路径,实现电能的双向传输。
5.控制电路:控制电路用于监测输入和输出电压,并根据需要调整开关的状态和频率,以实现电能转换的准确控制。
应用领域双向DC-DC变换器在以下领域得到广泛应用:1.电动汽车:电动汽车需要将电池产生的低电压转换为驱动电机所需的高电压。
反之,制动时产生的高电压还需要转换为低电压进行储存和重用。
2.太阳能和风力发电系统:太阳能和风力发电系统需要将不稳定的输出电压转换成稳定的电网电压,并实现将多余电能注入电网或从电网中提取电能的功能。
3.电池管理系统:电池管理系统需要将电池的直流输出电压转换为其他设备所需的电压级别,并实现电池的充电和放电管理。
4.新能源储存系统:新能源储存系统需要实现从电网中充电和向电网放电的功能,同时保证高效能转换和最大限度地延长电池寿命。
2015年全国大学生电子设计竞赛论文A题:双向DC-DC变换器2015年8月15日双向DC-DC变换器(A题)摘要本设计采用PWM技术来实现双向DC—DC变换,可由外部电源给锂电池充电,当外部电源低于30伏时则由锂电池直接给负载供电,且两者可以根据外部电源电压与锂电池电压的高低进行自动切换。
本设计使用BUCK(直流斩波降压电路)电路实现恒流充电,采用BOOST(直流斩波升压拓扑电路)实现锂电池给负载恒压供电。
本设计使用STM32为主控模块,主要采用TL494来产生单路PWM波,该PWM波进入半桥驱动芯片IR2401后可产生两路互补的PWM波,以此驱动相应大功率场效应管,该驱动方式属于同步整流的范围,因此其效率可达到90%以上。
关键字:DC-DC ,STM32 ,BOOST电路,BUCK电路,同步整流AbstractThis design uses PWM technology to achieve two-way DC - DC transform, which can be charged by the external power to the lithium battery, when the external power supply is lower than 30 volts, and the two can automatically switch according to the voltage of the external power supply voltage and the lithium battery. The design uses BUCK (DC chopper circuit) circuit to achieve constant current charging, using BOOST (DC chopper boost topology) to achieve a lithium battery power supply to the load. This design use the STM32 as the main control module, the main use of TL494 to produce a single PWM wave, the PWM wave after entering the half bridge driver chip IR2401 can generate two complementary PWM wave, so as to drive the corresponding high power field effect transistor, the drive is the synchronous rectification range, so the effect rate reached more than 90%. Keywords: DC - DC, STM32, BOOST circuit, buak circuit, synchronous rectifier一、方案论证及比较1.拓扑方案的选择和论证方案一:使用LM2596分别做两个电路,一个用MAX417和LM2596做恒流源,实现外部电源给电池恒流充电,另一路使用LM2596作恒压源,实现电池给负载供电。
几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。
最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。
下面简单介绍一下常用的开关电源拓扑结构。
Buck电路首先我们要讲的就是Buck电路。
Buck电路也成为降压(step-down)变换器。
它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。
Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。
展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
应用最多的是单端反激式开关电源。
优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。
Boost电路Boost(升压)电路是最基本的反激变换器。
Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
上面的图就是Boost电路图。
Boost电路是一个升压电路,它的输出电压高于输入电压。
Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。
Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。
应用同步整流技术实现双向DC/DC变换
[日期:2006-11-9] 来源:电源技术应用作者:浙江大学姜德来吕征宇[字体:大中小]
摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。
针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。
通过实验加以验证。
关键词:双向;同步整流;恒压;恒流
0 引言
同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。
采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。
用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。
此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。
在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。
l 工作原理
1 1 电路拓扑
双向同步整流电路拓扑如图1所示。
当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,SⅡ关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。
当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。
1.2 参数设计
设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。
电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。
具体算式如下。
式中:Vg为Buck电路输入电压;
Vo为Boost电路输入电压;
D为Sw管的占空比:
△Q为对应输出电压纹波的电荷增量;
△Vo为Buck电路输出电压纹波要求;
△Vg为Boost电路输出电压纹波要求;
△lmin为Buck和Boost电路电流纹波要求的较小值;
I为电感电流。
1.3双向恒流型控制
1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。
电路参数方程为
2)当电路工作在Boost模式时,被控制的是Sw的平均电流,目的是为了维持此平均电流恒定。
电路参数方程为
由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电流都有,则两种电路工作模式都可以将Sw定义为主开关管,控制电路直接对Sw进行控制,SR则采用互补控制。
图2给出了闭环双向恒流控制的系统框图,电流经采样电阻采样,由外部控制脚(Select)控制通道选择器,切换两路被采样信号。
采样得到的信号由运放放大,经PID补偿后与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。
1.4双向恒压型控制
1)当电路工作在Buck模式时,控制的目的是为了维持输出电压恒定。
电路参数方程为
Vo=DVg,
2)当电路工作在Boost模式时,被控制的是电压,控制目的是为了维持电压恒定。
电路
参数方程为
由以上分析可知,电路作正向Buck和反向Boost运行时,被控制的电压与Sw占空比呈不同的变化逻辑。
这就为驱动电路提出了更高的要求。
一般的控制驱动芯片不能提供这样的功能。
图3给出了闭环双向恒压控制的系统框图,由外部控制脚(Select)控制通道选择器,切换两路被采样的电压信号。
采样得到的信号经分压电阻分压后,再经PI补偿与三角波比较得到方波信号去控制驱动开关管,从而构成一个闭环的负反馈系统。
2 驱动电路设计
2.1 单向驱动脉冲的要求
双向直流变换电路的工作原理同传统的Buck及Boost变换器类似,当主开关管导通时,
续流管关断,当主开关管关断时,续流管导通工作。
所以两管驱动脉动应互补,同时为了防止共通,发生短路而烧毁器件,必须设置死区。
2.2 双向恒流控制的驱动设计
如图4所示,B脉冲经D脉冲延时所得,其延时时间等于死区时间。
互补带延时的两路
控制脉冲可由以下逻辑获得,,图5给出了相应的硬件实现电路。
2.3 双向恒压控制的驱动设计
当采用恒压型控制时,Buck和Boost电路各自的被控电压随主开关管的占空比D的变换逻辑刚好相反,因此,为了实现双向直流变换,还须增加一个控制脚,以切换两种工作模式下主开关管的定义,实现方法是交换两路控制脉冲,用逻辑电路来实现,逻辑表达式为:
当,电路工作在正向Buck模式;相反,当K=0时,,SR=DB,电路工作在反向Boost模式。
根据上面的分析,图6给出了双向恒压控制的控制驱动脉冲实现电路。
最后,需要指出的是,采用数字控制,系统更简单,控制更灵活,抗干扰特性强,系统维护也方便,但考虑到单片机或DSP,数字信号处理器成本相对较高,故以上双向同步整流变换控制的分析设计采用硬件电路实现。
3 实验结果
正向Buck输入电压24v,输出10v/6A;反向Boost输入电压10v,输出24v/2.5A。
图7和图8为双向恒压控制时的驱动波形,控制K脚的电平逻辑可以实现两路输出脉冲的互换,从而满足电路双向工作时的驱动要求。
图9-图12为双向恒流和双向恒压控制下的输出电压和电流波形。
4 结语
本文是在Buck同步整流的基础上,充分利用电路从拓扑上整合了Buck和Boost两种变换器的特点,提出了双向DC/DC变换,而并针对双向恒压控制和恒流控制两种不同的控制方式,分析了对驱动电路的要求,并给出了各自驱动脉冲的实现方法。
实验结果与理论分
析吻合。